RESUMO
Previously, a novel Corynebacterium glutamicum strain for the de novo biosynthesis of tailored poly-γ-glutamic acid (γ-PGA) has been constructed by our group. The strain was based on the γ-PGA synthetase complex, PgsBCA, which is the only polyprotein complex responsible for γ-PGA synthesis in Bacillus spp. In the present study, PgsBCA was reconstituted and overexpressed in C. glutamicum to further enhance γ-PGA synthesis. First, we confirmed that all the components (PgsB, PgsC, and PgsA) of γ-PGA synthetase derived from B. licheniformis are necessary for γ-PGA synthesis, and γ-PGA was detected only when PgsB, PgsC, and PgsA were expressed in combination in C. glutamicum. Next, the expression level of each pgsB, pgsC, and pgsA was tuned in order to explore the effect of expression of each of the γ-PGA synthetase subunits on γ-PGA production. Results showed that increasing the transcription levels of pgsB or pgsC and maintaining a medium-level transcription level of pgsA led to 35.44% and 76.53% increase in γ-PGA yield (γ-PGA yield-to-biomass), respectively. Notably, the expression level of pgsC had the greatest influence (accounting for 68.24%) on γ-PGA synthesis, followed by pgsB. Next, genes encoding for PgsC from four different sources (Bacillus subtilis, Bacillus anthracis, Bacillus methylotrophicus, and Bacillus amyloliquefaciens) were tested in order to identify the influence of PgsC-encoding orthologues on γ-PGA production, but results showed that in all cases the synthesis of γ-PGA was significantly inhibited. Similarly, we also explored the influence of gene orthologues encoding for PgsB on γ-PGA production, and found that the titer increased to 17.14 ± 0.62 g/L from 8.24 ± 0.10 g/L when PgsB derived from B. methylotrophicus replaced PgsB alone in PgsBCA from B. licheniformis. The resulting strain was chosen for further optimization, and we achieved a γ-PGA titer of 38.26 g/L in a 5 L fermentor by optimizing dissolved oxygen level. Subsequently, by supplementing glucose, γ-PGA titer increased to 50.2 g/L at 48 h. To the best of our knowledge, this study achieved the highest titer for de novo production of γ-PGA from glucose, without addition of L-glutamic acid, resulting in a novel strategy for enhancing γ-PGA production.
Assuntos
Corynebacterium glutamicum , Fermentação , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Ácido Glutâmico , Ácido Poliglutâmico/genética , Ligases/metabolismo , Glucose/metabolismoRESUMO
Vaccination is an innovative strategy for cancer treatment by leveraging various components of the patients' immunity to boost an anti-tumor immune response. Rationally designed nanoparticles are well suited to maximize cancer vaccination by the inclusion of immune stimulatory adjuvants. Also, nanoparticles might control the pharmacokinetics and destination of the immune potentiating compounds. Poly-γ-glutamic acid (γ-PGA) based nanoparticles (NPs), which have a natural origin, can be easily taken up by dendritic cells (DCs), which leads to the secretion of cytokines which ameliorates the stimulation capacity of T cells. The intrinsic adjuvant properties and antigen carrier properties of γ-PGA NPs have been the focus of recent investigations as they can modulate the tumor microenvironment, can contribute to systemic anti-tumor immunity and subsequently inhibit tumor growth. This review provides a comprehensive overview on the potential of γ-PGA NPs as antigen carriers and/or adjuvants for anti-cancer vaccination.
Assuntos
Nanopartículas , Neoplasias , Humanos , Ácido Glutâmico , Adjuvantes Imunológicos/farmacologia , Antígenos , Adjuvantes Farmacêuticos , Ácido Poliglutâmico , Neoplasias/prevenção & controle , Vacinação , Células Dendríticas , Microambiente TumoralRESUMO
Poly-γ-glutamic acid (γ-PGA) is a bio-derived water-soluble, edible, non-immunogenic nylon-like polymer with the biochemical characteristics of a polypeptide. This Bacillus-derived material has great potential for a wide range of applications, from bioremediation to tunable drug delivery systems. In the context of oral care, γ-PGA holds great promise in enamel demineralisation prevention. The salivary protein statherin has previously been shown to protect tooth enamel from acid dissolution and act as a reservoir for free calcium ions within oral cavities. Its superb enamel-binding capacity is attributed to the L-glutamic acid residues of this 5380 Da protein. In this study, γ-PGA was successfully synthesised from Bacillus subtilis natto cultivated on supplemented algae media and standard commercial media. The polymers obtained were tested for their potential to inhibit demineralisation of hydroxyapatite (HAp) when exposed to caries simulating acidic conditions. Formulations presenting 0.1, 0.25, 0.5, 0.75, 1, 2, 3 and 4% (w/v) γ-PGA concentration were assessed to determine the optimal conditions. Our data suggests that both the concentration and the molar mass of the γ-PGA were significant in enamel protection (p = 0.028 and p < 0.01 respectively). Ion Selective Electrode, combined with Fourier Transform Infra-Red studies, were employed to quantify enamel protection capacity of γ-PGA. All concentrations tested showed an inhibitory effect on the dissolution rate of calcium ions from hydroxyapatite, with 1% (wt) and 2% (wt) concentrations being the most effective. The impact of the average molar mass (M) on enamel dissolution was also investigated by employing commercial 66 kDa, 166 kDa, 440 kDa and 520 kDa γ-PGA fractions. All γ-PGA solutions adhered to the surface of HAp with evidence that this remained after 60 min of continuous acidic challenge. Inductively Coupled Plasma analysis showed a significant abundance of calcium ions associated with γ-PGA, which suggests that this material could also act as a responsive calcium delivery system. We have concluded that all γ-PGA samples tested (commercial and algae derived) display enamel protection capacity regardless of their concentration or average molar mass. However, we believe that γ-PGA D/L ratios might affect the binding more than its molar mass.
RESUMO
A quantitative method of analyzing nanoparticles (NPs) for drug delivery is urgently required by researchers and industry. Therefore, we developed new quantitative analytical methods for biodegradable and amphiphilic NPs consisting of polymeric γ-PGA-Phe [phenylalanine attached to poly(γ-glutamic acid)] molecules. These γ-PGA-Phe NPs were completely dissociated into separate γ-PGA-Phe molecules by adding sodium dodecyl sulfate (SDS). The dissociated NPs were chromatographically separated to analyze parameters such as the γ-PGA-Phe content in the NPs, the impurities present [using reverse-phase (RP) HPLC with an ultraviolet (UV) detector], and the absolute MW [using size-exclusion chromatography (SEC) with refractive index detection (RI) and multiangle light scattering (MALS) detection, i.e., SEC-RI/MALS]. The chromatographic patterns of the NPs were equivalent to those of the component polymer (γ-PGA-Phe), and excellent chromatographic separation for the quantitative evaluation of NPs was achieved. To the best of our knowledge, this is the first report of the quantitative evaluation of NPs in the field of NP-based delivery systems. Furthermore, these methods were applied to optimize and evaluate the NP manufacturing process. The results showed that impurities were effectively removed from the γ-PGA-Phe during the manufacturing process, so the purity of the final γ-PGA-Phe NPs was enhanced. In addition, the appearance, clarity of solution, particle size, zeta potential, particle matter, osmolarity, and pH of the product were evaluated to ensure that the NPs were of the required quality. Our approach should prove useful for product and process characterization and quality control in the manufacture of NPs. γ-PGA-Phe NPs are known to be a powerful vaccine adjuvant, so they are expected to undergo clinical development into a practical drug-delivery system. The analytical methods established in this paper should facilitate the reliable and practical quality testing of NP products, thus aiding the clinical development of γ-PGA-Phe-based drug-delivery systems. Moreover, since these analytical methods employ commonly used reagents and chromatographic systems, the methods are expected to be applicable to other NP-based drug-delivery products too. Graphical abstract NPs were completely dissociated into separate γ-PGA-Phe polymeric molecules, which yielded a similar chromatogram to that seen for the NPs.