Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Front Cell Infect Microbiol ; 14: 1331779, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38510965

RESUMO

Background: Commercial foot-and-mouth disease (FMD) vaccines have limitations, such as local side effects, periodic vaccinations, and weak host defenses. To overcome these limitations, we developed a novel FMD vaccine by combining an inactivated FMD viral antigen with the small molecule isoprinosine, which served as an adjuvant (immunomodulator). Method: We evaluated the innate and adaptive immune responses elicited by the novel FMD vaccine involved both in vitro and in vivo using mice and pigs. Results: We demonstrated isoprinosine-mediated early, mid-term, and long-term immunity through in vitro and in vivo studies and complete host defense against FMD virus (FMDV) infection through challenge experiments in mice and pigs. We also elucidated that isoprinosine induces innate and adaptive (cellular and humoral) immunity via promoting the expression of immunoregulatory gene such as pattern recognition receptors [PRRs; retinoic acid-inducible gene (RIG)-I and toll like receptor (TLR)9], transcription factors [T-box transcription factor (TBX)21, eomesodermin (EOMES), and nuclear factor kappa B (NF-kB)], cytokines [interleukin (IL)-12p40, IL-23p19, IL-23R, and IL-17A)], and immune cell core receptors [cluster of differentiation (CD)80, CD86, CD28, CD19, CD21, and CD81] in pigs. Conclusion: These findings present an attractive strategy for constructing novel FMD vaccines and other difficult-to-control livestock virus vaccine formulations based on isoprinosine induced immunomodulatory functions.


Assuntos
Vírus da Febre Aftosa , Febre Aftosa , Inosina Pranobex , Vacinas Virais , Animais , Camundongos , Suínos , Adjuvantes de Vacinas , Anticorpos Antivirais , Adjuvantes Imunológicos , Interleucinas , Imunidade
2.
Hematology ; 29(1): 2326389, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38466633

RESUMO

Objectives: Aplastic anemia (AA) is one of the immune-mediated bone marrow failure disorders caused by multiple factors, including the inability of CD4 + CD25 + regulatory T cells (Tregs) to negatively regulate cytotoxic T lymphocytes (CTLs). Dioscin is a natural steroid saponin that has a similar structure to steroid hormones. The purpose of this study is to look into the effect of Dioscin on the functions of CD4 + CD25+ Tregs in the AA mouse model and explore its underlying mechanism.Methods: To begin with, bone marrow failure was induced through total body irradiation and allogeneic lymphocyte infusion using male Balb/c mice. After 14 consecutive days of Dioscin orally administrated, the AA mouse model was tested for complete blood counts, HE Staining of the femur, Foxp3, IL-10 and TGF-ß. Then CD4 + CD25+ Tregs were isolated from splenic lymphocytes of the AA mouse model, Tregs and the biomarkers and cytokines of Tregs were measured after 24 h of Dioscin intervention treatment in vitro.Results: Dioscin promotes the expression of Foxp3, IL-10, IL-35 and TGF-ß, indicating its Tregs-promoting properties. Mechanistically, the administration of Dioscin resulted in the alteration of CD152, CD357, Perforin and CD73 on the surface of Tregs, and restored the expression of Foxp3.Conclusion: Dioscin markedly attenuated bone marrow failure, and promoted Tregs differentiation, suggesting the maintenance of theimmune balance effect of Dioscin. Dioscin attenuates pancytopenia and bone marrow failure via its Tregs promotion properties.


Assuntos
Anemia Aplástica , Diosgenina , Diosgenina/análogos & derivados , Animais , Camundongos , Masculino , Humanos , Linfócitos T Reguladores , Interleucina-10/metabolismo , Interleucina-10/farmacologia , Diosgenina/farmacologia , Diosgenina/uso terapêutico , Diosgenina/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta/farmacologia , Fatores de Transcrição Forkhead
3.
Trends Immunol ; 44(10): 826-844, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37704549

RESUMO

Klebsiella pneumoniae is among the most common antibiotic-resistant pathogens causing nosocomial infections. Additionally, it is a leading cause of neonatal sepsis and childhood mortality across the globe. Despite its clinical importance, we are only beginning to understand how the mammalian adaptive immune system responds to this pathogen. Further, many studies investigating potential K. pneumoniae vaccine candidates or alternative therapies have been launched in recent years. Here, we review the current state of knowledge on the adaptive immune response to K. pneumoniae infections and progress towards developing vaccines and other therapies to combat these infections.


Assuntos
Infecções por Klebsiella , Vacinas , Animais , Criança , Humanos , Recém-Nascido , Antibacterianos/farmacologia , Infecções por Klebsiella/tratamento farmacológico , Infecções por Klebsiella/prevenção & controle , Klebsiella pneumoniae , Mamíferos
4.
Am J Chin Med ; 51(6): 1577-1594, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37465963

RESUMO

Colorectal cancer (CRC) is a leading cause of cancer-related death in the United States, and chronic gut inflammation is a risk factor for CRC initiation and development. Curcuma longa L., or turmeric, has become one of the most studied herbal medicines in recent years due to its anticancer potentials. It is generally accepted that the major component in turmeric is curcuminoids, and the active constituent in curcuminoids is curcumin. However, unprocessed curcumin is characterized by poor water solubility, which means low bioavailability in humans. To increase the bioavailability of curcumin, in this study, we utilized a novel surfactant-formulated curcumin (CuminUP60[Formula: see text]) and evaluated its CRC chemopreventive activities. Compared with the chemo-sensitive CRC cell line HCT-116, the management of the CRC SW-480 cell line is a challenge, since the latter is chemo-resistant. In other words, these cancer cells resist the effects of the chemotherapy. Using the newly formulated CuminUP60[Formula: see text] water solution, this study demonstrated its strong antiproliferative effects on the SW-480 cells in a dose- and time-dependent manner. This new formulation induced early apoptosis and arrested the cell cycle in the G2/M phase via the upregulation of cyclin B1. We also observed that this new formulation possessed inhibitory effects on Th17 cell differentiation, which regulates the body's immune response against gut malignancies. In summary, our results exhibited a potential clinical utility of the surfactant-formulated curcumin in chemo-resistant colorectal cancer management.


Assuntos
Neoplasias Colorretais , Curcumina , Humanos , Curcumina/farmacologia , Diarileptanoides , Tensoativos , Curcuma , Neoplasias Colorretais/tratamento farmacológico , Água
5.
Foods ; 12(10)2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37238755

RESUMO

Phytochemicals from plant extracts are becoming increasingly popular in the world of food science and technology because they have positive effects on human health. In particular, several bioactive foods and dietary supplements are being investigated as potential treatments for chronic COVID. Hydroxytyrosol (HXT) is a natural antioxidant, found in olive oil, with antioxidant anti-inflammatory properties that has been consumed by humans for centuries without reported adverse effects. Its use was approved by the European Food Safety Authority as a protective agent for the cardiovascular system. Similarly, arginine is a natural amino acid with anti-inflammatory properties that can modulate the activity of immune cells, reducing the production of pro-inflammatory cytokines such as IL-6 and TNF-α. The properties of both substances may be particularly beneficial in the context of COVID-19 and long COVID, which are characterised by inflammation and oxidative stress. While l-arginine promotes the formation of •NO, HXT prevents oxidative stress and inflammation in infected cells. This combination could prevent the formation of harmful peroxynitrite, a potent pro-inflammatory substance implicated in pneumonia and COVID-19-associated organ dysfunction, as well as reduce inflammation, improve immune function, protect against free radical damage and prevent blood vessel injury. Further research is needed to fully understand the potential benefits of HXT and arginine in the context of COVID-19.

6.
Front Immunol ; 14: 1180336, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37205106

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has posed a global health crisis. Increasing evidence underlines the key role of competent immune responses in resisting SARS-CoV-2 infection and manifests the disastrous consequence of host immune dysregulation. Elucidating the mechanisms responsible for deregulated host immunity in COVID-19 may provide a theoretical basis for further research on new treatment modalities. Gut microbiota comprises trillions of microorganisms colonizing the human gastrointestinal tract and has a vital role in immune homeostasis and the gut-lung crosstalk. Particularly, SARS-CoV-2 infection can lead to the disruption of gut microbiota equilibrium, a condition called gut dysbiosis. Due to its regulatory effect on host immunity, gut microbiota has recently received considerable attention in the field of SARS-CoV-2 immunopathology. Imbalanced gut microbiota can fuel COVID-19 progression through production of bioactive metabolites, intestinal metabolism, enhancement of the cytokine storm, exaggeration of inflammation, regulation of adaptive immunity and other aspects. In this review, we provide an overview of the alterations in gut microbiota in COVID-19 patients, and their effects on individuals' susceptibility to viral infection and COVID-19 progression. Moreover, we summarize currently available data on the critical role of the bidirectional regulation between intestinal microbes and host immunity in SARS-CoV-2-induced pathology, and highlight the immunomodulatory mechanisms of gut microbiota contributing to COVID-19 pathogenesis. In addition, we discuss the therapeutic benefits and future perspectives of microbiota-targeted interventions including faecal microbiota transplantation (FMT), bacteriotherapy and traditional Chinese medicine (TCM) in COVID-19 treatment.


Assuntos
COVID-19 , Microbioma Gastrointestinal , Humanos , COVID-19/terapia , SARS-CoV-2 , Tratamento Farmacológico da COVID-19 , Trato Gastrointestinal
7.
Curr Pharm Biotechnol ; 24(11): 1465-1477, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36545731

RESUMO

BACKGROUND: Annona muricata L. (Annonaceae) (AM)'s remarkable anti-inflammatory and anti-cancer activities make it a targeted plant to be explored for its immunomodulatory properties. Traditional practitioners have employed various components of AM to cure a variety of ailments, including cancer, diabetes, and inflammation. OBJECTIVE: The present study evaluated the immunosuppressive effects of 80% ethanol extract of of AM leaves in male Wistar rats on different parameters of humoral and cellular immune responses. METHODS: AM leaf extract (AMLE) was analyzed using UHPLC-MS/MS to profile its secondary metabolites. AMLE was rich in polyphenols which include (epi)catechin-(epi)catechin-(epi) catechin, caffeic acid, coumaroylquinic acid, hyperin, kaempferol, quinic acid and rutin. The rats were administered 100, 200 and 400 mg/kg bw of the extract daily for 14 days. The effects of AMLE on innate immune responses were determined by evaluating phagocytosis, neutrophils migration, reactive oxygen species (ROS) release, CD11b/CD18 integrin expression, and ceruloplasmin, lysozyme and myeloperoxidase (MPO) levels. The adaptive immune parameters were evaluated by immunizing the rats with sheep red blood cells (sRBC) on day 0 and administered orally with AMLE for 14 days. RESULTS: AMLE established significant immunosuppressive effects on the innate immune parameters by inhibiting the neutrophil migration, ROS production, phagocytic activity and expression of CD11b/CD18 integrin in a dose-dependent pattern. AMLE also suppressed ceruloplasmin, MPO and lysozyme expressions in the rat plasma dose-dependently. AMLE dose-dependently inhibited T and B lymphocytes proliferation, Th1 and Th2 cytokine production, CD4+ and CD8+ co-expression in splenocytes, immunoglobulins (IgM and IgG) expression and the sRBC-induced swelling rate of rat paw in delayed-type hypersensitivity (DTH). CONCLUSION: The strong inhibitory effects on the different parameters of humoral and cellular responses indicate that AMLE has potential to be an important source of effective immunosuppressive agents.


Assuntos
Annona , Catequina , Ratos , Animais , Ovinos , Imunidade Humoral , Ratos Wistar , Muramidase , Extratos Vegetais/farmacologia , Ceruloplasmina , Catequina/farmacologia , Espécies Reativas de Oxigênio , Espectrometria de Massas em Tandem , Integrinas , Folhas de Planta
8.
J Immunother Cancer ; 10(11)2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36418073

RESUMO

BACKGROUND: CD47 is an integral membrane protein that alters adaptive immunosurveillance when bound to the matricellular glycoprotein thrombospondin-1 (TSP1). We examined the impact of the CD47/TSP1 signaling axis on melanoma patient response to anti-PD-1 therapy due to alterations in T cell activation, proliferation, effector function, and bioenergetics. METHODS: A syngeneic B16 mouse melanoma model was performed to determine if targeting CD47 as monotherapy or in combination with anti-PD-1 impacted tumor burden. Cytotoxic (CD8+) T cells from Pmel-1 transgenic mice were used for T cell activation, cytotoxic T lymphocyte, and cellular bioenergetic assays. Single-cell RNA-sequencing, ELISA, and flow cytometry was performed on peripheral blood mononuclear cells and plasma of melanoma patients receiving anti-PD-1 therapy to examine CD47/TSP1 expression. RESULTS: Human malignant melanoma tissue had increased CD47 and TSP1 expression within the tumor microenvironment compared with benign tissue. Due to the negative implications CD47/TSP1 can have on antitumor immune responses, we targeted CD47 in a melanoma model and observed a decrease in tumor burden due to increased tumor oxygen saturation and granzyme B secreting CD8+ T cells compared with wild-type tumors. Additionally, Pmel-1 CD8+ T cells exposed to TSP1 had reduced activation, proliferation, and effector function against B16 melanoma cells. Targeting CD47 allowed CD8+ T cells to overcome this TSP1 interaction to sustain these functions. TSP1 exposed CD8+ T cells have a decreased rate of glycolysis; however, targeting CD47 restored glycolysis when CD8+ T cells were exposed to TSP1, suggesting CD47 mediated metabolic reprogramming of T cells. Additionally, non-responding patients to anti-PD-1 therapy had increased T cells expressing CD47 and circulating levels of TSP1 compared with responding patients. Since CD47/TSP1 signaling axis negatively impacts CD8+ T cells and non-responding patients to anti-PD-1 therapy have increased CD47/TSP1 expression, we targeted CD47 in combination with anti-PD-1 in a melanoma model. Targeting CD47 in combination with anti-PD-1 treatment further decreased tumor burden compared with monotherapy and control. CONCLUSION: CD47/TSP1 expression could serve as a marker to predict patient response to immune checkpoint blockade treatment, and targeting this pathway may preserve T cell activation, proliferation, effector function, and bioenergetics to reduce tumor burden as a monotherapy or in combination with anti-PD-1.


Assuntos
Antígeno CD47 , Melanoma Experimental , Animais , Humanos , Camundongos , Antígeno CD47/metabolismo , Metabolismo Energético , Leucócitos Mononucleares , Ativação Linfocitária , Melanoma Experimental/tratamento farmacológico , Microambiente Tumoral , Trombospondina 1/metabolismo
9.
Dev Comp Immunol ; 135: 104495, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35863514

RESUMO

The reduced stress resistance and increased disease risk associated with high-fat diet (HFD) in animals have attracted increasing attention. However, the effects of HFD on adaptive immunity in early vertebrates, especially non-tetrapods, remain unknown. In this study, using Nile tilapia (Oreochromis niloticus) as a model, we investigated the effects of HFD on the primordial T-cell response in fish. Tilapia fed with an HFD for 8 weeks showed impaired lymphocyte homeostasis in the spleen, as indicated by the decreased number of both T and B lymphocytes and increased transcription of proinflammatory cytokines interferon-γ and interleukin-6. Moreover, lymphocytes isolated from HFD-fed fish or cultured in lipid-supplemented medium exhibited diminished T-cell activation in response to CD3ε monoclonal antibody stimulation. Moreover, HFD-fed tilapia infected by Aeromonas hydrophila showed decreased T-cell expansion, increased T-cell apoptosis, reduced granzyme B expression, and impaired infection elimination. Additionally, HFD attenuated adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) activity in tilapia lymphocytes, which in turn upregulated fatty acid synthesis but downregulated fatty acid ß-oxidation. Altogether, our results suggest that HFD impairs lymphocyte homeostasis and T cell-mediated adaptive immune response in tilapia, which may be associated with the abnormal lipid metabolism in lymphocytes. These findings thus provide a novel perspective for understanding the impact of HFD on the adaptive immune response of early vertebrates.


Assuntos
Ciclídeos , Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , Tilápia , Aeromonas hydrophila/fisiologia , Animais , Dieta , Dieta Hiperlipídica/efeitos adversos , Suplementos Nutricionais , Ácidos Graxos/metabolismo , Linfócitos T/metabolismo
10.
Semin Immunol ; 59: 101605, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35660338

RESUMO

Specialized pro-resolving mediators (SPMs) are endogenous small molecules produced mainly from dietary omega-3 polyunsaturated fatty acids by both structural cells and cells of the active and innate immune systems. Specialized pro-resolving mediators have been shown to both limit acute inflammation and promote resolution and return to homeostasis following infection or injury. There is growing evidence that chronic immune disorders are characterized by deficiencies in resolution and SPMs have significant potential as novel therapeutics to prevent and treat chronic inflammation and immune system disorders. This review focuses on important breakthroughs in understanding how SPMs are produced by, and act on, cells of the adaptive immune system, specifically macrophages, B cells and T cells. We also highlight recent evidence demonstrating the potential of SPMs as novel therapeutic agents in topics including immunization, autoimmune disease and transplantation.


Assuntos
Ácidos Docosa-Hexaenoicos , Ácidos Graxos Ômega-3 , Humanos , Ácidos Docosa-Hexaenoicos/uso terapêutico , Ácidos Graxos Ômega-3/uso terapêutico , Inflamação/tratamento farmacológico , Mediadores da Inflamação/uso terapêutico , Imunidade
11.
Am J Chin Med ; 50(6): 1401-1422, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35748216

RESUMO

Cancer is a main life-threatening disease worldwide. Due to the adverse effects of conventional chemotherapies and radiotherapies, immunotherapy has emerged as a potent strategy to treat cancer. In cancer immunotherapy, cancer immune surveillance plays a crucial role in the cancer process, which contains various effector cells from innate and adaptive immunity. This review summarized the functions of innate and adaptive immune cells in cancer immunosurveillance and their main reported targets. Moreover, the potential targets about the modulatory effects of cancer immunosurveillance were predicted using network-based target analysis, with total predicted pathways not only reporting previously reported pathways, but also putative signaling pathways pending for investigation. In addition, the potential use of herbal medicines and their phytochemicals in the modulation of cancer immunosurveillance were also discussed. Taken together, this review paper aims to provide scientific insight into further drug development, particularly herbs, phytochemicals, and TCM formulae, in the modulatory effects of cancer immunosurveillance.


Assuntos
Medicamentos de Ervas Chinesas , Neoplasias , Plantas Medicinais , Imunidade Adaptativa , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Humanos , Monitorização Imunológica , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico
12.
J Leukoc Biol ; 112(1): 185-200, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35612275

RESUMO

Cancer constitutes a kind of life-threatening disease that is prevalent throughout the world. In light of limitations in conventional chemotherapies or radiotherapies, cancer immunotherapy has emerged as a potent strategy in treating cancer. In cancer immunotherapy, preliminary studies have demonstrated that cancer immune surveillance serves a crucial role in tumor initiation, progression, and metastasis. Herbal medicines and natural products, which serve as alternative medicines, are involved in the modulation of tumor immunosurveillance to enhance antitumor activity. Accordingly, this review aimed to summarize the modulation function of herbal medicines and natural products on tumor immunosurveillance while providing scientific insight into further research on its molecular mechanism and potential clinical applications.


Assuntos
Produtos Biológicos , Neoplasias , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Humanos , Vigilância Imunológica , Imunoterapia , Leucócitos , Neoplasias/terapia
13.
Curr Osteoporos Rep ; 20(3): 186-193, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35507293

RESUMO

PURPOSE OF REVIEW: To review the mechanisms by which vitamin D and its metabolites regulate the immune system to facilitate the ability of the body to prevent and/or treat SARS-CoV2 and other respiratory infections and encourage further research into the role that vitamin D supplementation plays in preventing/treating such infections. RECENT FINDINGS: Vitamin D deficiency is associated with an increased risk of SARS-CoV2 and other respiratory infections. Clinical trials in general demonstrate that correction of vitamin D deficiency reduces the risk of hospitalization, ICU admission, and death from SARS-CoV2 infection. The airway epithelium and alveolar macrophages express the enzyme, CYP27B1, that produces the active metabolite of vitamin D, 1,25(OH)2D, and the vitamin D receptor, VDR. Vitamin D and its metabolites promote the innate immune response, which provides the first line of defense against viral and bacterial infections while restricting the adaptive immune response, which if unchecked promotes the inflammatory response leading to the acute respiratory distress syndrome and death. The rationale for treating vitamin D deficiency to reduce the risk of SARS-CoV2 infection and supplementing patients with vitamin D early in the course of SARS-CoV2 infection rests primarily on the ability of vitamin D metabolites to promote an effective immune response to the infection.


Assuntos
COVID-19 , Deficiência de Vitamina D , Humanos , Imunidade Inata/fisiologia , RNA Viral , SARS-CoV-2 , Vitamina D/metabolismo , Deficiência de Vitamina D/complicações
14.
J Tradit Chin Med ; 42(2): 314-320, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35473354

RESUMO

Chronic respiratory diseases (CRDs) are among the most common noncommunicable diseases globally, with high morbidity and mortality rates. Acupuncture, a treatment method derived from Traditional Chinese Medicine, has been shown to be effective at treating CRDs, with little risk of adverse effects. Scientific research on the mechanisms underlying the effects of acupuncture, especially, its immune regulatory function, has rapidly advanced in recent years. Herein, the diverse immune regulatory mechanisms underlying the beneficial effects of acupuncture are summarized from the perspectives of innate immunity, adaptive immunity, and neuroimmunity. A better understanding of these mechanisms will ultimately provide a scientific basis for the clinical use of acupuncture for the treatment of CRDs.


Assuntos
Terapia por Acupuntura , Humanos , Medicina Tradicional Chinesa
15.
Front Immunol ; 13: 790444, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35281034

RESUMO

Vitamin D is best known for its role in maintaining bone health and calcium homeostasis. However, it also exerts a broad range of extra-skeletal effects on cellular physiology and on the immune system. Vitamins D2 and D3 share a high degree of structural similarity. Functional equivalence in their vitamin D-dependent effects on human physiology is usually assumed but has in fact not been well defined experimentally. In this study we seek to redress the gap in knowledge by undertaking an in-depth examination of changes in the human blood transcriptome following supplementation with physiological doses of vitamin D2 and D3. Our work extends a previously published randomized placebo-controlled trial that recruited healthy white European and South Asian women who were given 15 µg of vitamin D2 or D3 daily over 12 weeks in wintertime in the UK (Nov-Mar) by additionally determining changes in the blood transcriptome over the intervention period using microarrays. An integrated comparison of the results defines both the effect of vitamin D3 or D2 on gene expression, and any influence of ethnic background. An important aspect of this analysis was the focus on the changes in expression from baseline to the 12-week endpoint of treatment within each individual, harnessing the longitudinal design of the study. Whilst overlap in the repertoire of differentially expressed genes was present in the D2 or D3-dependent effects identified, most changes were specific to either one vitamin or the other. The data also pointed to the possibility of ethnic differences in the responses. Notably, following vitamin D3 supplementation, the majority of changes in gene expression reflected a down-regulation in the activity of genes, many encoding pathways of the innate and adaptive immune systems, potentially shifting the immune system to a more tolerogenic status. Surprisingly, gene expression associated with type I and type II interferon activity, critical to the innate response to bacterial and viral infections, differed following supplementation with either vitamin D2 or vitamin D3, with only vitamin D3 having a stimulatory effect. This study suggests that further investigation of the respective physiological roles of vitamin D2 and vitamin D3 is warranted.


Assuntos
Ergocalciferóis , Transcriptoma , Colecalciferol/uso terapêutico , Suplementos Nutricionais , Feminino , Humanos , Sistema Imunitário , Vitamina D/farmacologia , Vitaminas/uso terapêutico
16.
Eur J Nutr ; 61(4): 2051-2066, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34999930

RESUMO

PURPOSE: Particular interest is now given to the potential of dietary supplements as alternative non-pharmacological approaches in intestinal inflammation handling. In this aim, this study evaluates the efficiency of fish collagen peptides, Naticol®Gut, on colonic inflammation. METHODS: Wild type and Mannose receptor-deficient in the myeloid lineage C57BL/6 mice were administered with Dextran Sodium Sulfate (DSS), Naticol®Gut, DSS, and Naticol®Gut or only water for 4 or 8 days. Inflammatory status was evaluated by establishing macroscopic and microscopic scores, by measuring cytokine and calprotectin production by ELISA and the myeloperoxidase activity by chemiluminescence. Colonic macrophages were phenotyped by measuring mRNA levels of specific markers of inflammation and oxidative status. Colonic immune populations and T-cell activation profiles were determined by flow cytometry. Mucosa-associated gut microbiota assessment was undertaken by qPCR. The phenotype of human blood monocytes from inflammatory bowel disease (IBD) subjects was characterized by RT-qPCR and flow cytometry and their oxidative activity by chemiluminescence. RESULTS: Naticol®Gut-treated DSS mice showed attenuated colonic inflammation compared to mice that were only exposed to DSS. Naticol®Gut activity was displayed through its ability to orient the polarization of colonic macrophage towards an anti-inflammatory and anti-oxidant phenotype after its recognition by the mannose receptor. Subsequently, Naticol®Gut delivery modulated CD4 T cells in favor of a Th2 response and dampened CD8 T-cell activation. This immunomodulation resulted in an intestinal eubiosis. In human monocytes from IBD subjects, the treatment with Naticol®Gut also restored an anti-inflammatory and anti-oxidant phenotype. CONCLUSION: Naticol®Gut acts as a protective agent against colitis appearing as a new functional food and an innovative and complementary approach in gut health.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Animais , Anti-Inflamatórios/uso terapêutico , Antioxidantes/uso terapêutico , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colágeno , Colo , Sulfato de Dextrana , Modelos Animais de Doenças , Humanos , Inflamação/tratamento farmacológico , Macrófagos , Manose/uso terapêutico , Receptor de Manose , Camundongos , Camundongos Endogâmicos C57BL , Peptídeos , Fenótipo
17.
Front Pharmacol ; 13: 1053602, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36733375

RESUMO

Systemic lupus erythematosus (SLE) is a common multisystem, multiorgan heterozygous autoimmune disease. The main pathological features of the disease are autoantibody production and immune complex deposition. Autophagy is an important mechanism to maintain cell homeostasis. Autophagy functional abnormalities lead to the accumulation of apoptosis and induce the autoantibodies that result in immune disorders. Therefore, improving autophagy may alleviate the development of SLE. For SLE, glucocorticoids or immunosuppressive agents are commonly used in clinical treatment, but long-term use of these drugs causes serious side effects in humans. Immunosuppressive agents are expensive. Traditional Chinese medicines (TCMs) are widely used for immune diseases due to their low toxicity and few side effects. Many recent studies found that TCM and its active ingredients affected the pathological development of SLE by regulating autophagy. This article explains how autophagy interferes with immune system homeostasis and participates in the occurrence and development of SLE. It also summarizes several studies on TCM-regulated autophagy intervention in SLE to generate new ideas for basic research, the development of novel medications, and the clinical treatment of SLE.

18.
J Immunother Cancer ; 10(9)2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36939214

RESUMO

Water-in-oil emulsion incomplete Freund's adjuvant (IFA) has been used as an adjuvant in preventive and therapeutic vaccines since its development. New generation, highly purified modulations of the adjuvant, Montanide incomplete seppic adjuvant (ISA)-51 and Montanide ISA-720, were developed to reduce toxicity. Montanide adjuvants are generally considered to be safe, with adverse events largely consisting of antigen and adjuvant dose-dependent injection site reactions (ISRs). Peptide vaccines in Montanide ISA-51 or ISA-720 are capable of inducing both high antibody titers and durable effector T cell responses. However, an efficient T cell response depends on the affinity of the peptide to the presenting major histocompatibility complex class I molecule, CD4+ T cell help and/or the level of co-stimulation. In fact, in the therapeutic cancer vaccine setting, presence of a CD4+ T cell epitope seems crucial to elicit a robust and durable systemic T cell response. Additional inclusion of a Toll-like receptor ligand can further increase the magnitude and durability of the response. Use of extended peptides that need a processing step only accomplished effectively by dendritic cells (DCs) can help to avoid antigen presentation by nucleated cells other than DC. Based on recent clinical trial results, therapeutic peptide-based cancer vaccines using emulsions in adjuvant Montanide ISA-51 can elicit robust antitumor immune responses, provided that sufficient tumor-specific CD4+ T cell help is given in addition to CD8+ T cell epitopes. Co-treatment with PD-1 T cell checkpoint inhibitor, chemotherapy or other immunomodulatory drugs may address local and systemic immunosuppressive mechanisms, and further enhance efficacy of therapeutic cancer peptide vaccines in IFA and its modern variants. Blinded randomized placebo-controlled trials are critical to definitively prove clinical efficacy. Mineral oil-based adjuvants for preventive vaccines, to tackle spread and severity of infectious disease, induce immune responses, but require more studies to reduce toxicity.


Assuntos
Vacinas Anticâncer , Neoplasias , Humanos , Adjuvantes Imunológicos , Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Emulsões , Imunoterapia , Neoplasias/tratamento farmacológico , Peptídeos , Vacinas de Subunidades Antigênicas
19.
J Immunother Cancer ; 9(11)2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34824160

RESUMO

BACKGROUND: A number of different immune pathways are involved in the effective killing of cancer cells, collectively named as the 'Cancer Immunity Cycle'. Anti-PD-1 checkpoint blockade (CPB) therapy is active on one of these pathways and reinvigorates anticancer T cell immunity, leading to long-term responses in a limited fraction of patients with cancer. We have previously shown that neoantigens-based adenovirus vectored vaccine in combination with anti-PD-1 further expands pre-existing anticancer immunity and elicits novel neoantigen-specific T cells thereby increasing efficacy to 50% of tumor clearance in mice. Here we added a third component to the CPB plus vaccine combination, which is able to modify the suppressive tumor microenvironment by reducing the number of tumor-infiltrating regulatory T cells (Tregs), as strategy for improving the therapeutic efficacy and overcoming resistance. METHODS: The antitumor efficacy of anti-PD-1, neoantigen vaccine and Treg modulating agents, either Bempegaldesleukin (BEMPEG: NKTR-214) or an anti-CTLA-4 mAb with Treg-depleting activity, was investigated in murine tumor models. We evaluated tumor growth in treated animals, neoantigen-specific T cells in tumors, tumor-infiltrating lymphocytes (TILs) and intratumoral Tregs. RESULTS: The addition of BEMPEG or anti-CTLA-4 to the combination of vaccine and anti-PD-1 led to complete eradication of large tumors in nearby 100% of treated animals, in association with expansion and activation of cancer neoantigen-specific T cells and reduction of tumor-infiltrating Tregs. CONCLUSION: These data support the notion that the integrated regulation of three steps of the cancer immunity cycle, including expansion of neoantigen-specific T cells, reversal of the exhausted T cell phenotype together with the reduction of intratumoral Tregs may represent a novel rationally designed drug combination approach to achieve higher cure rates.


Assuntos
Vacinas Anticâncer/imunologia , Expressão Gênica/genética , Imunoterapia/métodos , Receptor de Morte Celular Programada 1/imunologia , Linfócitos T Reguladores/imunologia , Animais , Feminino , Humanos , Camundongos
20.
Front Immunol ; 12: 758154, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34659264

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic has severely impacted daily life all over the world. Any measures to slow down the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and to decrease disease severity are highly requested. Recent studies have reported inverse correlations between plasma levels of vitamin D and susceptibility to SARS-CoV-2 infection and COVID-19 severity. Therefore, it has been proposed to supplement the general population with vitamin D to reduce the impact of COVID-19. However, by studying the course of COVID-19 and the immune response against SARS-CoV-2 in a family with a mutated, non-functional vitamin D receptor, we here demonstrate that vitamin D signaling was dispensable for mounting an efficient adaptive immune response against SARS-CoV-2 in this family. Although these observations might not directly be transferred to the general population, they question a central role of vitamin D in the generation of adaptive immunity against SARS-CoV-2.


Assuntos
Linfócitos B/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Raquitismo Hipofosfatêmico Familiar/genética , Receptores de Calcitriol/genética , SARS-CoV-2/imunologia , Imunidade Adaptativa/genética , Imunidade Adaptativa/imunologia , COVID-19/imunologia , Raquitismo Hipofosfatêmico Familiar/imunologia , Feminino , Humanos , Memória Imunológica/imunologia , Contagem de Linfócitos , Vitamina D/sangue , Vitamina D/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA