Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
Mais filtros

Medicinas Complementares
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Phytomedicine ; 128: 155347, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38493717

RESUMO

BACKGROUND: Bile acid (BA) enterohepatic circulation disorders are a main feature of chronic cholestatic diseases. Promoting BA metabolism is thus a potential method of improving enterohepatic circulation disorders, and treat enterohepatic inflammation, oxidative stress and fibrosis due to cholestasis. PURPOSE: To investigate the effect of JiaGaSongTang (JGST) and its blood-absorbed ingredient 6-gingerol on α-naphthylisothiocyanate (ANIT)-induced chronic cholestasis, as well as elucidate the underlying regulatory mechanism. METHODS: Chronic cholestasis was induced in mice via subcutaneous injection of ANIT (50 mg/kg) every other day for 14 d. Treatment groups were administered JGST orally daily. Damage to the liver and intestine was observed using histopathological techniques. Biochemical techniques were employed to assess total BA (TBA) levels in the serum, liver, and ileum samples. Liquid chromatograph-mass spectrometry/mass spectrometry (LC-MS/MS) was used to analyze fecal BA components. Bioinformatic methods were adopted to screen the core targets and pathways. The blood-absorbed ingredients of JGST were scrutinized via LC-MS/MS. The effects of the major JGST ingredients on farnesoid X receptor (FXR) transactivation were validated using dual luciferase reporter genes. Lastly, the effects of the FXR inhibitor, DY268, on JGST and 6-gingerol pharmacodynamics were observed at the cellular and animal levels. RESULTS: JGST ameliorated pathological impairments in the liver and intestine, diminishing TBA levels in the serum, liver and gut. Fecal BA profiling revealed that JGST enhanced the excretion of toxic BA constituents, including deoxycholic acid. Bioinformatic analyses indicated that JGST engaged in anti-inflammatory mechanisms, attenuating collagen accumulation, and orchestrating BA metabolism via interactions with FXR and other pertinent targets. LC-MS/MS analysis identified six ingredients absorbed to the bloodstream, including 6-gingerol. Surface plasmon resonance (SPR) and dual luciferase reporter gene assays confirmed the abilities of 6-gingerol to bind to FXR and activate its transactivation. Ultimately, in both cellular and animal models, the therapeutic efficacy of JGST and 6-gingerol in chronic cholestasis was attenuated in the presence of FXR inhibitors. CONCLUSION: The findings, for the first time, demonstrated that 6-gingerol, a blood-absorbed ingredient of JGST, can activate FXR to affect BA metabolism, and thereby attenuate ANIT-induced liver and intestinal injury in chronic cholestasis mice model via inhibition of inflammation, oxidative stress, and liver fibrosis, in part in a FXR-dependent mechanism.


Assuntos
1-Naftilisotiocianato , Ácidos e Sais Biliares , Catecóis , Colestase , Álcoois Graxos , Fígado , Receptores Citoplasmáticos e Nucleares , Animais , Ácidos e Sais Biliares/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Colestase/tratamento farmacológico , Colestase/metabolismo , Masculino , Camundongos , Catecóis/farmacologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Álcoois Graxos/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Camundongos Endogâmicos C57BL , Humanos , Doença Crônica , Modelos Animais de Doenças
2.
Prep Biochem Biotechnol ; 54(7): 872-881, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38174655

RESUMO

Ginger (Zingiber officinale Roscoe, Zingeberaceae) is a medicinal plant widely used as food, spice, or flavoring agent worldwide. 6-Shogaol is a compound of prime interest in exhibiting anti-inflammatory, antioxidant and chemopreventive effects. The objective of the study is to investigate the effect of microwave-assisted drying (MAD) followed by microwave-assisted extraction (MAE) so as to produce 6-Shogaol enriched Ginger with improved therapeutic benefits. Various drying techniques viz. shade drying, tray drying, microwave-assisted drying and osmotic dehydration as a pretreatment were used for drying Ginger rhizomes. The dried rhizomes were extracted by conventional solvent extraction and microwave-assisted extraction techniques and tested for content of 6-Shogaol using the newly developed HPLC method whereas total flavonoid and polyphenol content were determined using the UV spectrophotometric method. Subjecting the microwave dried Ginger to microwave-assisted extraction for 45 min at constant power level of 284 W resulted in a significant rise in the extractability of 6-Shogaol (1.660 ± 0.018), total polyphenols (855.46 ± 5.33) and flavonoids (617.97 ± 6.40) compared to the conventional method of extraction. The proposed Ginger processing method of microwave drying followed by microwave extraction outperforms traditional methods in terms of speed, convenience, and performance thus can be scaled up to industrial levels.


Assuntos
Catecóis , Dessecação , Micro-Ondas , Extratos Vegetais , Zingiber officinale , Zingiber officinale/química , Catecóis/isolamento & purificação , Catecóis/química , Dessecação/métodos , Cromatografia Líquida de Alta Pressão/métodos , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Flavonoides/isolamento & purificação , Flavonoides/análise , Flavonoides/química , Rizoma/química , Polifenóis/isolamento & purificação , Polifenóis/análise
3.
Brain Res ; 1826: 148741, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38157955

RESUMO

This study investigated the effects of 6-gingerol-rich fraction of Zingiber officinale (6-GIRIFZO) on mercury chloride (HgCl2)-induced neurotoxicity in Wistar rats. Thirty -five male Wistar rats weighing between (150-200 g) were divided randomly into five groups (n = 7): group 1: control, received 0.5 mL of normal saline, group 2: received HgCl2 (5 mg/kg), group 3: received N-acetylcysteine (NAC) (50 mg/kg) as well as HgCl2 (5 mg/kg), group 4: received 6-GIRIFZO (100 mg/kg) and HgCl2 (5 mg/kg), group 5: had 6-GIRIFZO (200 mg/kg) and HgCl2 (5 mg/kg), consecutively for 14 days. On the day14, the rats were subjected to behavioural tests using a Morris water maze and novel object recognition tests. The rats were then euthanized to obtain brain samples for the determination of biochemical parameters (acetylcholinesterase (AchE), nitric oxide (NO), malondialdehyde (MDA), superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT), glutathione (GSH), tumor necrosis factor- alpha (TNF-α), nuclear factor kappa-B (NF-κB), interleukin-1ß (IL-1ß) and interleukin-6 (IL-6)) using standard methods. The result revealed a significant increase in escape latency and a significant decrease in recognition ratio in the rats that were exposed to HgCl2 only. However, 6-GIRIFZO produced a significant reduction in the escape latency and (p < 0.05) increase in the recognition ratio. Similarly, HgCl2 exposure caused a significant (p < 0.05) decrease in the brain SOD, GPx, CAT, GSH with increased brain levels of MDA, NO, AchE, TNF-α, NF-κB, IL-1ß and IL-6. Similarly to the standard drug, NAC, 6-GIRIFZO (100 and 200 mg/kg) significantly (p < 0.05) increased brain SOD, GPx, CAT, and GSH levels with decreased concentrations of MDA, NO, AchE, TNF-α, NF-κB, IL-1ß and IL-6. Also, pre-treatment with 6-GIRIFZO prevented the HgCl2-induced morphological aberrations in the rats. This study concludes that 6-GIRIFZO prevents HgCl2-induced cognitive deficit via reduction of brain inflammation as well as oxidative stress in rats.


Assuntos
Catecóis , Disfunção Cognitiva , Álcoois Graxos , Mercúrio , Zingiber officinale , Ratos , Masculino , Animais , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Ratos Wistar , Cloretos , Doenças Neuroinflamatórias , Cloreto de Mercúrio/toxicidade , Fator de Necrose Tumoral alfa/metabolismo , NF-kappa B/metabolismo , Interleucina-6 , Acetilcolinesterase , Estresse Oxidativo , Glutationa/metabolismo , Acetilcisteína/farmacologia , Superóxido Dismutase/metabolismo , Mercúrio/farmacologia
4.
Curr Comput Aided Drug Des ; 20(4): 367-373, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37076965

RESUMO

INTRODUCTION: Skin cancer is the most common type of cancer caused by the uncontrolled growth of abnormal cells in the epidermis and the outermost skin layer. AIM: This study aimed to study the anti-skin cancer potential of [6]-Gingerol and 21 related structural analogs using in vitro and in silico studies. METHODS: The ethanolic crude extract of the selected plant was subjected to phytochemical and GC-MS analysis to confirm the presence of the [6]-gingerol. The anticancer activity of the extract was evaluated by MTT (3-[4, 5-dimethylthiazol-2-y]-2, 5-diphenyl tetrazolium bromide) assay using the A431 human skin adenocarcinoma cell line. RESULTS: The GC-MS analysis confirmed the presence of [6]-Gingerol compound, and its promising cytotoxicity IC50 was found at 81.46 ug/ml in the MTT assay. Furthermore, the in silico studies used [6]-Gingerol and 21 structural analogs collected from the PubChem database to investigate the anticancer potential and drug-likeliness properties. Skin cancer protein, DDX3X, was selected as a target that regulates all stages of RNA metabolism. It was docked with 22 compounds, including [6]-Gingerol and 21 structural analogs. The potent lead molecule was selected based on the lowest binding energy value. CONCLUSION: Thus, the [6]-Gingerol and its structure analogs could be used as lead molecules against skin cancer and future drug development process.


Assuntos
Neoplasias Cutâneas , Zingiber officinale , Humanos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Zingiber officinale/química , Linhagem Celular , Neoplasias Cutâneas/tratamento farmacológico
5.
J Biomol Struct Dyn ; : 1-12, 2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37776009

RESUMO

Cervical cancer (CC) is the most frequent cancer in the female population worldwide. Although there are treatments available, they are ineffective and cause adverse effects. 6-gingerol is an active component in ginger with anticancer activity. This research aims to discover the mechanism by which 6-gingerol act as an anticancer agent on CC through a pharmacological network using bioinformatics databases. From MalaCard, Swiss Target Prediction, Comparative Toxicogenomics Database, and Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform, we obtained the target genes for 6-gingerol and CC and matched them. We got 26 genes and analyzed them in ShinyGO-0.76.3 and DAVID-Bioinformatics Resources. Then, we generated a protein-protein interaction network in Cytoscape and obtained 12 hub genes. Hub genes were analyzed in Gene Expression Profiling Interactive Analysis and TISIDB. In addition, molecular docking studies were performed between target proteins with 6-gingerol using SwissDock database. Finally, molecular dynamics studies for three proteins with the lowest interaction energy were implemented using Gromacs software. According to gene ontology results, 6-gingerol is involved in processes of apoptosis, cell cycle, and protein kinase complexes, affecting mitochondria and pathways related to HPV infection. CTNNB1 gene was negatively correlated with CD8+ infiltration but was not associated with a higher survival rate. Furthermore, the molecular docking study showed that 6-gingerol has a high binding to proteins, and the molecular dynamics showed a stable interaction of 6-gingerol to AKT1, CCNB1, and CTNNB1 proteins. Conclusion, our work helps to understand the anticancer activity of 6-gingerol in CC that should be studied experimentally.Communicated by Ramaswamy H. Sarma.

6.
Fitoterapia ; 169: 105607, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37442485

RESUMO

The clinical treatment of ulcerative colitis (UC) faces great challenges due to lifetime medication. In this study, Gingerol oil was extracted and purified by the process easily scale-up and cost effective, with productivity 2.72 ± 0.38% (w/w, versus crude drugs). The quality control of gingerol oil was fully established by HPLC fingerprint with 4 common peaks identified as 6-gingerol, 8-gingerol, 6-shogaol and 10-gingerol. The similarities of 6 batches of gingerol oil are within 0.931-0.999. The protective effects of gingerol oil are equivalent to or even stronger than that of 6-gingerol on inflammation and oxidative stress of HT-29 cells induced by lipopolysaccharide and H2O2, as well as on UC in mice caused by dextran sulfate sodium salt (DSS). Our research conclusions coincide well with the holistic view of Traditional Chinese Medicine and network pharmacology. The absorption kinetics of gingerol oil were conducted using the in situ intestinal perfusion in rats and comparable absorption were achieved in the jejunum, ileum and colon segments within 2 h. Thus, gingerol oil colon targeting pellets were prepared by extrusion-spherization technique. The cumulative dissolution behaviors and mechanisms were observed and analyzed by fitting to dissolution model. Our studies provided reliable theoretical and experimental support for the gingerol oil as reliable therapeutic choice of UC.


Assuntos
Colite Ulcerativa , Colite , Ratos , Camundongos , Animais , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Peróxido de Hidrogênio/efeitos adversos , Estrutura Molecular , Colo , Sulfato de Dextrana/efeitos adversos , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
7.
Int J Biol Macromol ; 245: 125282, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37331544

RESUMO

A nanolipidcarrier (NLC) loaded homogalacturonan enriched pectin (citrus modified pectin, MCP4) hydrogel was designed as a novel colon inflammation site-specific oral delivery system for 6-gingerol (6G) (6G-NLC/MCP4 hydrogel) administration, and its colitis alleviation effect were investigated. 6G-NLC/MCP4 exhibited typical "cage-like" ultrastructure with 6G-NLC embedded in the hydrogel matrix as observed by cryoscanning electron microscope. And due to the homogalacturonan (HG) domain in MCP4 specifically combined with Galectin-3, which is overexpressed in the inflammatory region, the 6G-NLC/MCP4 hydrogel targeted to severe inflammatory region. Meanwhile, the prolonged-release characteristics of 6G-NLC provided sustained release of 6G in severe inflammatory regions. The matrix of hydrogel MCP4 and 6G achieved synergistic alleviation effects for colitis through NF-κB/NLRP3 axis. Specifically, 6G mainly regulated the NF-κB inflammatory pathway and inhibited the activity of NLRP3 protein, while MCP4 regulated the expression of Galectin-3 and peripheral clock gene Rev-Erbα/ß to prevent the activation of inflammasome NLRP3.


Assuntos
Colite , NF-kappa B , Humanos , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Hidrogéis , Galectina 3 , Colite/metabolismo , Inflamassomos/metabolismo , Pectinas/farmacologia
8.
Phytomedicine ; 115: 154835, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37121058

RESUMO

BACKGROUND: The 6-Gingerol has significant anti-inflammatory, anti-oxidative and hypolipidemic activities and is widely used for treating cardiac-cerebral vascular diseases. However, the multi-target mechanism of 6-Gingerol in the treatment of atherosclerosis remains to be elucidated. METHODS: Firstly, the therapeutic actions of 6-Gingerol anti-atherosclerosis were researched based on an atherosclerotic ApoE-deficient mice model induced by high-fat feed. Then, network pharmacology and molecular docking were employed to reveal the anti-atherogenic mechanism of 6-Gingerol. Finally, the target for these predictions was validated by target protein expression assay in vitro and in vivo experiments and further correlation analysis. RESULTS: Firstly, 6-Gingerol possessed obvious anti-atherogenic activity, which was manifested by a significant reduction in the plaque area, decrease in the atherosclerosis index and vulnerability index. Secondly, based on network pharmacology, 14 predicted intersection target genes between the targets of 6-Gingerol and atherogenic-related targets were identified. The key core targets of 6-Gingerol anti-atherosclerosis were found to be TP53, RELA, BAX, BCL2, and CASP3. Lipid and atherosclerosis pathways might play a critical role in 6-Gingerol anti-atherosclerosis. Molecular docking results also further revealed that the 6-Gingerol bound well and stable to key core targets from network pharmacological predictions. Then, the experimental results in vivo and in vitro verified that the up-regulation of TP53, RELA, BAX, CASP3, and down-regulation of BCL2 from atherosclerotic ApoE-deficient mice model can be improved by 6-Gingerol intervention. Meanwhile, the correlation analysis further confirmed that 6-Gingerol anti-atherosclerosis was closely related to these targets. CONCLUSION: The 6-Gingerol can markedly improve atherosclerosis by modulating key multi-targets TP53, RELA, BAX, CASP3, and BCL2 in lipid and atherosclerosis pathways. These novel findings shed light on the anti-atherosclerosis mechanism of 6-Gingerol from the perspective of multiple targets and pathways.


Assuntos
Aterosclerose , Medicamentos de Ervas Chinesas , Animais , Camundongos , Simulação de Acoplamento Molecular , Caspase 3 , Farmacologia em Rede , Proteína X Associada a bcl-2 , Aterosclerose/tratamento farmacológico , Álcoois Graxos/farmacologia , Apolipoproteínas E , Modelos Animais de Doenças
9.
Antioxidants (Basel) ; 12(3)2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36978992

RESUMO

Ginger (Zingiber officinale) is widely used as a spice and a traditional medicine. Many bioactivities have been reported for its extracts and the isolated compounds, including cardiovascular protective effects. Different pathways were suggested to contribute to these effects, like the inhibition of platelet aggregation. In this study, we synthesised fourteen 6-gingerol derivatives, including eight new compounds, and studied their antiplatelet, COX-1 inhibitor, and antioxidant activities. In silico docking of selected compounds to h-COX-1 enzyme revealed favourable interactions. The investigated 6-gingerol derivatives were also characterised by in silico and experimental physicochemical and blood-brain barrier-related parameters for lead and preclinical candidate selection. 6-Shogaol (2) was identified as the best overall antiplatelet lead, along with compounds 3 and 11 and the new compound 17, which require formulation to optimize their water solubility. Compound 5 was identified as the most potent antioxidant that is also promising for use in the central nervous system (CNS).

10.
Nutrients ; 14(23)2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36501201

RESUMO

BACKGROUND: Nutrients are widely used for treating illnesses in traditional medicine. Ginger has long been used in folk medicine to treat motion sickness and other minor health disorders. Chronic non-healing wounds might elicit an inflammation response and cancerous mutation. Few clinical studies have investigated 6-gingerol's wound-healing activity due to its poor pharmacokinetic properties. However, nanotechnology can deliver 6-gingerol while possibly enhancing these properties. Our study aimed to develop a nanophytosome system loaded with 6-gingerol molecules to investigate the delivery system's influence on wound healing and anti-cancer activities. METHODS: We adopted the thin-film hydration method to synthesize nanophytosomes. We used lipids in a ratio of 70:25:5 for DOPC(dioleoyl-sn-glycero-3-phosphocholine): cholesterol: DSPE/PEG2000, respectively. We loaded the 6-gingerol molecules in a concentration of 1.67 mg/mL and achieved size reduction via the extrusion technique. We determined cytotoxicity using lung, breast, and pancreatic cancer cell lines. We performed gene expression of inflammation markers and cytokines according to international protocols. RESULTS: The synthesized nanophytosome particle sizes were 150.16 ± 1.65, the total charge was -13.36 ± 1.266, and the polydispersity index was 0.060 ± 0.050. Transmission electron microscopy determined the synthesized particles' spherical shape and uniform size. The encapsulation efficiency was 34.54% ± 0.035. Our biological tests showed that 6-gingerol nanophytosomes displayed selective antiproliferative activity, considerable downregulation of inflammatory markers and cytokines, and an enhanced wound-healing process. CONCLUSIONS: Our results confirm the anti-cancer activity of PEGylated nanophytosome 6-gingerol, with superior activity exhibited in accelerating wound healing.


Assuntos
Catecóis , Álcoois Graxos , Álcoois Graxos/farmacologia , Catecóis/farmacocinética , Tamanho da Partícula , Cicatrização
11.
Curr Issues Mol Biol ; 44(12): 6218-6228, 2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36547085

RESUMO

A polyphenolic component of ginger, 6-gingerol, is widely reported to possess antioxidant, anti-inflammatory and anticancer activities. In the current study, it was aimed to investigate the anticancer effects of 6-gingerol (6-Gin) on azoxymethane (AOM)-induced colon cancer in rats. The results reveal that 6-Gin treatment significantly improves the antioxidant status disturbed by AOM intoxication. The 6-Gin treatment animal group showed enhanced activity of catalase (CAT) (46.6 ± 6.4 vs. 23.3 ± 4.3 U/mg protein), superoxide dismutase (SOD) (81.3 ± 7.6 vs. 60.4 ± 3.5 U/mg protein) and glutathione-S-transferase (GST) (90.3 ± 9.4 vs. 53.8 ± 10 mU/mg protein) (p < 0.05) as compared to the disease control group. Furthermore, the results reveal that AOM significantly enhances the inflammatory response and 6-gingerol potentially attenuates this response, estimated by markers, such as tumor necrosis factor-α (TNF-α) (1346 ± 67 vs. 1023 ± 58 pg/g), C-reactive protein (CRP) (1.12 ± 0.08 vs. 0.92 ± 0.7 ng/mL) and interleukin-6 (IL-6) (945 ± 67 vs. 653 ± 33 pg/g). In addition, the lipid peroxidation estimated in terms of malondialdehyde (MDA) provoked by AOM exposure is significantly reduced by 6-gingerol treatment (167 ± 7.5 vs. 128.3 nmol/g). Furthermore, 6-gingerol significantly maintains the colon tissue architecture disturbed by the AOM treatment. Loss of tumor suppressor protein, phosphatase and tensin homolog (PTEN) expression was noticed in the AOM treated group, whereas in the animals treated with 6-gingerol, the positivity of PTEN expression was high. In conclusion, the current findings advocate the health-promoting effects of 6-gingerol on colon cancer, which might be due to its antioxidant and anti-inflammatory potential.

12.
Curr Res Food Sci ; 5: 1845-1872, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36276240

RESUMO

Cancer is among the major cause of demise worldwide. Though the array of anticancer chemical medications is available but unfortunately, they are also associated with negative health effects. The invaluable therapeutic potential of spices makes them an integral part of our daily diet. Therefore, the present work focuses on the traditional uses of 46 spices and the phytochemical analysis of 31 spices. Out of them, only 29 spices are explored for their cytotoxicity against different cancer cell lines. The pre-clinical and clinical anticancer studies of spices along with their toxicity, mechanism of actions like Wnt/ß-catenin, phosphatidylinositol-3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR), JAK/STAT, mitogen-activated protein kinase (MAPK), Notch-mediated pathways and Quantitative structure-activity relationship (QSAR) studies were also focused. Curcumin was found as one of the most explored bioactive in every aspect such as in-vitro, in-vivo, clinical as well as SAR anticancer studies while some other bioactive such as 1,8-Cineole, trans-Anethole, Diosgenin, Trigonelline are either unexplored or least explored for their clinical and SAR studies. In fact, traditional medicinal uses of spices also provide solid shreds of evidence for the new leads towards the invention of novel anticancer agents. Therefore, further research can be designed for the anticancer marketed formulation from spices after having their placebo and related toxicological data.

13.
Plants (Basel) ; 11(17)2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36079679

RESUMO

Zingiber officinale Roscoe (ginger) has long been used as an herbal medicine to treat various diseases, and its main sub-components, [6]-gingerol and [6]-shogaol, were also reported to have anti-inflammatory, anti-oxidant, and anti-tumor effects. However, their effects on various types of pain and their underlying mechanisms of action have not been clearly analyzed and understood yet. Thus, in this review, by analyzing 16 studies that used Z. officinale, [6]-gingerol, and [6]-shogaol on mechanical, spontaneous and thermal pain, their effects and mechanisms of action have been analyzed. Pain was induced by either nerve injury or chemical injections in rodents. Nine studies analyzed the analgesic effect of Z. officinale, and four and three studies focused on [6]-gingerol and [6]-shogaol, respectively. Seven papers have demonstrated the underlying mechanism of action of their analgesic effects. Studies have focused on the spinal cord and one on the dorsal root ganglion (DRG) neurons. Involvement and change in the function of serotonergic receptors (5-HT1A, B, D, and 5A), transient receptor potential vanilloid 1 (TRPV1), N-methyl-D-aspartate (NMDA) receptors, phosphorylated extracellular signal-regulated kinase 1/2 (pERK1/2), histone deacetylase 1 (HDAC1), voltage-gated sodium channel 1.8 (Nav1.8), substance P (SP), and sciatic nerve's morphology have been observed.

14.
Plants (Basel) ; 11(15)2022 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-35893619

RESUMO

Since the emergence of the pandemic of the coronavirus disease (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the discovery of antiviral phytoconstituents from medicinal plants against SARS-CoV-2 has been comprehensively researched. In this study, thirty-three plants belonging to seventeen different families used traditionally in Saudi Arabia were tested in vitro for their ability to inhibit the SARS-CoV-2 main protease (MPRO). Major constituents of the bio-active extracts were isolated and tested for their inhibition potential against this enzyme; in addition, their antiviral activity against the SARS-CoV-2 Egyptian strain was assessed. Further, the thermodynamic stability of the best active compounds was studied through focused comparative insights for the active metabolites regarding ligand-target binding characteristics at the molecular level. Additionally, the obtained computational findings provided useful directions for future drug optimization and development. The results revealed that Psiadia punctulata, Aframomum melegueta, and Nigella sativa extracts showed a high percentage of inhibition of 66.4, 58.7, and 31.5%, against SARS-CoV-2 MPRO, respectively. The major isolated constituents of these plants were identified as gardenins A and B (from P. punctulata), 6-gingerol and 6-paradol (from A. melegueta), and thymoquinone (from N. sativa). These compounds are the first to be tested invitro against SARS-CoV-2 MPRO. Among the isolated compounds, only thymoquinone (THY), gardenin A (GDA), 6-gingerol (GNG), and 6-paradol (PAD) inhibited the SARS-CoV-2 MPRO enzyme with inhibition percentages of 63.21, 73.80, 65.2, and 71.8%, respectively. In vitro assessment of SARS-CoV-2 (hCoV-19/Egypt/NRC-03/2020 (accession number on GSAID: EPI_ISL_430820) revealed a strong-to-low antiviral activity of the isolated compounds. THY showed relatively high cytotoxicity and was anti-SARS-CoV-2, while PAD demonstrated a cytotoxic effect on the tested VERO cells with a selectivity index of CC50/IC50 = 1.33 and CC50/IC50 = 0.6, respectively. Moreover, GNG had moderate activity at non-cytotoxic concentrations in vitro with a selectivity index of CC50/IC50 = 101.3/43.45 = 2.3. Meanwhile, GDA showed weak activity with a selectivity index of CC50/IC50 = 246.5/83.77 = 2.9. The thermodynamic stability of top-active compounds revealed preferential stability and SARS-CoV-2 MPRO binding affinity for PAD through molecular-docking-coupled molecular dynamics simulation. The obtained results suggest the treating potential of these plants and/or their active metabolites for COVID-19. However, further in-vivo and clinical investigations are required to establish the potential preventive and treatment effectiveness of these plants and/or their bio-active compounds in COVID-19.

15.
Int J Mol Sci ; 23(11)2022 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-35682770

RESUMO

5-Lipoxygenase (5-LOX) converts arachidonic acid to lipidic inflammatory mediators such as leukotrienes (LTs). In diseases such as asthma, LTs contribute to a physiopathology that could be reverted by blocking 5-LOX. Natural products with anti-inflammatory potential such as ginger have been used as nutraceuticals since ancient times. 6-Gingerol and 6-shogaol are the most abundant compounds in the ginger rhizome; they possess anti-inflammatory, antioxidant, and chemopreventive properties. In the present study, 6-gingerol and 6-shogaol structures were analyzed and compared with two commercial 5-LOX inhibitors (zileuton and atreleuton) and with other inhibitor candidates (3f, NDGA, CP 209, caffeic acid, and caffeic acid phenethyl ester (CAPE)). The pharmacokinetics and toxicological properties of 6-gingerol, 6-shogaol, and the other compounds were evaluated. Targeted molecular coupling was performed to identify the optimal catalytic pocket for 5-LOX inhibition. The results showed that 6-gingerol and 6-shogaol follow all of the recommended pharmacokinetic parameters. These compounds could be inhibitors of 5-LOX because they present specific interactions with the residues involved in molecular inhibition. The current study demonstrated the potential of 6-gingerol and 6-shogaol as anti-inflammatory agents that inhibit 5-LOX, as they present a high level of performance in the toxicological analysis and could be catabolized by the cytochrome p450 enzymatic complex; however, 6-gingerol was superior in safety compared to 6-shogaol.


Assuntos
Zingiber officinale , Anti-Inflamatórios/farmacologia , Araquidonato 5-Lipoxigenase , Catecóis/química , Álcoois Graxos/química , Álcoois Graxos/farmacologia , Zingiber officinale/química , Oxirredução , Extratos Vegetais/farmacologia
16.
J Ethnopharmacol ; 294: 115209, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35526730

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The Luobufukebiri pill is one of the characteristic medicines of Uygur nationality in Xinjiang. It has the effect of warming and tonifying the brain and kidney, benefiting the heart and filling the essential functions, mainly used to treat impotence, depression, spermatorrhea, premature ejaculation, bodily weakness, emaciation, and neurasthenia. AIM OF THE STUDY: This study evaluated the toxicology and developed a quality control protocol of Luobufukebiri pill to ensure its safety and effectiveness in clinical applications. MATERIALS AND METHODS: Acute toxicity in mice was studied by the maximum-dose method, and the toxic reactions in mice were observed within two weeks. In the study of Sub-chronic toxicity, SD rats were randomized into four groups: three drug groups which were treated with 8.00, 2.67, and 0.80 g/kg of Luobufukebiri pill, respectively, and one control group which was treated with the same volume of distilled water. Subsequently, at 30 days of medication and 30 days of drug withdrawal, the hematologic indexes, biochemical indexes, organ coefficient, and pathological sections of main organs were detected, respectively. According to the prescription, the contents of 8 active components in the pill were quantified simultaneously. The chromatographic conditions were as follows: Stepwise gradient elution was carried out using 0.1% formic acid (solvent A) and acetonitrile (solvent B), 0-8 min, 80% → 60% B; 8-25 min, 60% → 25%B. The flow rate was 1.0 mL/min, the column was maintained at 25 °C, and the injected sample volume was 10 µL. RESULTS: The acute toxicity experiment documented a large dose of Luobufukebiri pill had no significant effect on organ and body weight and did not cause apparent damage to parenchymal organs. At Sub-chronic toxicity, the behavior of rats was as normal as the control group. There were some differences in hematologic indexes, serum biochemical indexes, and organ coefficient tests between the drug and control groups, but they had no toxic significance. No obvious pathological changes were observed in the pathological sections of major organs. In conclusion, this study demonstrated that the clinical dose of Luobufukebiri pill was far less than its toxic dose, and it had reliable safety. The contents of eight index components of Luobufukebiri pill were measured. All calibration curves exhibited good linearity with correlation coefficients better than 0.9997. The relative standard deviations of precision, reproducibility, stability, and recovery were less than 2.0%, demonstrating the stability and reliability of the method. CONCLUSIONS: This study further confirmed the safety of Luobufukebiri pill in clinical practice. A rapid, accurate, and convenient RP-HPLC-PDA detection method has been developed for the simultaneous detection of eight active compounds in the pharmaceutical samples of Luobufukebiri pill. This study provided a reference for the safety and enhancement of the quality standards of Luobufukebiri pill.


Assuntos
Reprodutibilidade dos Testes , Animais , Cromatografia Líquida de Alta Pressão/métodos , Masculino , Camundongos , Controle de Qualidade , Ratos , Ratos Sprague-Dawley , Solventes
17.
Zhongguo Zhong Yao Za Zhi ; 47(7): 1765-1775, 2022 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-35534247

RESUMO

Based on the previous research results of our group and literature research, the chemical components, mechanisms, pharmacodynamics, and pharmacokinetics of Zingiberis Rhizoma Carbonisata were summarized to determine the quality markers(Q-markers) of Zingiberis Rhizoma Carbonisata and Zingiberis Rhizoma. Our research group has clarified the differential components of Zingiberis Rhizoma Carbonisata and Zingiberis Rhizoma, the meridian-warming hemostatic effect of Zingiberis Rhizoma Carbonisata, the related targets and pathways of the effect, the endogenous biomarkers of Zingiberis Rhizoma Carbonisata, and the hemodynamic processes of Zingiberis Rhizoma Carbonisata and Zingiberis Rhizoma. Moreover, based on high-performance liquid chromatography-diode array detector-electrospray ionization mass spectrometry(HPLC-DAD-ESIMS), a method for determining the content of Q-mar-kers was established. In conclusion, the study finally determined that gingerone, 6-shogaol, and diacetyl-6-gingerol were the Q-mar-kers of Zingiberis Rhizoma Carbonisata decoction pieces, and 6-gingerol, 8-gingerol, and 10-gingerol were Q-markers of Zingiberis Rhizoma decoction pieces. The result is expected to provide a reference for the establishment of quality standards for Zingiberis Rhizoma Carbonisata decoction pieces and Zingiberis Rhizoma decoction pieces.


Assuntos
Medicamentos de Ervas Chinesas , Rizoma , Biomarcadores/análise , Cromatografia Líquida de Alta Pressão/métodos , Medicamentos de Ervas Chinesas/química , Zingiber officinale , Espectrometria de Massas , Extratos Vegetais , Rizoma/química
18.
Chem Phys Lipids ; 245: 105206, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35483420

RESUMO

6-Gingerol (Gn) is an active compound derived from ginger which possesses various biological activities. The therapeutic applications of Gn are limited due to its hydrophobic nature. To ease its administration, one of the nano-emulsion methods, liposome was selected to encapsulate Gn. Response Surface Methodology (RSM) was used to optimize liposome ratio. 97.2% entrapment efficiency was achieved at the ratio of 1:20:2 (Drug: Lipid: Cholesterol). The optimized liposome attained size below 200 d nm, spherical shape, negative surface charge and showed sustain release upon physical characterization methods such as FESEM, DLS, Zeta potential, Drug release. The signature FTIR peaks of both free Gn and free liposome (FL) were also observed in Lipo-Gn peak. Lipo-Gn showed significant cytotoxic effect on A549 cells (IC50 160.5 ± 0.74 µM/ml) as well as inhibits the cell migration. DAPI staining showed higher apoptotic nuclear morphological change in the cells treated with Lipo-Gn, and also Lipo-Gn increased the apoptotic percentage in A549 as 39.89 and 70.32 for 12 and 24 h respectively which were significantly more than free Gn. Moreover, the formulation of Lipo-Gn showed significant cell cycle arrest at the G2/M phase compared with free Gn (28.9% and 34.9% in Free Gn vs. 42.7% and 50.1% in Lipo -Gn for 12 and 24 h respectively). Lipo-Gn have been assessed in NSCLC induced BALB/c mice and showed significantly improved pharmacological properties compared to those of free Gn. Thus, Lipo-Gn may be considered for its widening applications against lung cancer.


Assuntos
Álcoois Graxos , Lipossomos , Animais , Catecóis/farmacologia , Álcoois Graxos/farmacologia , Camundongos , Modelos Teóricos
19.
Zhongguo Zhong Yao Za Zhi ; 47(6): 1642-1649, 2022 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-35347963

RESUMO

This study investigated the effects and mechanisms of 6-gingerol on adipose tissue insulin resistance in naturally aging rats with glycolipid metabolism disorders. Twenty-seven aging male SD rats were randomly divided into a model group(aged, n=9) and two groups treated with 6-gingerol at 0.05 mg·kg~(-1)(G-L, n=9) and 0.2 mg·kg~(-1)(G-H, n=9). Six young rats were randomly assigned to a normal control group(NC). Rats were treated for seven weeks by gavage. Non-esterified fatty acid(NEFA) and insulin content was determined by enzyme-linked immunosorbent assay(ELISA), and adipose tissue insulin resistance index(Adipo-IR) was calculated. HE staining was used to observe the size of adipocytes in epididymal white adipose tissue(eWAT). The gene and protein expression levels of adiponectin receptor 1(AdipoR1), AMP-activated protein kinase α(AMPKα), phosphorylated AMPK(p-AMPKα~(Thr172)), peroxisome proliferator-activated receptor-γ coactivator-1α(PGC-1α), phosphatidylinositol 3-kinase(PI3 K), protein kinase B(Akt), phosphorylated Akt(p-Akt~(Ser473)), tumor necrosis factor-α(TNF-α), c-Jun N-terminal kinase 1/2(JNK1/2), phosphorylated JNK1/2(p-JNK~(Thr183/Tyr185)), interleukin-1ß(IL-1ß), and interleukin-6(IL-6) in adiponectin(APN), insulin, and inflammatory factor signaling pathways were detected by Western blot and real-time RCR, respectively. The results showed that 6-gingerol at a high dose could significantly decrease the fasting plasma content of NEFA and insulin and reduce Adipo-IR. Additionally, 6-gingerol at a high dose significantly increased the protein and mRNA expression of APN, AdipoR1, PGC-1α, and PI3 K in eWAT, elevated the relative expression of p-AMPK~(Thr172) and p-Akt~(Ser 473), reduced the protein and mRNA expression of TNF-α, IL-1, and IL-6 in eWAT, and decreased the relative expression of p-JNK1 and p-JNK2. This study reveals that 6-gingerol can improve insulin sensitivity of adipose tissues in aging rats with glycolipid metabolism disorders, and this effect is presumedly achieved by enhancing the PI3 K/Akt signaling pathway, inhibiting adipose tissue inflammation, increasing APN synthesis, enhancing AdipoR1 expression, and activating its downstream AMPK/PGC-1α signaling pathway.


Assuntos
Resistência à Insulina , Tecido Adiposo , Envelhecimento , Animais , Catecóis , Álcoois Graxos , Masculino , Ratos , Ratos Sprague-Dawley
20.
Pharmacol Res ; 176: 106081, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35033650

RESUMO

To enhance therapeutic efficacy and reduce adverse effects, ancient practitioners of traditional Chinese medicine (TCM) prescribe combinations of plant species/animal species and minerals designated "TCM formulae" developed based on TCM theory and clinical experience. TCM formulae have been shown to exert curative effects on complex diseases via immune regulation but the underlying mechanisms remain unknown at present. Considerable progress in the field of immunometabolism, referring to alterations in the intracellular metabolism of immune cells that regulate their function, has been made over the past decade. The core context of immunometabolism is regulation of the allocation of metabolic resources supporting host defense and survival, which provides a critical additional dimension and emerging insights into how the immune system and metabolism influence each other during disease progression. This review summarizes research findings on the significant association between the immune function and metabolic remodeling in health and disease as well as the therapeutic modulatory effects of TCM formulae on immunometabolism. Progressive elucidation of the immunometabolic mechanisms involved during the course of TCM treatment continues to aid in the identification of novel potential targets against pathogenicity. In this report, we have provided a comprehensive overview of the benefits of TCM based on regulation of immunometabolism that are potentially applicable for the treatment of modern diseases.


Assuntos
Medicina Tradicional Chinesa , Animais , Humanos , Sistema Imunitário , Imunomodulação , Redes e Vias Metabólicas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA