Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Chimia (Aarau) ; 71(10): 667-677, 2017 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-29070412

RESUMO

In this case study on an essential instrument of modern drug discovery, we summarize our successful efforts in the last four years toward enhancing the Actelion screening compound collection. A key organizational step was the establishment of the Compound Library Committee (CLC) in September 2013. This cross-functional team consisting of computational scientists, medicinal chemists and a biologist was endowed with a significant annual budget for regular new compound purchases. Based on an initial library analysis performed in 2013, the CLC developed a New Library Strategy. The established continuous library turn-over mode, and the screening library size of 300'000 compounds were maintained, while the structural library quality was increased. This was achieved by shifting the selection criteria from 'druglike' to 'leadlike' structures, enriching for non-flat structures, aiming for compound novelty, and increasing the ratio of higher cost 'Premium Compounds'. Novel chemical space was gained by adding natural compounds, macrocycles, designed and focused libraries to the collection, and through mutual exchanges of proprietary compounds with agrochemical companies. A comparative analysis in 2016 provided evidence for the positive impact of these measures. Screening the improved library has provided several highly promising hits, including a macrocyclic compound, that are currently followed up in different Hit-to-Lead and Lead Optimization programs. It is important to state that the goal of the CLC was not to achieve higher HTS hit rates, but to increase the chances of identified hits to serve as the basis of successful early drug discovery programs. The experience gathered so far legitimates the New Library Strategy.


Assuntos
Descoberta de Drogas , Avaliação Pré-Clínica de Medicamentos , Algoritmos , Ensaios de Triagem em Larga Escala , Bibliotecas de Moléculas Pequenas
2.
J Chem Inf Model ; 52(2): 380-90, 2012 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-22251316

RESUMO

A new subpharmacophore-based virtual screening method is introduced. Subpharmacophores are derived from large active molecules to detect small bioactive molecules as seeds for starting points in medicinal chemistry programs. A large data set was assembled from the ChEMBL database to check the validity of this approach. Molecules for 133 targets with molecular weights between 450 and 850 were selected as queries. For the query molecules, the pharmacophore descriptors were calculated. Up to 56 000 subpharmacophore descriptors with five to seven pharmacophore points were derived from the query pharmacophores. The subpharmacophore descriptors were used as queries to screen 1079 test data sets, containing decoys and spike molecules. A maximum upper molecular weight limit of 400 Da was set for the test molecules. Three different chemical fingerprint descriptors were used for comparison purposes. The subpharmacophore approach detected active molecules for 85 out of 133 targets and outperformed the chemical fingerprints. This ligand-based virtual screening experiment was triggered by the needs of medicinal chemistry. Applying the subpharmacophore method in a medicinal chemistry program, where a lead molecule with a molecular weight of 800 Da was available, resulted in a new series of molecules with molecular weights below 400.


Assuntos
Simulação por Computador , Bases de Dados Factuais , Avaliação Pré-Clínica de Medicamentos/métodos , Química Farmacêutica , Peso Molecular
3.
J Chem Inf Model ; 49(2): 232-46, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19434825

RESUMO

We present OSIRIS, an entirely in-house developed drug discovery informatics system. Its components cover all information handling aspects from compound synthesis via biological testing to preclinical development. Its design principles are platform and vendor independence, a consistent look and feel, and complete coverage of the drug discovery process by custom tailored applications. These include electronic laboratory notebook applications for biology and chemistry, tools for high-throughput and secondary screening evaluation, chemistry-aware data visualization, physicochemical property prediction, 3D-pharmacophore comparisons, interactive modeling, computing grid based ligand-protein docking, and more. Most applications are developed in Java and are built on top of a Java library layer that provides reusable cheminformatics functionality and GUI components such as chemical editors, structure canonicalization, substructure search, combinatorial enumeration, enhanced stereo perception, force field minimization, and conformation generation.


Assuntos
Sistemas de Gerenciamento de Base de Dados , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos , Modelos Moleculares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA