Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 10(1): 1718, 2019 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-30979869

RESUMO

Hypothalamic neurons expressing the anorectic peptide Pro-opiomelanocortin (Pomc) regulate food intake and body weight. Here, we show that Steroid Receptor Coactivator-1 (SRC-1) interacts with a target of leptin receptor activation, phosphorylated STAT3, to potentiate Pomc transcription. Deletion of SRC-1 in Pomc neurons in mice attenuates their depolarization by leptin, decreases Pomc expression and increases food intake leading to high-fat diet-induced obesity. In humans, fifteen rare heterozygous variants in SRC-1 found in severely obese individuals impair leptin-mediated Pomc reporter activity in cells, whilst four variants found in non-obese controls do not. In a knock-in mouse model of a loss of function human variant (SRC-1L1376P), leptin-induced depolarization of Pomc neurons and Pomc expression are significantly reduced, and food intake and body weight are increased. In summary, we demonstrate that SRC-1 modulates the function of hypothalamic Pomc neurons, and suggest that targeting SRC-1 may represent a useful therapeutic strategy for weight loss.


Assuntos
Hipotálamo/metabolismo , Neurônios/metabolismo , Coativador 1 de Receptor Nuclear/genética , Coativador 1 de Receptor Nuclear/metabolismo , Obesidade/genética , Alelos , Animais , Peso Corporal , Linhagem Celular Tumoral , Cruzamentos Genéticos , Deleção de Genes , Técnicas de Introdução de Genes , Variação Genética , Células HEK293 , Heterozigoto , Homeostase , Humanos , Leptina/metabolismo , Masculino , Potenciais da Membrana , Camundongos , Camundongos Transgênicos , Mutação de Sentido Incorreto , Obesidade/metabolismo , Fenótipo
2.
Cell ; 176(4): 729-742.e18, 2019 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-30661757

RESUMO

Hypothalamic melanocortin neurons play a pivotal role in weight regulation. Here, we examined the contribution of Semaphorin 3 (SEMA3) signaling to the development of these circuits. In genetic studies, we found 40 rare variants in SEMA3A-G and their receptors (PLXNA1-4; NRP1-2) in 573 severely obese individuals; variants disrupted secretion and/or signaling through multiple molecular mechanisms. Rare variants in this set of genes were significantly enriched in 982 severely obese cases compared to 4,449 controls. In a zebrafish mutagenesis screen, deletion of 7 genes in this pathway led to increased somatic growth and/or adiposity demonstrating that disruption of Semaphorin 3 signaling perturbs energy homeostasis. In mice, deletion of the Neuropilin-2 receptor in Pro-opiomelanocortin neurons disrupted their projections from the arcuate to the paraventricular nucleus, reduced energy expenditure, and caused weight gain. Cumulatively, these studies demonstrate that SEMA3-mediated signaling drives the development of hypothalamic melanocortin circuits involved in energy homeostasis.


Assuntos
Metabolismo Energético/genética , Melanocortinas/metabolismo , Semaforinas/genética , Adolescente , Adulto , Animais , Peso Corporal , Linhagem Celular , Criança , Pré-Escolar , Modelos Animais de Doenças , Ingestão de Alimentos , Feminino , Variação Genética/genética , Homeostase , Humanos , Hipotálamo/metabolismo , Leptina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Obesidade/genética , Obesidade/metabolismo , Receptores de Superfície Celular/metabolismo , Semaforinas/metabolismo , Adulto Jovem , Peixe-Zebra
3.
Clin Chem ; 64(1): 173-182, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29097517

RESUMO

BACKGROUND: The global rise in the prevalence of obesity and associated comorbidities such as type 2 diabetes, cardiovascular disease, and cancer represents a major public health concern. CONTENT: Studies in rodents with the use of global and targeted gene disruption, and mapping of neurocircuitry by using optogenetics and designer receptors exclusively activated by designer drugs (DREADDs) have greatly advanced our understanding of the neural control of body weight. In conjunction with analytical chemistry techniques involving classical immunoassays and mass spectrometry, many neuropeptides that are key to energy homeostasis have been identified. The actions of neuropeptides are diverse, from paracrine modulation of local neurotransmission to hormonal control of distant target organs. SUMMARY: Multiple hormones, such as the adipocyte-derived leptin, insulin, and gut hormones, and nutrients signal peripheral energy state to the central nervous system. Neurons in distinct areas of the hypothalamus and brainstem integrate and translate this information by both direct inhibitory/excitatory projections and anorexigenic or orexigenic neuropeptides into actions on food intake and energy expenditure. The importance of these neuropeptides in human energy balance is most powerfully illustrated by genetic forms of obesity that involve neuropeptides such as melanocortin-4-receptor (MC4R) deficiency. Drugs that mimic the actions of neuropeptides are being tested for the treatment of obesity. Successful therapeutic strategies in obesity will require in-depth knowledge of the neuronal circuits they are working in, the downstream targets, and potential compensatory mechanisms.


Assuntos
Doenças Metabólicas/fisiopatologia , Neuropeptídeos/fisiologia , Obesidade/fisiopatologia , Animais , Apetite/fisiologia , Metabolismo Energético , Comportamento Alimentar , Humanos , Hipotálamo/metabolismo , Neurônios/metabolismo , Receptor Tipo 4 de Melanocortina/metabolismo , Transdução de Sinais
4.
Sci Rep ; 7(1): 4266, 2017 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-28655900

RESUMO

The aim of this study was to use functional neuroimaging to investigate whether oxytocin modulates the neural response to visual food cues in brain regions involved in the control of food intake. Twenty-four normal weight volunteers received intranasal oxytocin (24 IU) or placebo in a double-blind, randomized crossover study. Measurements were made forty-five minutes after dosing. On two occasions, functional MRI (fMRI) scans were performed in the fasted state; the blood oxygen level-dependent (BOLD) response to images of high-calorie foods versus low-calorie foods was measured. Given its critical role in eating behaviour, the primary region of interest was the hypothalamus. Secondary analyses examined the parabrachial nuclei and other brain regions involved in food intake and food reward. Intranasal oxytocin administration suppressed hypothalamic activation to images of high-calorie compared to low-calorie food (P = 0.0125). There was also a trend towards suppression of activation in the parabrachial nucleus (P = 0.0683). No effects of intranasal oxytocin were seen in reward circuits or on ad libitum food intake. Further characterization of the effects of oxytocin on neural circuits in the hypothalamus is needed to establish the utility of targeting oxytocin signalling in obesity.


Assuntos
Sinais (Psicologia) , Comportamento Alimentar/efeitos dos fármacos , Comportamento Alimentar/psicologia , Alimentos , Hipotálamo/efeitos dos fármacos , Hipotálamo/fisiologia , Ocitocina/administração & dosagem , Estimulação Luminosa , Adulto , Mapeamento Encefálico , Feminino , Neuroimagem Funcional , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
5.
Cell ; 161(1): 119-132, 2015 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-25815990

RESUMO

The global rise in the prevalence of obesity and associated co-morbidities such as type 2 diabetes, cardiovascular disease, and cancer represents a major public health concern. The biological response to increased consumption of palatable foods or a reduction in energy expenditure is highly variable between individuals. A more detailed mechanistic understanding of the molecular, physiological, and behavioral pathways involved in the development of obesity in susceptible individuals is critical for identifying effective mechanism-based preventative and therapeutic interventions.


Assuntos
Comportamento Alimentar , Obesidade/metabolismo , Animais , Dieta , Metabolismo Energético , Humanos , Hipotálamo/fisiologia , Obesidade/complicações , Obesidade/genética , Obesidade/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA