Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Chemosphere ; 352: 141368, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38316282

RESUMO

Ginkgo biloba extract (GBE) had several effects on the human body as one of the widely used phytopharmaceuticals, but it had no application in microbial enhancement in the environmental field. The study focused on the impact of GBE on denitrification specifically under neutral conditions. At the identified optimal addition ratio of 2% (v/v), the system exhibited a noteworthy increase in nitrate reduction rate (NRR) by 56.34%, elevating from 0.71 to 1.11 mg-N/(L·h). Moreover, the extraction of microbial extracellular polymeric substance (EPS) at this ratio revealed changes in the composition of EPS, the electron exchange capacity (EEC) was enhanced from 87.16 to 140.4 µmol/(g C), and the transfer impedance was reduced within the EPS. The flavin, fulvic acid (FA), and humic acid (HA) provided a π-electron conjugated structure for the denitrification system, enhancing extracellular electron transfer (EET) by stimulating carbon source metabolism. GBE also improved electron transfer system activity (ETSA) from 0.025 to 0.071 µL O2/(g·min·prot) and the content of NADH enhanced by 22.90% while significantly reducing the activation energy (Ea) by 85.6% in the denitrification process. The synergy of improving both intracellular and extracellular electron transfer, along with the reduction of Ea, notably amplified the initiation and reduction rates of the denitrification process. Additionally, GBE demonstrated suitability for denitrification across various pH levels, enhancing microbial resilience in alkaline conditions and promoting survival and proliferation. Overall, these findings open the door to potential applications of GBE as a natural additive in the environmental field to improve the efficiency of denitrification processes, which are essential for nitrogen removal in various environmental contexts.


Assuntos
Desnitrificação , Matriz Extracelular de Substâncias Poliméricas , Extrato de Ginkgo , Humanos , Elétrons , Extratos Vegetais , Nitrogênio , Reatores Biológicos
2.
ACS Appl Mater Interfaces ; 15(25): 30534-30542, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37326205

RESUMO

We report a high-speed low dark current near-infrared (NIR) organic photodetector (OPD) on a silicon substrate with amorphous indium gallium zinc oxide (a-IGZO) as the electron transport layer (ETL). In-depth understanding of the origin of dark current is obtained using an elaborate set of characterization techniques, including temperature-dependent current-voltage measurements, current-based deep-level transient spectroscopy (Q-DLTS), and transient photovoltage decay measurements. These characterization results are complemented by energy band structures deduced from ultraviolet photoelectron spectroscopy. The presence of trap states and a strong dependency of activation energy on the applied reverse bias voltage point to a dark current mechanism based on trap-assisted field-enhanced thermal emission (Poole-Frenkel emission). We significantly reduce this emission by introducing a thin interfacial layer between the donor: acceptor blend and the a-IGZO ETL and obtain a dark current as low as 125 pA/cm2 at an applied reverse bias of -1 V. Thanks to the use of high-mobility metal-oxide transport layers, a fast photo response time of 639 ns (rise) and 1497 ns (fall) is achieved, which, to the best of our knowledge, is among the fastest reported for NIR OPDs. Finally, we present an imager integrating the NIR OPD on a complementary metal oxide semiconductor read-out circuit, demonstrating the significance of the improved dark current characteristics in capturing high-quality sample images with this technology.

3.
J Sci Food Agric ; 103(4): 2047-2056, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36461135

RESUMO

BACKGROUND: The present study focused on the effect of isothermal treatment (5-90 °C) and pH (2.0-6.0) of aqueous olive leaf phenolic extract solutions on the kinetics of degradation of single and total phenolic compounds and radical scavenging activity, with the objective of predicting and optimizing the thermal treatments in foods enriched with olive leaf extracts. RESULTS: The major compound, oleuropein, showed higher degradation at low pH 2.0 and temperature-dependent reaction rates, which fitted well a first-order kinetic model, with an estimated activation energy of 98.03 ± 0.08 kJ mol-1 . Oleuropein hydrolysis resulted in a zero-order increase in hydroxytyrosol concentration at same pH (Ea  = 71.59 ± 1.5 kJ mol-1 ), whereas a 100-fold slower degradation rate was observed at higher pH. Verbascoside was only degraded at pH 6.0, also following first-order kinetics. These changes in oleuropein and hydroxytyrosol concentrations led to significant changes in fluorescence maximum intensities centered around 315 and 360 nm and in the 425-500 nm spectral zone for samples at pH 6.0, which could be associated with verbacoside degradation. Conversely, analysis of total phenolic content and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radical scavenging activity showed little changes, indicating a rather constant overall reducing capacity of the resulting pool of compounds after thermal treatments. CONCLUSION: The present study can contribute to the knowledge related to oleuropein and phenolic fraction degradation as a result of matrix (pH) and processing. The kinetic parameters obtained could be applied for predicting and optimizing the thermal treatments in foods and drinks enriched with olive leaf extracts. © 2022 Society of Chemical Industry.


Assuntos
Antioxidantes , Olea , Antioxidantes/química , Temperatura Alta , Iridoides/química , Fenóis/química , Olea/química , Extratos Vegetais/química , Concentração de Íons de Hidrogênio , Folhas de Planta
4.
Food Chem ; 394: 133469, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-35717921

RESUMO

This study was designed to investigate the formation of camellia oil body (OB) emulsion gels covalently cross-linked by oxidized polyphenols: catechin (OCT), caffeic acid (OCF), chlorogenic acid (OCA), and tannic acid (OTA). The structural characteristics, thermal stabilities, antioxidant activities, rheological properties, and lipid digestion kinetics of the cross-linked OB-polyphenol emulsion gels were studied. The results of free sulfhydryl and amino group contents, FT-IR, fluorescence spectroscopy, surface hydrophobicity and thermal stability analyses confirmed the formation of covalent interactions between polyphenols and OB emulsions. Based on the second-order structural kinetic model, OB emulsion gel cross-linked by OTA had stronger intermolecular interactions and more developed 3-D network structures than those of OCA, OCF and OCT. Furthermore, lipid digestion kinetics showed that the cross-linking of polyphenols with the OBs slowed down the disintegration of protein matrix under gastric conditions, resulting in delay the release of free fatty acid, which was confirmed by CLSM observations.


Assuntos
Camellia , Polifenóis , Digestão , Emulsões/química , Géis/química , Gotículas Lipídicas , Óleos de Plantas/química , Espectroscopia de Infravermelho com Transformada de Fourier
5.
Zhongguo Zhong Yao Za Zhi ; 47(4): 922-930, 2022 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-35285191

RESUMO

The present study explored the kinetics and variation of volatile components of Atractylodis Macrocephalae Rhizoma during the hot-air drying process to obtain the optimal process parameters under multiple goals such as drying efficiency and drying quality. The dry basis moisture content and drying rate curves along with the change of drying time of Atractylodis Macrocephalae Rhizoma were investigated at five levels of drying air temperatures(30, 40, 50, 60, and 70 ℃). The relationship between moisture ratio and time in the drying process of Atractylodis Macrocephalae Rhizoma was fitted and verified by Midilli model, Page model, Overhults model, Modified Page model, Logaritmic model, Two terms Exponential model, and Newton model. Meanwhile, the effective diffusion coefficient of moisture(D_(eff)) and activation energy(E_a) in Atractylodis Macrocephalae Rhizoma were calculated under different drying air temperatures. GC-MS was used to determine the volatile components and content changes of the fresh Atractylodis Macrocephalae Rhizoma and dried products at different temperatures. The dry basis moisture content and drying rate of Atractylodis Macrocephalae Rhizoma were closely related to the temperature of the drying medium, and the moisture of the Atractylodis Macrocephalae Rhizoma decreased with the prolonged drying time. As revealed by the drying rate curve, the drying rate increased with the increase in hot air temperature, and the migration of moisture was accelerated. The comparison of the correlation coefficient(R~2), chi-square(χ~2), and root mean standard error(RMSE) of each model indicated that the parameter average of the Midilli model had the highest degree of fit, with R~2=0.999 2, χ~2=8.78×10~(-5), and RMSE=8.20×10~(-3). Besides, the D_(eff) at 30-70 ℃ was in the range of 1.04×10~(-9)-6.28×10~(-9) m~2·s~(-1), and E_a was 37.47 kJ·mol~(-1). The volatile components of fresh Atractylodis Macrocephalae Rhizoma and dried products at different temperatures were determined by GC-MS, and 18, 18, 18, 17, 17, and 18 compounds were identified respectively, which accounted for more than 84.76% of the volatile components. In conclusion, the hot-air drying of Atractylodis Macrocephalae Rhizoma can be model-fitted and verified and the variation law of the moisture and volatile components of Atractylodis Macrocephalae Rhizoma with temperature is obtained. This study is expected to provide new ideas for exploring the drying characteristics and quality of aromatic Chinese medicine.


Assuntos
Atractylodes , Medicamentos de Ervas Chinesas , Temperatura Alta , Cinética , Rizoma
6.
Micromachines (Basel) ; 13(3)2022 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-35334666

RESUMO

The study of gold nanoparticles (AuNPs) in the blood flow has emerged as an area of interest for numerous researchers, due to its many biomedical applications, such as cancer radiotherapy, DNA and antigens, drug and gene delivery, in vitro evaluation, optical bioimaging, radio sensitization and laser phototherapy of cancer cells and tumors. Gold nanoparticles can be amalgamated in various shapes and sizes. Due to this reason, gold nanoparticles can be diffused efficiently, target the diseased cells and destroy them. The current work studies the effect of gold nanoparticles of different shapes on the electro-magneto-hydrodynamic (EMHD) peristaltic propulsion of blood in a micro-channel under various effects, such as activation energy, bioconvection, radiation and gyrotactic microorganisms. Four kinds of nanoparticle shapes, namely bricks, cylinders and platelets, are considered. The governing equations are simplified under the approximations of low Reynolds number (LRN), long wavelength (LWL) and Debye-Hückel linearization (DHL). The numerical solutions for the non-dimensional equations are solved using the computational software MATLAB with the help of the bvp4c function. The influences of different physical parameters on the flow and thermal characteristics are computed through pictorial interpretations.

7.
Artigo em Chinês | WPRIM | ID: wpr-928010

RESUMO

The present study explored the kinetics and variation of volatile components of Atractylodis Macrocephalae Rhizoma during the hot-air drying process to obtain the optimal process parameters under multiple goals such as drying efficiency and drying quality. The dry basis moisture content and drying rate curves along with the change of drying time of Atractylodis Macrocephalae Rhizoma were investigated at five levels of drying air temperatures(30, 40, 50, 60, and 70 ℃). The relationship between moisture ratio and time in the drying process of Atractylodis Macrocephalae Rhizoma was fitted and verified by Midilli model, Page model, Overhults model, Modified Page model, Logaritmic model, Two terms Exponential model, and Newton model. Meanwhile, the effective diffusion coefficient of moisture(D_(eff)) and activation energy(E_a) in Atractylodis Macrocephalae Rhizoma were calculated under different drying air temperatures. GC-MS was used to determine the volatile components and content changes of the fresh Atractylodis Macrocephalae Rhizoma and dried products at different temperatures. The dry basis moisture content and drying rate of Atractylodis Macrocephalae Rhizoma were closely related to the temperature of the drying medium, and the moisture of the Atractylodis Macrocephalae Rhizoma decreased with the prolonged drying time. As revealed by the drying rate curve, the drying rate increased with the increase in hot air temperature, and the migration of moisture was accelerated. The comparison of the correlation coefficient(R~2), chi-square(χ~2), and root mean standard error(RMSE) of each model indicated that the parameter average of the Midilli model had the highest degree of fit, with R~2=0.999 2, χ~2=8.78×10~(-5), and RMSE=8.20×10~(-3). Besides, the D_(eff) at 30-70 ℃ was in the range of 1.04×10~(-9)-6.28×10~(-9) m~2·s~(-1), and E_a was 37.47 kJ·mol~(-1). The volatile components of fresh Atractylodis Macrocephalae Rhizoma and dried products at different temperatures were determined by GC-MS, and 18, 18, 18, 17, 17, and 18 compounds were identified respectively, which accounted for more than 84.76% of the volatile components. In conclusion, the hot-air drying of Atractylodis Macrocephalae Rhizoma can be model-fitted and verified and the variation law of the moisture and volatile components of Atractylodis Macrocephalae Rhizoma with temperature is obtained. This study is expected to provide new ideas for exploring the drying characteristics and quality of aromatic Chinese medicine.


Assuntos
Atractylodes , Medicamentos de Ervas Chinesas , Temperatura Alta , Cinética , Rizoma
8.
BMC Chem ; 15(1): 47, 2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34384471

RESUMO

Thiamine (vitamin B1) is an essential micronutrient in the human diet, found both naturally and as a fortification ingredient in many foods and supplements. However, it is susceptible to degradation due to heat, light, alkaline pH, and sulfites, among effects from other food matrix components, and its degradation has both nutritional and sensory implications as in foods. Thiamine storage stability in solution was monitored over time to determine the effect of solution pH and thiamine concentration on reaction kinetics of degradation without the use of buffers, which are known to affect thiamine stability independent of pH. The study directly compared thiamine stability in solutions prepared with different pHs (3 or 6), concentrations (1 or 20 mg/mL), and counterion in solution (NO3-, Cl-, or both), including both commercially available salt forms of thiamine (thiamine mononitrate and thiamine chloride hydrochloride). Solutions were stored at 25, 40, 60, and 80 °C for up to one year, and degradation was quantified by high-performance liquid chromatography (HPLC) over time, which was then used to calculate degradation kinetics. Thiamine was significantly more stable in pH 3 than in pH 6 solutions. In pH 6 solutions, stability was dependent on initial thiamine concentration, with the 20 mg/mL thiamine salt solutions having an increased reaction rate constant (kobs) compared to the 1 mg/mL solutions. In pH 3 solutions, kobs was not dependent on initial concentration, attributed to differences in degradation pathway dependent on pH. Activation energies of degradation (Ea) were higher in pH 3 solutions (21-27 kcal/mol) than in pH 6 solutions (18-21 kcal/mol), indicating a difference in stability and degradation pathway due to pH. The fundamental reaction kinetics of thiamine reported in this study provide a basis for understanding thiamine stability and therefore improving thiamine delivery in many foods containing both natural and fortified thiamine.

9.
J Sci Food Agric ; 101(3): 1111-1118, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32785954

RESUMO

BACKGROUND: Tea processing involves fermentation, withering, steaming or pan-firing, rolling, baking, and drying. Some of these steps are performed at a high temperatures. At such temperatures the creep of the tea leaves plays an important role in the quality of tea. In materials science, creep is the tendency of a tea leaf to move slowly or defom permanently under a constant load. There has been much research on the mechanical properties of the outmost cuticular layer of leaves but there are few reports addressing the mechanical properties of whole leaves. RESULTS: We cut tea leaf into specimen of dog-bone shape and measure the time-dependent creep deformation using a dynamic mechnical analyzer. Three different tea leaves grown in Taiwan were examined. The nonlinear Burgers model is proposed to describe the creep deformation of the tea leaves. CONCLUSIONS: The creep of the tea leaves consists of primary and steady states, and the creep deformation is accurately described by the Kelvin representation of the nonlinear Burgers model. The viscosities in the primary stages satisfied the Arrhenius equation, and the activation energies were determined. The stress exponents for the creep of the tea leaves were less than unity. The Maxwell representation of the Burgers model is mathematically equivalent to the Kelvin representation of the Burgers model and can also be used to explain the creep of tea leaves. © 2020 Society of Chemical Industry.


Assuntos
Camellia sinensis/crescimento & desenvolvimento , Folhas de Planta/química , Fenômenos Biomecânicos , Camellia sinensis/química , Produção Agrícola/métodos , Folhas de Planta/crescimento & desenvolvimento , Taiwan , Chá/química , Temperatura
10.
J Food Sci Technol ; 57(9): 3381-3389, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32728285

RESUMO

Decoctions of ambang (Xymalos monospora) leaves are claimed to have therapeutic potentials but they are seasonal and highly perishable because of its high moisture content. To improve on the use of this plant, drying studies were carried out on its leaves in an effort to produce a green tea. Green tea was produced under 3 different drying conditions including shade, sun and electric drying. The effects of drying method and temperature (50, 60 and 70 °C) on the kinetics, proximate composition and total phenolic content of the teas were analyzed. Drying method had a significant effect on the drying kinetics and quality of the green tea produced. Drying occurred entirely in the falling rate period suggesting that the principal mechanism of drying was by diffusion. Kinetics of the drying processed were modeled successfully by the Page and Modified Page equations. Activation energy for the drying process as determined using K-values from the modified page equation was 27.89 kJ/mol. Significant differences were observed in the quality parameters of teas produced. Protein, carbohydrate and total phenolic content were also dependent on the type of solvent used for extraction. The green tea produced at 60 °C had most of its properties comparable to the commercial green tea used as a reference in the study. It is recommended that to produce good quality tea from ambang leaves, drying should be done at 60 °C for 6 h to obtain a tea with the following composition; moisture content (6.56 ± 0.01), total polyphenols (8.29 ± 0.08), Proteins (2.99 ± 0.13), ash (8.40 ± 0.15) and fiber content (20.43 ± 2.60).

11.
Carbohydr Polym ; 245: 116463, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32718602

RESUMO

In this work, cellulose nanofibrils (CNFs) are produced from bagasse pulps with differing hemicelluloses contents by ultrafine grinding and high-pressure homogenization. The results showed that hemicelluloses content in the range of 9.7-21.7 wt.% led to nanofibrils with average diameter. A decrease in hemicelluloses content can enhance the crystallinity and improve the thermal stability of the CNFs. The activation energy of the CNF samples with hemicelluloses contents of 9.7 wt.%, 12.72 wt.%, 15.7 wt.%, 18.76 wt.%, and 21.7 wt.% are 713.03, 518.93, 462.62, 421.78, and 211.11 kJ/mol, respectively, when the conversion rate is increased from 30%-90%. These results demonstrate that hemicelluloses content has a considerable influence on the properties of CNFs. This work provides a theoretical basis for high-value utilization of CNFs, and enriches useful information on the application of CNF materials.


Assuntos
Celulose/química , Nanofibras/química , Extratos Vegetais/química , Polissacarídeos/química , Saccharum/química , Temperatura Alta , Ligação de Hidrogênio , Lignina/química
12.
Food Chem ; 331: 127341, 2020 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-32569972

RESUMO

The aim of the present study was to evaluate the phenolic composition of crude lyophilized extracts (CLE) and partially purified (PPE) extracts of C. ternatea blue petals as well as the anthocyanin stability against pH, temperature and light in the presence and absence of fructooligosaccharides. Twelve compounds were tentatively identified by UHPLC-Q-TOF-MS/MS in CLE and PPE extracts. In direct/reverse spectrophotometric titration, anthocyanins showed colour changes between pH 2.25 to 10.20, and colour reversibility, maintaining antioxidant activity against the DPPH radical. The aqueous extracts at pH 3.6 and 5.4 exhibited thermal stability with the presence and absence of fructooligosaccharides with activation energy higher than 99 kJ/mol. The addition of fructooligosaccharides in the extracts at pH 5.4 exposed to light provided a protective effect against anthocyanin photodegradation. The data show the technological potential of aqueous extract of C. ternatea blue petals as a natural colourant in a functional beverage model system.


Assuntos
Antocianinas/análise , Clitoria/química , Flores/química , Extratos Vegetais/química , Antioxidantes/química , Cromatografia Líquida de Alta Pressão , Corantes de Alimentos/análise , Corantes de Alimentos/química , Liofilização , Concentração de Íons de Hidrogênio , Oligossacarídeos/química , Fenóis/análise , Pigmentação , Extratos Vegetais/análise , Espectrometria de Massas em Tandem , Temperatura
13.
Environ Sci Pollut Res Int ; 27(29): 36450-36462, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32562223

RESUMO

The present investigation aims to develop simultaneous extraction and conversion of inedible Madhuca longifolia seed oil into biodiesel by one-step acid-catalyzed in situ transesterification/reactive extraction process. Six different types of pretreatment were used to assess maximum yield of biodiesel. The maximum yield of 96% biodiesel was acquired with ultrasonic pretreatment at 1% moisture content, 0.61 mm seed grain size, 55 °C temperature, 400 rpm stirring speed, 15 wt% catalyst (H2SO4) concentration, and with 1:35 seed oil to methanol ratio in a time period of 180 min. This reaction kinetics precedes first order also the finest value of rate constant and activation energy were calculated as 0.003 min-1 and 14.840 kJ mol-1. The thermodynamic energy properties ΔG, ΔH, and ΔS are computed as 96457.172 J/mol, 12121.812 J/mol K, and - 257.12 J/mol K correspondingly. The enumerated outcome illustrates a heat absorb non-spontaneous/endergonic and endothermal reaction. The result of proposed work unveils ultrasonic pretreatment escalates the biodiesel efficiency and reactive extraction exemplifies the clean, cost-effective single-step approach for production of biodiesel from non-edible sources.


Assuntos
Biocombustíveis , Madhuca , Catálise , Esterificação , Cinética , Óleos de Plantas , Sementes , Termodinâmica
14.
Food Chem ; 326: 126971, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32408001

RESUMO

The demand for gluten-free products has been growing over the last few years as is the need to improve their quality. The objective of this research was to develop a shelf life prediction model of gluten-free rusks. To this aim, a kinetic study of the primary and secondary oxidative process was run and the kinetic parameters (rate constant, activation energy, and temperature quotient) were calculated. The protective effect of the antioxidant included in the recipe was also evaluated, and the prediction model was applied to predict the shelf life of an experimental batch of gluten-free rusks with a lower content of antioxidant. The results highlighted (i) the reliability of the prediction model and (ii) the effectiveness of the antioxidant in reducing the rate of primary oxidation. Moreover, (iii) a possible hexanal threshold (lower than 121 µg/kg), correlated with rancid perception in gluten-free rusks, was also speculated.


Assuntos
Armazenamento de Alimentos/métodos , Alimentos Especializados , Antioxidantes/química , Dieta Livre de Glúten , Farinha , Cinética , Modelos Teóricos , Oxirredução , Reprodutibilidade dos Testes , Óleo de Girassol , Temperatura
15.
J Sci Food Agric ; 100(9): 3658-3665, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32246462

RESUMO

BACKGROUND: Citrus fiber is a main component in the peel of citrus and contains natural dietary fiber. It is often used as a functional additive to improve the texture or nutritional property of food. It is also widely used to reduce the content of absorbable fat in sausages and other meat products, and to improve food stability as an emulsifier. In this research, the dynamic rheological properties (linear and non-linear) of citrus peel fiber/corn oil (CF/CO) emulsion system under high pressure homogenization (HPH) treatment was investigated. RESULT: Rheological results illustrated HPH treatment significantly increased the apparent viscosity of the emulsion, reduced the activation energy of the emulsion and distinctly improved the viscoelasticity of the emulsion. Meanwhile, HPH treatment increased the linear viscoelastic region of the sample, and the behavior of the emulsion converted from strain thinning (without HPH treatment) to weak strain overshoot (with HPH treatment). Lissajous curves indicated the viscosity of the sample increased first and then decreased with strain increasing and the third harmonic contributed much more to the first harmonic compared with the fifth harmonic. Chebyshev stress decomposition revealed that, as strain increased, the samples with HPH treatment showed internal-cycle strain hardening behavior first, then turned to internal-cycle softening behavior. CONCLUSION: HPH treatment can significantly improve the processing performance of CF/CO emulsion as well as the stability against large periodic oscillations in food processing. © 2020 Society of Chemical Industry.


Assuntos
Citrus/química , Óleo de Milho/química , Emulsões/química , Manipulação de Alimentos/métodos , Extratos Vegetais/química , Óleo de Milho/isolamento & purificação , Fibras na Dieta/análise , Emulsões/isolamento & purificação , Manipulação de Alimentos/instrumentação , Extratos Vegetais/isolamento & purificação , Pressão , Reologia , Viscosidade
16.
Bioresour Technol ; 304: 122991, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32078906

RESUMO

In this work, the pyrolysis behavior of lignite, Chinese herb residues (CHR) and their blends were explored by thermogravimetric analysis. The co-pyrolysis improved the pyrolysis characteristic of lignite, leading to an increment of index D. Analysis results showed that 30%-50% of CHR add ratio was the appropriate choice for co-pyrolysis with lignite. It was clarified that synergetic effects between lignite with CHR occurred during the co-pyrolysis treatment. And the promoting effects were dominated at 240 °C to 310 °C, while it turned to inhibiting effects at 315 °C to 355 °C. The pyrolysis kinetic evolution was adapted by a new general distributed activation energy model with four pseudo-components. The simulation results demonstrated an excellent match with the adjusted coefficients Radj2 over 99.97%. In addition, G-DAEM further considered A-E kinetic compensatory effect. The outcomes enriched the applicability of this model in thermal process of other fuels.


Assuntos
Carvão Mineral , Pirólise , Biomassa , Cinética , Termogravimetria
17.
Chemosphere ; 247: 125863, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31972485

RESUMO

Plasma-catalysis technologies (PCTs) have the potential to control the emissions of volatile organic compounds, although their low-energy efficiency is a bottleneck for their practical applications. A plasma-catalyst reactor filled with a CeO2/γ-Al2O3 catalyst was developed to decompose toluene with a high-energy efficiency enhanced by the elevating reaction temperature. When the reaction temperature was raised from 50 °C to 250 °C, toluene conversion dramatically increased from 45.3% to 95.5% and the energy efficiency increased from 53.5 g/kWh to 113.0 g/kWh. Conversely, the toluene conversion using a thermal catalysis technology (TCT) exhibited a maximum of 16.7%. The activation energy of toluene decomposition using PCTs is 14.0 kJ/mol, which is far lower than those of toluene decomposition using TCTs, which implies that toluene decomposition using PCT differs from that using TCT. The experimental results revealed that the Ce3+/Ce4+ ratio decreased and Oads/Olatt ratio increased after the 40-h evaluation experiment, suggesting that CeO2 promoted the formation of the reactive oxygen species that is beneficial for toluene decomposition.


Assuntos
Poluentes Atmosféricos/análise , Gases em Plasma/química , Tolueno/análise , Compostos Orgânicos Voláteis/análise , Óxido de Alumínio/química , Catálise , Cério/química , Temperatura Alta , Modelos Teóricos , Oxirredução
18.
Food Chem ; 304: 125427, 2020 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-31494501

RESUMO

Solution-enhanced dispersion by supercritical carbon dioxide (SEDS) and spray drying (SD) were used to microencapsulate red palm oil (RPO) to prolong the functionality of carotenes and vitamin E. The protective effects provided by SEDS and SD were evaluated in terms of the oxidative stability (65 °C for 35 days), fatty acid compositions, color change and degradation kinetics of carotenes and vitamin E (25 °C, 45 °C, 65 °C, and 85 °C for up to 198 days). SEDS microcapsules (SEDS-M) were the most oxidatively stable (total oxidation (Totox): 26.5), followed by SD microcapsules (SD-M) (34.9) and RPO (56.7). Degradation of carotenes and vitamin E fitted well a first-order kinetic model (average absolute relative deviation = 2-16%). SEDS-M offered better protection to vitamin E (Ea = 36 kJ/mol), whereas SD-M provided better protection for α +â€¯ß carotene (Ea = 29 kJ/mol). Overall, encapsulation protected RPO during storage, with SEDS-microencapsulated RPO performing better than SD-microencapsulated RPO.


Assuntos
Cápsulas/química , Armazenamento de Alimentos , Óleo de Palmeira/química , Dióxido de Carbono , Carotenoides , Cinética , Oxirredução , Óleo de Palmeira/análise , Vitamina E , beta Caroteno
19.
Artigo em Chinês | WPRIM | ID: wpr-846492

RESUMO

Objective: To study the formation regularity and kinetic parameters of advanced glycation end-products during the processing of boiled Cervi Cornu Pantotrichum (CCP). Methods: UV-visible spectrophotometry and UPLC-MS/MS method were used to determine the change of browning index and content of typical advanced glycation end-products, Nε-(carboxymethyl) lysine and Nε-(carboxyethyl) lysine, of the processing system of simulated boiled CCP. The formation regularity and kinetic parameters of advanced glycation end-products during the processing of boiled CCP were discussed by constructing glucose and lysine to simulate the Maillard reaction system of CCP processing. Results: The activation energy of browning reaction, Nε-(carboxymethyl) lysine and Nε-(carboxyethyl) lysine reaction during processing of boiled CCP were 5.07, 40.44 and 78.47 kJ/mol, respectively, and all of them were zero-order kinetics. The activation energies of the above reactions in the baking process were 6.72, 89.34 and 164.77 kJ/mol, respectively, and all of them were zero-order kinetics. Compared to the formation of Nε-(carboxymethyl) lysine, the formation of Nε-(carboxyethyl) lysine required higher activation energy and was more difficult to occur. Conclusion: The temperature changed in the baking process has a significantly higher effect on the kinetic parameters of the advanced glycation end-products than in the boiling process. Long-term higher baking temperature resulted in more advanced glycation end-products produced in the boiled CCP. This study provides a solid theoretical basis for the blocking and inhibition strategies of advanced glycation end-products in the processing of CCP, which is also a great significance for the production of green safety CCP and strengthening the safety of traditional Chinese medicine.

20.
Environ Sci Pollut Res Int ; 26(30): 31301-31314, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31471852

RESUMO

Non-edible seeds are not used in any commercial applications, which implies that they can be used for biofuel applications. The present study aimed to maximise the process conditions for oil extraction and sterculia biodiesel production from Sterculia foetida (poon oil). GC-MS identified the methyl esters of sterculia oil as sterculic acid (32%), palmitic acid (15.88%), oleic acid (10.00%), linoleic acid (9.95%) and malvalic acid (9%). Response surface methodology (RSM) based parametric optimisation of oil extraction was carried out by choosing process variables such as sample weight, volume of solvent to seed ratio and time. The optimum sample amount of 7.5 g and the volume of solvent to seed ratio of 40 mL/g resulted in a maximum oil yield of 45.27% at 3 h. The results were statistically significant (P < 0.05) with a regression coefficient (R2) of 0.9988. Furthermore, the artificial neural network (ANN) resulted in an R2 value greater than 0.9, which validates the RSM. Conventional optimisation of the temperature (55 °C), feedstock to methanol ratio (1:12), catalyst proportion (1.5%) and transesterification reaction time (60 min) yield 90.87% biodiesel production. The physicochemical characteristics of oil and biodiesel complied with the requirements of the ASTM standards. The rate constant and thermodynamic variables at the optimum temperature (333 K) were calculated from the experimental data. The activation energy (Ea), activation enthalpy in transition state theory (ΔH++), activation entropy in transition state theory (ΔS++) and Gibbs free energy in transition state theory (ΔG++) were 37.91 kJ mol-1, 35.14 kJ mol-1, - 239.58 J mol-1 K-1 and 79.81 kJ mol-1 respectively. Graphical abstract.


Assuntos
Biocombustíveis , Fracionamento Químico/métodos , Óleos de Plantas/isolamento & purificação , Sementes/química , Sterculia/química , Catálise , Esterificação , Ésteres/análise , Metanol , Redes Neurais de Computação , Óleos de Plantas/análise , Óleos de Plantas/química , Temperatura , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA