Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant Dis ; 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35442056

RESUMO

Magnolia denudata (Lilytree or Yulan magnolia) is an important ornamental species of the genus Magnolia. It has considerable economical value because of its beautiful fragrant flowers and excellent tree structure (Wang et al. 2010). In Beijing, nurseries cultivate M. denudata as an ornamental plant and traditional medicine. In May 2020, patches of root rotted plants were observed in a field in Beijing, China, with an estimated incidence of approximately 31%. Early symptoms comprised leaves melanocratic shrunken, and the vascular tissue of roots turned brown. Progressively, the roots rotted and the whole plant died (Fig. 1 a-d). Infected roots tissue was surface disinfested and plated on potato dextrose agar (PDA) medium at 25±2 °C and incubated in the dark for 7 days. Pure cultures were obtained by hyphal tip excision (strain MFR1215.4). Fungal colonies were entire margins, and the aerial mycelium was copious, early white, and gradually developed into cream white. Colonies developed to 45.1 mm in 4 days at 25±2 °C on PDA media. On Spezieller Nährstoffarmer Agar (SNA) medium at 25±2 °C for 10 days. The morphological characteristics including macroconidia, microconidia, and chlamydospores were shown in Fig.1 (i-p). These morphological characteristics of the isolate corresponded to the description given for Fusarium solani sensu lato (Nelson et al. 1983, Summerell, 2003). Molecular identification was confirmed via amplification of translation elongation factor 1α (EF-1α), RNA polymerase I beta subunit gene (RPB1), and RNA polymerase II beta subunit gene (RPB2) regions using EF1/EF2, RPB1-Fa/G2R, RPB2-5f2/7cR, and RPB2-7cF/11aR primers (O'Donnell, 2010). Sequences were registered in GenBank. In the Fusarium-ID database, the EF-1α, RPB1, and RPB2 sequences showed 100% (677/677 bp), 99.8% (1568/1571 bp), and 100% (1457/1457 bp) identity with the F. solani species complex (FSSC). The same species-level identification was also found using Fusarium MLST. A best maximum likelihood tree was constructed using PhyloSuite v1.2.2 (Zhang et al. 2020), and the sequences of the MFR1215.4 isolation showed the same homology with FSSC 6. Pathogenicity tests were conducted on healthy one-year-old M. denudata potted seedlings. 200 ml spore suspension (1×106 spores/ml) was poured over the roots of twenty seedlings, and sterile distilled water was irrigated into twenty seedlings as controls in a greenhouse with 25/15°C day/night temperature and 80% relative humidity. The experiment was repeated three times. All inoculated seedlings showed similar symptoms to those in the field after 65 days, whereas the controls remained symptomless. The reisolating pathogens from symptomatic tissues were identical to the original isolates by morphology and EF-1α sequence identification. Based on morphological, molecular, and pathogenic characterization, the isolated pathogen was identified as FSSC 6. Fusarium species have been recorded in various places of the world and are known to be harmful to numerous plants (Trabelsi et al. 2017). It has been reported that FSSC has infected soybeans (Coleman, 2016, Nelson et al. 1989), oil palm (Hafizi et al. 2013), tobacco (Yang et al. 2020), resulting in sudden death syndrome, crown disease, and root rot. To our knowledge, this is the first report of FSSC-induced root rot in M. denudata in China. This research may contribute to the development of epidemiology and management strategies for root rot caused by FSSC on M. denudata.

2.
Plant Dis ; 2021 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-34372681

RESUMO

Gastrodia elata, a traditional and important medicinal plant in China, it is used to numerous medical reasons. It is widely planted in Shaxi, Guizhou Province, China. G. elata grown in Guizhou is of high quality and an important source of income for the region. However, a root rot disease has been reported on G. elata in Guizhou in recent years, with an incidence rate of approximately 25%; this disease has markedly affected the plant growth and development. It causes what is referred to as a "rotten nest" and "empty nest", significantly reducing the yield and medicinal value of G. elata. Eighty diseased G. elata samples were collected from August to December 2020 in Shaxi. Tissue dissection was used to isolate the pathogen on an ultra-clean workbench. In short, thew surface of G. elata was wiped with 75% alcohol for 30 s and then rinsed three to four times with sterile water. After the surface had dried, the skin from an infected area of the plant was cut into a net shape using a sterile scalpel. Eighty diseased tissue samples were placed on PDA (potato dextrose agar) medium using a sterile medical syringe needle and placed in an incubator at 25 °C for 7 days, and 61 fungal isolates with the same morphological characteristics were obtained from the diseased samples. Pure cultures of a putative fungal pathogen designated SX13 were obtained using the single-spore isolation and cultured on PDA medioum for identification and analysis. The colony grew in a circular shape, and the early hyphae were compact and white. A light-yellow ring appeared in the outer circle of the hyphae, and could be seen on both sides of the plate. The upper side of the colony turned white subsequently, and the lower side was light yellow. Identification of SX13 as Fusarium solani was primarily done based on morphological characteristics (Chitrampalam et al., 2018). Colonies produced macroconidia, which were sickle-shaped with two to five septa; most of them had three septa (length by width: 17.28 to 36.23 µm by 4.33 to 6.43 µm). Smaller conidia were fusiform, renal, or oblong, with no or one septum (length by width: 5.56 to 14.35 µm by 2.93 to 5.76 µm). Chlamydospore were also observed with diameters of ranging from 3.43 to 13.12 µm. Identification of SX13 was verified through DNA sequencing. Genomic DNA was extracted using the Biomiga Fungal gDNA Kit. The internal transcribed spacer (ITS) region (primers ITS5/ITS4) (Schoch et al., 2012), ß-tubulin (primers T1/T2) (O'Donnell and Cigelnik, 1997), and actin gene (ACT) region (primers ACT-512F/ACT-783R) (Carbone and Kohn, 1999) were PCR amplified, sequenced, and subjected to NCBI BLASTn homology matching analyses (GenBank Accession Nos. MW888340, MW892976 and MZ440809). High levels of sequence homology were observed with a F. solani reference sequence (Accession Nos. MT560378, ITS=100%; KU938955, ß-tubulin=100%; KM231197, ACT=99%). To complete Koch's postulates, a conidial suspension (106 spores/mlcollected from isolate SX13 was inoculated onto nine G. elata root samples. Sterile water was used as a negative control, and the pathogenicity assay was repeated three times. Following inoculation, plants were kept under high relative humidity in the dark at 25 °C for 7 days. Symptoms similar to the original outbreak were observed on all inoculated plants. In contrast, the negative control plants were healthy and unaffected. The SX13 was re-isolated successfully from the diseased tissues and verified based on morphology and sequencing as described above. To the best of our knowledge, this is the first report of F. solani causing root rot disease on G. elata in China. These findings provide a basis for further research on the management of this disease.

3.
Plant Dis ; 2020 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-32915116

RESUMO

Coptis chinensis Franchet, is a perennial herb used as a traditional Chinese medicine. Annual production of Coptis is about 3000 tons in Shizhu, Chongqing. In recent years, root rot has become a serious and widespread disease on Coptis in Shizhu with an average incidence of 40%, and yield losses up to 67%. Infected plants were easy to pull from the soil, and most of the fibrous roots and main roots were brown or black compared to healthy roots that were yellow. Severely infected plants were wilted and necrotic. In October 2019, 33 diseased roots were collected from Shizhu (30°18'N, 108°30'E), and small samples (0.5 cm in length) were cut from the border between diseased and healthy tissue, successively sterilized with 75% ethanol and 2% sodium hypochlorite, rinsed 3 times with sterilized water, dried on sterilized filter paper, and transferred onto PDA, and incubated at 25°C for 7 days in dark. Eighteen distinct fungal isolates (H1-H18) were isolated and Koch's postulates were conducted to verify the pathogenicity of individual isolates. The rhizosphere soil of healthy 2-year-old Coptis plants was inoculated by pouring 5 mL of conidial suspension (106 conidia/mL) scraped from a culture of each isolate on PDA. Sterilized water was used to mock inoculate. For each isolate, 6 plants were inoculated. After 20 days, the roots of all plants inoculated with H15 or H18 were dark brown and rotten, while mock inoculated plants were healthy. The isolates H15 and H18 were re-isolated from symptomatic plants. Isolate H15 formed abundant white mycelium on PDA and produced rose pigment in the agar. Conidia were long and slender, straight to slightly curved, with 1-3 septate. The apical cells were tapering and bent, and the foot cells were distinctly notched. Conidiogenous cells were monophialides and polyphialides. No chlamydospores were observed (Figure S1). Isolate H18 formed white sparse mycelium on PDA and produced no pigment in the agar. Conidia were relatively wide, straight and stout, with 3-5 septate. The apical cells were blunt and rounded, and the foot cells were barely notched. Conidiogenous cells were long monophialides. Chlamydospores were formed intercalary in the hyphae (Figure S2). For further identification, the internal transcribed spacer (ITS), ß-tubulin, translation elongation factor 1ɑ (EF1ɑ) and RNA polymerase second largest subunit (RPB2) gene regions were amplified with ITS1/ITS4, Bt2a/Bt2b, EF1/EF2 and 5f2/7cr (White et al. 1990; Glass and Donaldson, 1995; O'Donnell et al. 2010). GenBank accession numbers of H15 and H18 were MT463390 and MT463389 for the ITS region, MT465656 and MT465654 for ß-tubulin, MT653321 and MT465651 for EF1ɑ, and MT653323 and MT653322 for RPB2. BLAST results showed the ITS, ß-tubulin, EF1ɑ, and RPB2 sequences revealed 100% (533/533 base pairs), 100% (265/265 base pairs), 98% (622/632 base pairs), and 99% (936/947 base pairs) homology respectively with those of Fusarium avenaceum (MN186746.1, MH791368.1, KU238140.1, and MK185027.1), and 100% (537/537 base pairs), 100% (227/227 base pairs), 100% (688/688 base pairs), and 99.03% (918/927 base pairs) with F. solani in GenBank (MH857319.1, MN692929.1, KP674211.1, and MH300549.1), respectively. Thus, H15 and H18 were identified as F. avenaceum and F. solani based on its morphological and molecular characteristics. To our knowledge, F. solani has been previously reported as a pathogen on Coptis (Luo et al. 2014), and this is the first report of root rot on Coptis caused by F. avenaceum in the world. Identification of the pathogens is important for effective disease management and control.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA