Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1354040, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38529273

RESUMO

Introduction: Taraxacum mongolicum (TM) is a kind of medicinal and edible homologous plant which is included in the catalogue of feed raw materials in China. It is rich in polyphenols, flavonoids, polysaccharides and other active substances, and shows many benefits to livestock, poultry and aquatic products. The study aimed to assess the potential of TM aqueous extract (TMAE) as a substitute for poultry AGPs. Methods: A total of 240 one-day-old Arbor Acker broilers were randomly assigned to four groups and fed a basal diet (Con) supplemented with 500, 1000, and 2000 mg/kg TMAE (Low, Medium, and High groups). The growth performance of the broilers was measured on day 21 and day 42. At the end of the trial, the researchers measured slaughter performance and collected serum, liver, spleen, ileum, and intestinal contents to investigate the effects of TMAE on serum biochemistry, antioxidant capacity, immune function, organ coefficient, intestinal morphology, flora composition, and short-chain fatty acids (SCFAs). Results: The results showed that broilers treated with TMAE had a significantly higher average daily gain from 22 to 42 days old compared to the Con group. Various doses of TMAE resulted in different levels of improvement in serum chemistry. High doses increased serum alkaline phosphatase and decreased creatinine. TMAE also increased the antioxidant capacity of serum, liver, and ileum in broilers. Additionally, middle and high doses of TMAE enhanced the innate immune function of the liver (IL-10) and ileum (Occludin) in broilers. Compared to the control group, the TMAE treatment group exhibited an increase in the ratio of villi length to villi crypt in the duodenum. TMAE increased the abundance of beneficial bacteria, such as Alistipes and Lactobacillus, while reducing the accumulation of harmful bacteria, such as Colidextracter and Sellimonas. The cecum's SCFAs content increased with a medium dose of TMAE. Supplementing broiler diets with TMAE at varying doses enhanced growth performance and overall health. The most significant benefits were observed at a dose of 1000 mg/kg, including improved serum biochemical parameters, intestinal morphology, antioxidant capacity of the liver and ileum, immune function of the liver and ileum, and increased SCFAs content. Lactobacillus aviarius, norank_f_norank_o__Clostridia_UCG-014, and Flavonifractor are potentially dominant members of the intestinal microflora. Conclusion: In conclusion, TMAE is a promising poultry feed additive and 1000 mg/kg is an effective reference dose.


Assuntos
Antioxidantes , Taraxacum , Animais , Antioxidantes/farmacologia , Galinhas/microbiologia , Suplementos Nutricionais , Ácidos Graxos Voláteis , Aves Domésticas
2.
Carbohydr Polym ; 330: 121838, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38368088

RESUMO

As a key component in cell walls of numerous organisms ranging from green algae to higher plants, AGPs play principal roles in many biological processes such as cell-cell adhesion and regulating Ca2+ signaling pathway as a Ca2+-capacitor. Consistently, AGP structures vary from species to species and from tissue to tissue. To understand the functions of AGPs, it is vital to know their structural differences relative to their location in the plant. Thus, AGPs were purified from different Arabidopsis tissues. Analyses of these AGPs demonstrated that the AGPs comprised covalently linked pectin and AGP, referred to as pectic-AGPs. Importantly, these pectic-AGPs were glycosylated with a remarkable variety of polysaccharides including homogalacturonan, rhamnogalacturonan-I, and type II arabinogalactan at different ratios and lengths. This result not only suggests that pectic-AGP is a major form of Arabidopsis AGPs, but also supports AGPs serve as crosslinkers covalently connecting pectins with structures tailored for tissue-specific functions.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Plantas/metabolismo , Mucoproteínas/metabolismo , Pectinas/metabolismo , Proteínas de Arabidopsis/metabolismo , Parede Celular/química
3.
Carbohydr Polym ; 301(Pt B): 120340, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36446508

RESUMO

To characterize a purified rhamnogalacturonan-I (RG-I) containing both RG-I and arabinogalactan-protein (AGP) types of glycosyl residues, an AGP-specific ß-1,3-galactanase that can cleave the AG backbone and release the AG sidechain was applied to this material. Carbohydrate analysis and NMR spectroscopy verified that the galactanase-released carbohydrate consists of RG-I covalently attached to the AG sidechain, proving a covalent linkage between RG-I and AGP. Size exclusion chromatography-multiangle light scattering-refractive index detection revealed that the galactanase-released RG-I has an average molecular weight of 41.6 kDa, which, together with the percentage of pectic sugars suggests an RG-I-AGP comprising one AGP covalently linked to two RG-I glycans. Carbohydrate analysis and NMR results of the RG-I-AGP, the galactanase-released glycans, and the RG lyase-released glycans demonstrated that the attached RG-I glycans are decorated with α-1,5-arabinan, ß-1,4-galactan, xylose, and 4-O-Me-xylose sidechains. Our measurement suggests that the covalently linked RG-I-AGP is the major component of the traditionally prepared RG-I.


Assuntos
Arabidopsis , Ramnogalacturonanos , Xilose , Parede Celular
4.
Cells ; 10(8)2021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-34440734

RESUMO

The increased use of nanoparticles (NP) in different industries inevitably results in their release into the environment. In such conditions, plants come into direct contact with NP. Knowledge about the uptake of NP by plants and their effect on different developmental processes is still insufficient. Our studies concerned analyses of the changes in the chemical components of the cell walls of Hordeum vulgare L. roots that were grown in the presence of gold nanoparticles (AuNP). The analyses were performed using the immunohistological method and fluorescence microscopy. The obtained results indicate that AuNP with different surface charges affects the presence and distribution of selected pectic and arabinogalactan protein (AGP) epitopes in the walls of root cells.


Assuntos
Parede Celular/química , Ouro/química , Hordeum/metabolismo , Nanopartículas Metálicas/química , Hordeum/química , Hordeum/crescimento & desenvolvimento , Mucoproteínas/metabolismo , Pectinas/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/química , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Estresse Fisiológico
5.
Plant Cell Environ ; 44(5): 1346-1360, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33347627

RESUMO

Capparis odoratissima is a tree species native to semi-arid environments of South America where low soil water availability coexists with frequent night-time fog. A previous study showed that water applied to leaf surfaces enhanced leaf hydration, photosynthesis and growth, but the mechanisms of foliar water uptake are unknown. Here, we combine detailed anatomical evaluations with water and dye uptake experiments in the laboratory, and use immunolocalization of pectin and arabinogalactan protein epitopes to characterize water uptake pathways in leaves. Abaxially, the leaves of C. odoratissima are covered with peltate hairs, while the adaxial surfaces are glabrous. Both surfaces are able to absorb condensed water, but the abaxial surface has higher rates of water uptake. Thousands of idioblasts per cm2 , a higher density than stomata, connect the adaxial leaf surface and the abaxial peltate hairs, both of which contain hygroscopic substances such as arabinogalactan proteins and pectins. The highly specialized anatomy of the leaves of C odoratissima fulfils the dual function of minimizing water loss when stomata are closed, while maintaining the ability to absorb liquid water. Cell-wall related hygroscopic compounds in the peltate hairs and idioblasts create a network of microchannels that maintain leaf hydration and promote water uptake.


Assuntos
Absorção Fisiológica , Capparis/fisiologia , Folhas de Planta/anatomia & histologia , Folhas de Planta/fisiologia , Água/metabolismo , Corantes Fluorescentes/metabolismo , Modelos Biológicos , Mucoproteínas/metabolismo , Pectinas/metabolismo , Proteínas de Plantas/metabolismo
6.
Int J Mol Sci ; 21(21)2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-33143222

RESUMO

Changes in the composition of the cell walls are postulated to accompany changes in the cell's fate. We check whether there is a relationship between the presence of selected pectic, arabinogalactan proteins (AGPs), and extensins epitopes and changes in cell reprogramming in order to answer the question of whether they can be markers accompanying changes of cell fate. Selected antibodies were used for spatio-temporal immunolocalization of wall components during the induction of somatic embryogenesis. Based on the obtained results, it can be concluded that (1) the LM6 (pectic), LM2 (AGPs) epitopes are positive markers, but the LM5, LM19 (pectic), JIM8, JIM13 (AGPs) epitopes are negative markers of cells reprogramming to the meristematic/pluripotent state; (2) the LM8 (pectic), JIM8, JIM13, LM2 (AGPs) and JIM11 (extensin) epitopes are positive markers, but LM6 (pectic) epitope is negative marker of cells undergoing detachment; (3) JIM4 (AGPs) is a positive marker, but LM5 (pectic), JIM8, JIM13, LM2 (AGPs) are negative markers for pericycle cells on the xylem pole; (4) LM19, LM20 (pectic), JIM13, LM2 (AGPs) are constitutive wall components, but LM6, LM8 (pectic), JIM4, JIM8, JIM16 (AGPs), JIM11, JIM12 and JIM20 (extensins) are not constitutive wall components; (5) the extensins do not contribute to the cell reprogramming.


Assuntos
Biomarcadores/análise , Parede Celular/química , Reprogramação Celular , Daucus carota/fisiologia , Hipocótilo/fisiologia , Mucoproteínas/metabolismo , Técnicas de Embriogênese Somática de Plantas , Daucus carota/citologia , Epitopos/imunologia , Hipocótilo/citologia , Mucoproteínas/imunologia , Pectinas/química , Pectinas/metabolismo , Proteínas de Plantas/imunologia , Proteínas de Plantas/metabolismo
7.
Int J Mol Sci ; 20(21)2019 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-31690047

RESUMO

Phytosulfokine-α (PSK), a peptidyl plant growth factor, has been recognized as a promising intercellular signaling molecule involved in cellular proliferation and dedifferentiation. It was shown that PSK stimulated and enhanced cell divisions in protoplast cultures of several species leading to callus and proembryogenic mass formation. Since PSK had been shown to cause an increase in efficiency of somatic embryogenesis, it was reasonable to check the distribution of selected chemical components of the cell walls during the protoplast regeneration process. So far, especially for the carrot, a model species for in vitro cultures, it has not been specified what pectic, arabinogalactan protein (AGP) and extensin epitopes are involved in the reconstruction of the wall in protoplast-derived cells. Even less is known about the correlation between wall regeneration and the presence of PSK during the protoplast culture. Three Daucus taxa, including the cultivated carrot, were analyzed during protoplast regeneration. Several antibodies directed against wall components (anti-pectin: LM19, LM20, anti-AGP: JIM4, JIM8, JIM13 and anti-extensin: JIM12) were used. The obtained results indicate a diverse response of the used Daucus taxa to PSK in terms of protoplast-derived cell development, and diversity in the chemical composition of the cell walls in the control and the PSK-treated cultures.


Assuntos
Parede Celular/efeitos dos fármacos , Daucus carota/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Parede Celular/metabolismo , Daucus carota/citologia , Pectinas/metabolismo , Protoplastos/efeitos dos fármacos , Protoplastos/metabolismo
8.
Plant Reprod ; 32(3): 291-305, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31049682

RESUMO

KEY MESSAGE: AGP-rich glycoproteins mediate pollen-ovule interactions and cell patterning in the embryo sac of apple before and after fertilization. Glycoproteins are significant players in the dialog that takes place between growing pollen tubes and the stigma and style in the angiosperms. Yet, information is scarce on their possible involvement in the ovule, a sporophytic organ that hosts the female gametophyte. Apple flowers have a prolonged lapse of time between pollination and fertilization, offering a great system to study the developmental basis of glycoprotein secretion and their putative role during the last stages of the progamic phase and early seed initiation. For this purpose, the sequential pollen tube elongation within the ovary was examined in relation to changes in arabinogalactan proteins (AGPs) in the tissues of the ovule before and after fertilization. To evaluate what of these changes are developmentally regulated, unpollinated and pollinated flowers were compared. AGPs paved the pollen tube pathway in the ovules along the micropylar canal, and the nucellus entrance toward the synergids, which also developmentally accumulated AGPs at the filiform apparatus. Glycoproteins vanished from all these tissues following pollen tube passage, strongly suggesting a role in pollen-ovule interaction. In addition, AGPs marked the primary cell walls of the haploid cells of the female gametophyte, and they further built up in the cell walls of the embryo sac and developing embryo, layering the interactive walls of the three generations hosted in the ovule, the maternal sporophytic tissues, the female gametophyte, and the developing embryo.


Assuntos
Malus/fisiologia , Mucoproteínas/metabolismo , Flores/embriologia , Flores/fisiologia , Malus/embriologia , Óvulo Vegetal/embriologia , Óvulo Vegetal/fisiologia , Proteínas de Plantas/metabolismo , Pólen/embriologia , Pólen/fisiologia , Tubo Polínico/embriologia , Tubo Polínico/fisiologia , Polinização , Reprodução , Sementes/embriologia , Sementes/fisiologia
9.
Am J Bot ; 104(12): 1891-1903, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29217674

RESUMO

PREMISE OF THE STUDY: The pawpaw, Asimina triloba, is an underutilized fruit crop native to North America that belongs to the mainly tropical, early-divergent family Annonaceae. Asimina is the only genus within the Annonaceae with species adapted to cold climates. A thorough analysis of its reproductive biology, specifically pollen-pistil interaction during the progamic phase, is essential to understand both its adaptation to cold climates and how to optimize its fertilization and fruit set. METHODS: We characterized pollen-pistil interaction in Asimina triloba, including the floral cycle and anatomy, stigmatic receptivity, and the pollen tube pathway. We used a combination of histological, cytological, and immunolocalization approaches. KEY RESULTS: Asimina triloba has a gynoecium formed by plicate carpels with a short stylar canal. Unicellular papillae form a continuous tissue covered by a copious secretion from the stigma to the ovary, which is most prominent on the stigma surface where it forms an extragynoecial compitum. Compared to the stigmas of other species in the Annonaceae, the stigmas of A. triloba show a long stigmatic receptivity associated with a long flowering cycle. Stigmatic receptivity is concomitant with the secretion of cell-wall-related arabinogalactan proteins (AGPs). CONCLUSIONS: A long female phase with a long period of stigmatic receptivity is unusual among protogynous flowers of the magnoliid clade, suggesting a derived condition of A. triloba within the Annonaceae. This phase further correlates with the presence of cell-wall-related arabinogalactan proteins in the secretion, which may indicate the conservation of these glycoproteins during stigmatic receptivity and pollen tube growth in angiosperms.


Assuntos
Asimina/fisiologia , Flores , Pólen , Polinização/fisiologia , Demografia
10.
Carbohydr Polym ; 178: 41-47, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-29050612

RESUMO

Amorphous granular potato starch (AGPS) was prepared through heat treatment of native potato starch (NPS) at 94°C with 53% EtOH, while cross-linked amorphous granular potato starch (CLAGPS) was prepared through cross-linking of NPS with sodium trimetaphosphate/sodium tripolyphosphate (STMP/STPP, 99:1) and heat treatment. Light and polarized microscopy showed that both AGPS and CLAGPS maintained their granule shapes but lost birefringence. DSC and XRD of both AGPS and CLAGPS also revealed complete gelatinization. On the other hand, CLAGPS exhibited no RVA pasting viscosity and AGPS had a higher final viscosity than NPS or CLAGPS. AGPS had a higher RS content than gelatinized potato starch, while that of CLAGPS did not increase, despite the cross-linking modification. Thus, AGPS and CLAGPS had distinct physicochemical properties from each other and from NPS, suggesting their potential applicability to the food, textile, and paper industries.


Assuntos
Solanum tuberosum/química , Amido/química , Fenômenos Químicos , Géis , Viscosidade
11.
Plant Cell Physiol ; 57(10): 2161-2174, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27481894

RESUMO

In this work, we performed an extensive and detailed analysis of the changes in cell wall composition during Brassica napus anther development. We used immunogold labeling to study the spatial and temporal patterns of the composition and distribution of different arabinogalactan protein (AGP), pectin, xyloglucan and xylan epitopes in high-pressure-frozen/freeze-substituted anthers, quantifying and comparing their relative levels in the different anther tissues and developmental stages. We used the following monoclonal antibodies: JIM13, JIM8, JIM14 and JIM16 for AGPs, LM5, LM6, JIM7, JIM5 and LM7 for pectins, CCRC-M1, CCRC-M89 and LM15 for xyloglucan, and LM11 for xylan. Each cell wall epitope showed a characteristic temporal and spatial labeling pattern. Microspore, pollen and tapetal cells showed similar patterns for each epitope, whereas the outermost anther layers (epidermis, endothecium and middle layers) presented remarkably different patterns. Our results suggested that AGPs, pectins, xyloglucan and xylan have specific roles during anther development. The AGP epitopes studied appeared to belong to AGPs specifically involved in microspore differentiation, and contributed first by the tapetum and then, upon tapetal dismantling, by the endothecium and middle layers. In contrast, the changes in pectin and hemicellulose epitopes suggested a specific role in anther dehiscence, facilitating anther wall weakening and rupture. The distribution of the different cell wall constituents is regulated in a tissue- and stage-specific manner, which seems directly related to the role of each tissue at each stage.


Assuntos
Brassica napus/metabolismo , Epitopos/metabolismo , Mucoproteínas/metabolismo , Pectinas/metabolismo , Pólen/crescimento & desenvolvimento , Pólen/ultraestrutura , Polissacarídeos/metabolismo , Brassica napus/ultraestrutura , Imuno-Histoquímica , Proteínas de Plantas/metabolismo , Pólen/citologia , Pólen/metabolismo
12.
Am J Bot ; 101(12): 2052-61, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25480702

RESUMO

UNLABELLED: • PREMISE OF THE STUDY: Sperm cell differentiation in ferns involves the origin of an elaborate locomotory apparatus, including 70+ flagella, and the structural modification of every cellular component. Because arabinogalactan proteins (AGPs) are implicated in molecular signaling and in regulation of plant development, we speculated that these glycoproteins would be present during spermiogenesis in ferns.• METHODS: Using ß-glucosyl Yariv reagents that specifically bind to and inhibit AGPs and immunogold localizations with monoclonal antibodies JIM13, JIM8, and LM6, we examined the specific expression patterns of AGPs and inhibited their function during sperm cell development in the model fern Ceratopteris richardii.• KEY RESULTS: Developing sperm cells stained intensely with Yariv phenylglycosides, demonstrating the presence of AGPs. JIM13-AGP epitopes were widespread throughout development in the expanding extraprotoplasmic matrix (EPM) in which flagella elongate, cytoplasm is eliminated, and spherical spermatids become coiled. JIM8 and LM6 epitopes localized to the plasmalemma on growing flagella and on the rapidly changing sperm cell body. Spermatids treated with ß-glucosyl lacked an EPM and formed fewer, randomly arranged flagella.• CONCLUSIONS: We demonstrated that AGPs are abundant in the EPM and along the plasmalemma and that the three AGP epitopes have specific expression patterns during development. Coupled with inhibition studies, these results identify AGPs as critical to the formation of an extraprotoplasmic matrix and the consequent origin and development of flagella in an orderly and precise fashion around the cell. We speculate that AGPs may play additional roles as signaling molecules involved in cell shaping, cytoskeletal development, vesicle trafficking, and cytoplasmic elimination.


Assuntos
Gleiquênias/metabolismo , Flagelos/metabolismo , Glicoproteínas/metabolismo , Mucoproteínas/metabolismo , Pólen/metabolismo , Epitopos , Gleiquênias/crescimento & desenvolvimento , Glucosídeos , Floroglucinol/análogos & derivados , Proteínas de Plantas/metabolismo , Pólen/citologia , Pólen/crescimento & desenvolvimento
13.
Ann Bot ; 114(6): 1359-73, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25024256

RESUMO

BACKGROUND AND AIMS: Parasitic plants obtain nutrients from their hosts through organs called haustoria. The hyaline body is a specialized parenchymatous tissue occupying the central parts of haustoria in many Orobanchaceae species. The structure and functions of hyaline bodies are poorly understood despite their apparent necessity for the proper functioning of haustoria. Reported here is a cell wall-focused immunohistochemical study of the hyaline bodies of three species from the ecologically important clade of rhinanthoid Orobanchaceae. METHODS: Haustoria collected from laboratory-grown and field-collected plants of Rhinanthus minor, Odontites vernus and Melampyrum pratense attached to various hosts were immunolabelled for cell wall matrix glycans and glycoproteins using specific monoclonal antibodies (mAbs). KEY RESULTS: Hyaline body cell wall architecture differed from that of the surrounding parenchyma in all species investigated. Enrichment in arabinogalactan protein (AGP) epitopes labelled with mAbs LM2, JIM8, JIM13, JIM14 and CCRC-M7 was prominent and coincided with reduced labelling of de-esterified homogalacturonan with mAbs JIM5, LM18 and LM19. Furthermore, paramural bodies, intercellular deposits and globular ergastic bodies composed of pectins, xyloglucans, extensins and AGPs were common. In Rhinanthus they were particularly abundant in pairings with legume hosts. Hyaline body cells were not in direct contact with haustorial xylem, which was surrounded by a single layer of paratracheal parenchyma with thickened cell walls abutting the xylem. CONCLUSIONS: The distinctive anatomy and cell wall architecture indicate hyaline body specialization. Altered proportions of AGPs and pectins may affect the mechanical properties of hyaline body cell walls. This and the association with a transfer-like type of paratracheal parenchyma suggest a role in nutrient translocation. Organelle-rich protoplasts and the presence of exceptionally profuse intra- and intercellular wall materials when attached to a nitrogen-fixing host suggest subsequent processing and transient storage of nutrients. AGPs might therefore be implicated in nutrient transfer and metabolism in haustoria.


Assuntos
Parede Celular/química , Mucoproteínas/metabolismo , Orobanchaceae/citologia , Pectinas/metabolismo , Anticorpos Monoclonais , Parede Celular/metabolismo , Epitopos , Esterificação , Glucanos/imunologia , Glucanos/metabolismo , Glicoproteínas/metabolismo , Imuno-Histoquímica , Mucoproteínas/imunologia , Orobanchaceae/química , Orobanchaceae/metabolismo , Pectinas/imunologia , Proteínas de Plantas/imunologia , Proteínas de Plantas/metabolismo , Polissacarídeos/imunologia , Polissacarídeos/metabolismo , Xilanos/imunologia , Xilanos/metabolismo , Xilema/química , Xilema/citologia , Xilema/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA