Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Fitoterapia ; 174: 105866, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38378134

RESUMO

A total of 12 abietane diterpenoids were isolated and identified from Rosmarinus officinalis in which 6 ones were undescribed compounds. Their structures were illuminated by the HRESIMS, NMR, and ECD methods and named as rosmarinusin Q-V (1-6). It worthy mentioned that rosmarinusin Q was a novel abietane diterpenoid with 6/6/5 skeleton whose C ring was an α,ß-unsaturated five-element ketone. All the compounds and four compounds (13-16) reported in our previous paper were evaluated their anti-neuroinflammatory activities on the LPS-induced BV2 cells. Compounds 5, 8, 9, 11, and 15 displayed significant anti-neuroinflammatory activity at the concentration of 10, 20, and 40 µM respectively. These results confirmed that R. officinalis contained abundant abietane diterpenoids and these compounds showed potential values of anti-neuroinflammation which could be developed as neuroprotective agents for the treatment of nerve damage caused by inflammation.


Assuntos
Diterpenos , Rosmarinus , Abietanos/farmacologia , Abietanos/química , Rosmarinus/química , Estrutura Molecular , Espectroscopia de Ressonância Magnética , Diterpenos/farmacologia , Diterpenos/química
2.
Fitoterapia ; 174: 105877, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38417680

RESUMO

Phytochemical study on the roots of a medicinal plant Ferula communis L. (Apiaceae) resulted in the isolation of 20 sesquiterpenes including 12 previously undescribed compounds, dauferulins A-L (1-12). The detailed spectroscopic analysis revealed 1-12 to be daucane-type sesquiterpenes with a p-methoxybenzoyloxy group at C-6. The absolute configurations of 1-12 were deduced by analysis of the ECD spectra. Dauferulins A-L (1-12), known sesquiterpenes (13-20), and analogues (14a-14l) derived from 6-O-p-methoxybenzoyl-10α-angeloyloxy-jeaschkeanadiol (14) were evaluated for their effects on AMPK phosphorylation in human hepatoma HepG2 cells as well as inhibitory activities against erastin-induced ferroptosis on human hepatoma Hep3B cells and IL-1ß production from LPS-treated murine microglial cells.


Assuntos
Carcinoma Hepatocelular , Ferula , Neoplasias Hepáticas , Sesquiterpenos , Humanos , Animais , Camundongos , Ferula/química , Carcinoma Hepatocelular/tratamento farmacológico , Estrutura Molecular , Sesquiterpenos/química , Raízes de Plantas/química
3.
Chem Biodivers ; 21(3): e202301762, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38263615

RESUMO

Artemisia pallens Wall. ex DC (Asteraceae) is cultivated for the production of high-value essential oil from its aerial biomass. In this study, the chemical composition of the root (crop-residue) essential oil was investigated for the first time, using column-chromatography, GC-FID, GC-MS, LC-QTOF, and NMR techniques, which led to the identification of twenty constituents, with isolation of (E)-2-(2',4'-hexadiynylidene)-1,6-dioxaspiro [4.5]dec-3-ene (D6). The D6 was evaluated in vitro for neuroinflammation and acetylcholinesterase inhibitory potential. It showed inhibition of neuroinflammation in a concentration-dependent manner with significant inhibition of pro-inflammatory cytokines (TNF-α and IL-6) in LPS-stimulated BV2 microglial cells. D6 did not have any significant effect on the viability of the cells at the therapeutic concentrations. D6 also has shown acetylcholinesterase inhibitory potential (51.90±1.19 %) at the concentration of log 106  nM. The results showed that D6 has a potential role in the resolution of neuroinflammation, and its acetylcholinesterase inhibitory potential directs further investigation of its role in the management of Alzheimer's disease-related pathogenesis.


Assuntos
Artemisia , Furanos , Óleos Voláteis , Compostos de Espiro , Acetilcolinesterase , Éter , Poli-Inos , Doenças Neuroinflamatórias , Óleos Voláteis/química , Artemisia/química
4.
Curr Issues Mol Biol ; 46(1): 884-895, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38275670

RESUMO

Arecae pericarpium (AP), the fruit peel of the betel palm, is a traditional Oriental herbal medicine. AP is used to treat various diseases and conditions, such as ascites, edema, and urinary retention, in traditional Korean medicine. Recent studies have demonstrated its anti-obesity and antibacterial effects; however, its anti-neuroinflammatory effects have not yet been reported. Therefore, we investigated the anti-neuroinflammatory effects of AP on lipopolysaccharide (LPS)-stimulated mouse microglia in this study. To determine the anti-neuroinflammatory effects of AP on BV2 microglial cells, we examined the production of nitric oxide (NO) using Griess assay and assessed the mRNA expression levels of inflammatory mediators, such as inducible NO synthase (iNOS) and cyclooxygenase (COX)-2, and pro-inflammatory cytokines, such as interleukin (IL)-1ß, IL-6, and tumor necrosis factor (TNF)-α, using a real-time reverse transcription-polymerase chain reaction. Furthermore, we determined the levels of mitogen-activated protein kinases and IκBα via Western blotting to understand the regulating mechanisms of AP. AP treatment decreased NO production in LPS-stimulated BV2 cells. Additionally, AP suppressed the expression of iNOS and COX-2 and the production of pro-inflammatory cytokines. AP also inhibited the activation of p38 and nuclear factor-kappa B (NF-κB) in LPS-stimulated BV2 cells. Therefore, AP exerts anti-neuroinflammatory effects via inactivation of the p38 and NF-κB pathways.

5.
J Ethnopharmacol ; 319(Pt 3): 117337, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37866462

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Chuanxiong, the rhizome of Ligusticum chuanxiong Hort., is an ancient herbal medicine that has gained extensive popularity in alleviating migraines with satisfying therapeutic effects in China. As the major bioactive component of Chuanxiong, the essential oil also exerts a marked impact on the treatment of migraine. It is widely recognized that neuroinflammation contributes to migraine. However, it remains unknown whether Chuanxiong essential oil has anti-neuroinflammatory activity. AIM OF THE STUDY: To explore the anti-neuroinflammatory properties of Chuanxiong essential oil and its molecular mechanisms by network pharmacology analysis and in vitro experiments. MATERIALS AND METHODS: Gas chromatography-mass spectrometry (GC-MS) was used to identify the chemical components of Chuanxiong essential oil. Public databases were used to predict possible targets, build the protein-protein interaction network (PPI), and perform Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. Moreover, cytological experiments, nitric oxide assay, enzyme-link immunosorbent assay, western blotting, and immunofluorescence assay were adopted to prove the critical signaling pathway in lipopolysaccharide (LPS)-induced BV2 cells. RESULTS: Thirty-six compounds were identified from Chuanxiong essential oil by GC-MS, and their corresponding putative targets were predicted. The network pharmacology study identified 232 candidate targets of Chuanxiong essential oil in anti-neuroinflammation. Furthermore, Chuanxiong essential oil was found to potentially affect the C-type lectin receptor, FoxO, and NF-κB signaling pathways according to the KEGG analysis. Experimentally, we verified that Chuanxiong essential oil could significantly reduce the overproduction of inflammatory mediators and pro-inflammatory factors via the NF-κB signaling pathway. CONCLUSION: Chuanxiong essential oil alleviates neuroinflammation through the NF-κB signaling pathway, which provides a theoretical foundation for a better understanding of the clinical application of Chuanxiong essential oil in migraine treatment.


Assuntos
Ligusticum , Transtornos de Enxaqueca , NF-kappa B , Lipopolissacarídeos/toxicidade , Farmacologia em Rede , Doenças Neuroinflamatórias
6.
Int J Mol Sci ; 24(20)2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37894998

RESUMO

Korean ginseng (Panax ginseng) contains various ginsenosides as active ingredients, and they show diverse biological activities. Black ginseng is manufactured by repeated steaming and drying of white ginseng, which alters the polarity of ginsenosides and improves biological activities. The aim of the present investigation was to examine the anti-neuroinflammatory effects of the ethanolic extract of black ginseng (BGE) in lipopolysaccharide (LPS)-induced BV2 microglial cells. Pre-treatment with BGE inhibited the overproduction of pro-inflammatory mediators including nitric oxide (NO), prostaglandin E2 (PGE2), inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) in LPS-induced BV2 cells. In addition, BGE reduced the activation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), p38 mitogen-activated protein kinase (MAPK), and c-jun N-terminal kinase (JNK) MAPK signaling pathways induced by LPS. These anti-neuroinflammatory effects were mediated through the negative regulation of the toll-like receptor 4 (TLR4)/myeloid differentiation primary response 88 (MyD88) signaling pathway. Among the four ginsenosides contained in BGE, ginsenosides Rd and Rg3 inhibited the production of inflammatory mediators. Taken together, this investigation suggests that BGE represents potential anti-neuroinflammatory candidates for the prevention and treatment of neurodegenerative diseases.


Assuntos
Ginsenosídeos , Panax , NF-kappa B/metabolismo , Lipopolissacarídeos/farmacologia , Fator 88 de Diferenciação Mieloide/metabolismo , Microglia/metabolismo , Receptor 4 Toll-Like/metabolismo , Ginsenosídeos/farmacologia , Ginsenosídeos/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/metabolismo , Panax/metabolismo , Transdução de Sinais , Doenças Neuroinflamatórias , Mediadores da Inflamação/metabolismo , Óxido Nítrico/metabolismo
7.
Phytomedicine ; 120: 155032, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37611463

RESUMO

BACKGROUND: In recent years, Salvia miltiorrhiza and its active substances have remarkably progressed in treating central neurological disorders. Tanshinone IIA (TSA) is an active ingredient derived from the rhizome of Salvia miltiorrhiza that has been found to alleviate the symptoms of several psychiatric illnesses. Post-traumatic stress disorder (PTSD) is a mental disorder that results after experiencing a serious physical or psychological injury. The currently used drugs are not satisfactory for the treatment of PTSD. However, it has been reported that TSA can improve PTSD-like symptoms like learning and memory, cognitive disorder, and depression through multi-target regulation. PURPOSE: This paper discusses the ameliorative effects of TSA on PTSD-like symptoms and the possible mechanisms of action in terms of inhibition of neuronal apoptosis, anti-neuroinflammation, and anti-oxidative stress. Based on the pathological changes and clinical observations of PTSD, we hope to provide some reference for the clinical transformation of Chinese medicine in treating PTSD. METHODS: A large number of literatures on tanshinone in the treatment of neurological diseases and PTSD were retrieved from online electronic PubMed and Web of Science databases. CONCLUSION: TSA is a widely studied natural active ingredient against mental illness. This review will contribute to the future development of TSA as a new clinical candidate drug for improving PTSD-like symptoms.


Assuntos
Salvia miltiorrhiza , Transtornos de Estresse Pós-Traumáticos , Humanos , Transtornos de Estresse Pós-Traumáticos/tratamento farmacológico , Abietanos/farmacologia , Apoptose , Estresse Oxidativo
8.
Neurosci Lett ; 810: 137337, 2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37315732

RESUMO

Despite continuation of some controversies, Alzheimer's disease (AD), the most common cause of dementia nowadays, has been widely believed to derive mainly from excessive ß-amyloid (Aß) aggregation, that would increase reactive oxygen species (ROS) and induce neuroinflammation, leading to neuron loss and cognitive impairment. Existing drugs on Aß have been ineffective or offer only temporary relief at best, due to blood-brain barrier or severe side effects. The study employed thermal cycling-hyperthermia (TC-HT) to ease the Aß-induced cognitive impairments and compared its effect with continuous hyperthermia (HT) in vivo. It established an AD mice model via intracerebroventricular (i.c.v.) injection of Aß25-35, proving that TC-HT is much more effective in alleviating its performance decline in Y-maze and novel object recognition (NOR) tests, in comparison with HT. In addition, TC-HT also exhibits a better performance in decreasing the hippocampal Aß and ß-secretase (BACE1) expressions as well as the neuroinflammation markers-ionized calcium-binding adapter molecule 1 (Iba-1) and glial fibrillary acidic protein (GFAP) levels. Furthermore, the study finds that TC-HT can elevate more protein expressions of insulin degrading enzyme (IDE) and antioxidative enzyme superoxide dismutase 2 (SOD2) than HT. In sum, the study proves the potential of TC-HT in AD treatment, which can be put into application with the use of focused ultrasound (FUS).


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Hipertermia Induzida , Camundongos , Animais , Secretases da Proteína Precursora do Amiloide , Doenças Neuroinflamatórias , Camundongos Endogâmicos C57BL , Ácido Aspártico Endopeptidases , Doença de Alzheimer/terapia , Doença de Alzheimer/tratamento farmacológico , Disfunção Cognitiva/terapia , Disfunção Cognitiva/tratamento farmacológico , Peptídeos beta-Amiloides/toxicidade , Peptídeos beta-Amiloides/metabolismo , Modelos Animais de Doenças
9.
Iran J Biotechnol ; 21(2): e3052, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37228631

RESUMO

Background: In the CNS, glial cells are involved in neuroinflammation and neuropathic pain. The glial cells are activated by a variety of pathological conditions and release pro-inflammatory mediators, including nitric oxide (NO). Overexpression of iNOS (inducible nitric oxide synthase) and extra NO is detrimental to neurophysiology and neuronal viability. Objectives: This study aimed to examine the effect of Gnidilatimonein isolated from D. mucronata and its leaves extract (as natural phytochemicals) on NO production in the LPS-induced primary glial cells. Materials and Methods: A preparative HPLC method was used to isolate gnidilatimonoein from leaves ethanolic extract. Various doses of Gnidilatimonoein, the ethanolic extract were applied to primary glial cells inflamed by lipopolysaccharide. A Colorimetric test, an MTT assay, and a RT-PCR analysis were then performed to analyze and compare NO production, cell viability, and iNOS expression. Results: Gnidilatimonoein treatment of pretreated primary glial cells significantly inhibited iNOS expression and decreased NO synthesis. Plant extracts also reduced NO production in inflamed microglial and glial at 0.1-3 mg.mL-1. At these concentrations, none of these compounds exerted a cytotoxic effect, suggesting that their anti-inflammatory effects were not due to the death of cells. Conclusion: This study indicates that D. mucronata and its active compound, Gnidilatimonoein, could have restrained effects on the expression of iNOS on the induced glial cells; however, further investigation is warranted.

10.
Phytomedicine ; 108: 154512, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36288652

RESUMO

BACKGROUND: Feruloylated oligosaccharides (FOs) are natural esterification products of ferulic acid and oligosaccharides. STUDY DESIGN: In this study, we examined whether FOs contribute to the ensured survival of nigrostriatal dopamine neurons and inhibition of neuroinflammation in Parkinson's disease (PD). METHODS: 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP, 30 mg/kg) was injected intraperitoneally into mice to establish a Parkinson's disease (PD) mouse model. FOs (15 and 30 mg/kg) were orally administered daily to the MPTP-treated mice. The rotarod test, balance beam test, immunofluorescence, enzyme-linked immunosorbent assay (ELISA), quantitative PCR (qPCR), and western blot analyses were performed to examine the neuroprotective effects of FOs on MPTP-treated mice. RESULTS: Our study indicated that FOs increased the survival of dopamine neurons in the substantia nigra pars compacta (SNc) of the MPTP-treated mice. The neuroprotective effects of FOs were accompanied by inhibited glial activation and reduced inflammatory cytokine production. The mechanistic experiments revealed that the neuroprotective effects of FOs might be mediated through the activation of the ERK/CREB/BDNF/TrkB signalling pathway. CONCLUSION: This study provides new insights into the mechanism underlying the anti-neuroinflammatory effect of phytochemicals and may facilitate the development of dietary supplements for PD patients. Our results indicate that FOs can be used as potential modulators for the prevention and treatment of PD.


Assuntos
Intoxicação por MPTP , Fármacos Neuroprotetores , Doença de Parkinson , Camundongos , Animais , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/metabolismo , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/uso terapêutico , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Camundongos Endogâmicos C57BL , Intoxicação por MPTP/tratamento farmacológico , Intoxicação por MPTP/metabolismo , Intoxicação por MPTP/prevenção & controle , Neurônios Dopaminérgicos , Modelos Animais de Doenças , Oligossacarídeos/farmacologia
11.
Nutrients ; 14(24)2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-36558424

RESUMO

The important factors in the pathogenesis of neurodegenerative disorders include oxidative stress and neuron-glia system inflammation. Vignae Radiatae Semen (VRS) exhibits antihypertensive, anticancer, anti-melanogenesis, hepatoprotective, and immunomodulatory properties. However, the neuroprotective effects and anti-neuroinflammatory activities of VRS ethanol extract (VRSE) remained unknown. Thus, this study aimed to investigate the neuroprotective and anti-inflammatory activities of VRSE against hydrogen peroxide (H2O2)-induced neuronal cell death in mouse hippocampal HT22 cells and lipopolysaccharide (LPS)-stimulated BV2 microglial activation, respectively. This study revealed that VRSE pretreatment had significantly prevented H2O2-induced neuronal cell death and attenuated reactive oxygen species generations in HT22 cells. Additionally, VRSE attenuated the apoptosis protein expression while increasing the anti-apoptotic protein expression. Further, VRSE showed significant inhibitory effects on LPS-induced pro-inflammatory cytokines in BV2 microglia. Moreover, VRSE pretreatment significantly activated the tropomyosin-related kinase receptor B/cAMP response element-binding protein, brain-derived neurotrophic factor and nuclear factor erythroid 2-related factor 2, and heme oxygenase-1 signaling pathways in HT22 cells exposed to H2O2 and inhibited the activation of the mitogen-activated protein kinase and nuclear factor-κB mechanism in BV2 cells stimulated with LPS. Therefore, VRSE exerts therapeutic potential against neurodegenerative diseases related to oxidative stress and pathological inflammatory responses.


Assuntos
Microglia , Fármacos Neuroprotetores , Extratos Vegetais , Animais , Camundongos , Linhagem Celular , Peróxido de Hidrogênio/metabolismo , Lipopolissacarídeos , Neurônios/metabolismo , Fármacos Neuroprotetores/farmacologia , NF-kappa B/metabolismo , Vigna/química , Extratos Vegetais/farmacologia
12.
BMC Complement Med Ther ; 22(1): 343, 2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36585647

RESUMO

BACKGROUND: Curcuma longa has been used as spices, food preservative, coloring material, and traditional medicine. This plant also has long been used for a variety of diseases including dyslipidemia, stomach disorders, arthritis, and hepatic diseases. The aim of the present investigation was to examine the anti-neuroinflammatory effects of the 50% ethanolic extract of C. longa in lipopolysaccharide (LPS)-induced BV2 microglial cells. METHODS: Griess reaction was employed to measure the production of nitric oxide (NO), and the levels of prostaglandin E2 (PGE2) and pro-inflammatory cytokines such as interleukin 1-beta (IL-1ß), IL-6 and tumor necrosis factor-α (TNF-α) were determined by using profit ELISA kits. Western blotting was used to determine the expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), nuclear factor kappa B (NF-κB), mitogen activated protein kinases (MAPKs), heme oxygenase-1 (HO-1) and nuclear factor erythroid-2-related factor 2 (Nrf2). RESULTS: Pre-treatment with CLE inhibited the overproduction and overexpression of pro-inflammatory mediators including NO, PGE2, iNOS, COX-2, and pro-inflammatory cytokines such as IL-1ß, IL-6 and TNF-α in LPS-induced BV2 cells. In addition, CLE suppressed the activation of the NF-κB and three MAPK signaling pathways. Treatment with CLE induced HO-1 protein expression by activating Nrf2 pathway, and inhibiting the HO-1 expression reversed the anti-inflammatory effect of CLE. CONCLUSION: CLE showed anti-neuroinflammatory effects against LPS-induced microglial cells activation through the inhibition of production and expression of pro-inflammatory mediators by negative regulation of the NF-κB and MAPK signaling pathways. These anti-neuroinflammatory effects of CLE were mediated by HO-1/Nrf2 signaling pathway. Taken together, the present study suggests a potent effect of CLE to prevent neuroinflammatory diseases. It is necessary to perform additional efficacy evaluation through in vivo experiments.


Assuntos
NF-kappa B , Fator de Necrose Tumoral alfa , NF-kappa B/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Doenças Neuroinflamatórias , Heme Oxigenase-1/metabolismo , Lipopolissacarídeos/farmacologia , Curcuma , Fator 2 Relacionado a NF-E2/metabolismo , Ciclo-Oxigenase 2/metabolismo , Linhagem Celular , Transdução de Sinais , Citocinas/metabolismo , Mediadores da Inflamação , República da Coreia
13.
Antioxidants (Basel) ; 11(4)2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35453334

RESUMO

Chronic inflammation and oxidative stress cause microglia to be abnormally activated in the brain, resulting in neurodegenerative diseases such as Alzheimer's disease (AD). Menthae Herba (MH) has been widely used as a medicinal plant with antimicrobial, anti-inflammatory, and antioxidant properties. In this study, we sought to evaluate the effects of MH on the inflammatory response and possible molecular mechanisms in microglia stimulated with lipopolysaccharide (LPS). Transcriptional and translational expression levels of the proinflammatory factors were measured using ELISA, RT-qPCR, and Western blot analysis. MH extract inhibited the production of proinflammatory enzymes and mediators nitric oxide (NO), NO synthase, cyclooxygenase-2, tumor necrosis factor-α, and interleukin-6 in LPS-stimulated cells. Our molecular mechanism study showed that MH inhibited the production of reactive oxygen species (ROS) and the phosphorylation of mitogen-activated protein kinase and nuclear factor (NF)-κB. In contrast, MH activated HO-1 and its transcriptional factors, cAMP response element-binding protein (CREB), and the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathways. Thus, MH reduces ROS and NF-κB-mediated inflammatory signaling and induces CREB/Nrf2/HO-1-related antioxidant signaling in microglia. Together, these results may provide specific prospects for the therapeutic use of MH in the context of neuroinflammatory diseases, including AD.

14.
Pharmaceuticals (Basel) ; 15(4)2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35455463

RESUMO

Clitoria ternatea Linn. (CT), or butterfly pea, is an Ayurvedic plant traditionally used as a brain tonic. Recently, it was reported to be of use in treating central nervous system (CNS) disorders, i.e., as an antistress treatment and antidepressant. In the present study, we report a detailed phytochemical profile of the ethyl acetate fraction of the flower of CT (CTF_EA) with significant neuroprotective and anti-neuroinflammatory properties in both LPS-activated BV-2 and SK-N-SH cells. Concurrently, the molecular network (MN) derived from the CTF_EA metabolome allows putative identification of flavonol 3-O-glycosides, hydrocinnamic acids, and primary metabolites. Molecular docking studies suggest that CTF_EA preferentially targets iNOS, resulting in a decrease in nitric oxide (NO). Furthermore, no toxic effects on normal embryonic development, blood vessel formation, and apoptosis are observed when CTF_EA is tested for in vivo toxicity in zebrafish models. The overall preliminary results suggest the anti-neuroinflammatory and neuroprotective effects of CT and provide scientific support for the efficacy of this medicinal plant at local and traditional levels. However, studies on the targeted isolation of bioactive metabolites, in-depth pharmacological efficacy, and safety in mammalian models are urgently needed to expand our understanding of this plant before it is developed into a promising therapeutic agent for brain-related diseases.

15.
Molecules ; 27(6)2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35335333

RESUMO

Clausena lenis Drake (C. lenis) is a folk medicinal herb to treat influenza, colds, bronchitis, and malaria. The 95% and 50% ethanol extract of C. lenis showed significant nitric oxide (NO) inhibition activity in BV-2 microglial cells stimulated by lipopolysaccharide (LPS). Bio-guided isolation of the active extract afforded five new compounds, including a chlorine-containing furoquinoline racemate, (±)-claulenine A (1), an amide alkaloid, claulenine B (2), a prenylated coumarin, claulenin A (3), a furocoumarin glucoside, clauleside A (4), and a multi-prenylated p-hydroxybenzaldehyde, claulenin B (5), along with 33 known ones. Their structures were determined via spectroscopic methods, and the absolute configurations of new compounds were assigned via the electronic circular dichroism (ECD) calculations and single-crystal X-ray diffraction analysis. Compounds 2, 23, 27, 28, 33, and 34 showed potent anti-neuroinflammatory effects on LPS-induced NO production in BV-2 microglial cells, with IC50 values in the range of 17.6-40.9 µM. The possible mechanism was deduced to interact with iNOS through molecular docking.


Assuntos
Clausena , Linhagem Celular , Microglia , Simulação de Acoplamento Molecular , Óxido Nítrico
16.
Fitoterapia ; 156: 105068, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34715153

RESUMO

Three labdane-type [multisins A-C (1-3)], two guaiane-type [multisins D (4) and E (5)], and one eudesmane-type [multisin F (6)] previously undescribed terpenoids, together with 14 mono- (7-20) and seven dimeric- (21-27) known terpenoids, were isolated from the 90% MeOH extract of the whole plant of Chloranthus multistachys. Their structures and absolute configurations were determined by extensive spectroscopic methods and electronic circular dichroism (ECD) calculations. Compounds 4 and 5 are rare trinor-sesquiterpenes with a de-isopropyl guaiane skeleton, whereas compound 6 is a rearranged dinor-eudesmene featuring an uncommon octahydro-1H-indene ring system. Among the isolates, the dimeric lindenane sesquiterpenoid shizukaol C (25) exhibited the most potent (IC50 = 8.04 µM) anti-neuroinflammatory activity by inhibiting the nitric oxide (NO) production in lipopolysaccharide (LPS)-stimulated murine BV-2 microglial cells.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Magnoliopsida/química , Extratos Vegetais/farmacologia , Terpenos/farmacologia , Animais , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/isolamento & purificação , Bioensaio , Linhagem Celular , China , Concentração Inibidora 50 , Espectroscopia de Ressonância Magnética , Camundongos , Microglia/citologia , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Óleos de Plantas/química , Óleos de Plantas/farmacologia , Raízes de Plantas/química , Relação Estrutura-Atividade , Terpenos/química
17.
Food Res Int ; 148: 110609, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34507753

RESUMO

Tree peony seed, traditionally used for edible oil production, is rich in α-linolenic acid. However, little attention is given to the fruit by-products during seed oil production. The present work aimed to comprehensively investigate the phytochemical constituents and multiple biological activities of different parts of tree peony fruits harvested from Paeonia ostii and Paeonia rockii. 130 metabolites were rapidly identified through UPLC-Triple-TOF-MS on the basis of MS/MS molecular networking. Metabolite quantification was performed through the targeted approach of HPLC-ESI-QQQ-MS. Eight chemical markers were screened via principal component analysis (PCA) for distinguishing species and tissues. Interestingly, two dominant compounds, paeoniflorin and trans-resveratrol, are specially localized in seed kernel and seed coat, respectively. Unexpectedly, the extracts of fruit pod and seed coat showed significantly stronger antioxidant, antibacterial, and anti-neuroinflammatory activities than seed kernel from both P. ostii and P. rockii. Our work demonstrated that tree peony fruit is promising natural source of bioactive components and provided its potential utilization in food and pharmaceutical industries.


Assuntos
Paeonia , Frutas , Extratos Vegetais , Espectrometria de Massas em Tandem , Árvores
18.
Phytochemistry ; 192: 112962, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34592513

RESUMO

Eleven previously undescribed glycosylated compounds with phenolic (abeoside A-F), monoterpenyl (abeoside G and H), or 2-heptanyl (abeoside I-K) aglycone, and twenty one reported compounds were isolated from the trunk of Abies holophylla. The structures of the previously undescribed compounds were elucidated on the basis of the conventional NMR and HRMS data analysis, and the absolute configuration of sugar units were assigned by chiral derivatization and LC-MS analysis. All the isolated compounds were evaluated for their anti-neuroinflammatory and neurotrophic activities. Among the evaluated compounds, twelve compounds including abeoside A, B, E, G, H, J, and K exhibited strong anti-neuroinflammatory activities with IC50 values of 4.6-18.2 µM by inhibiting production of LPS-induced NO levels, and abeoside C and 1-O-[(S)-oleuropeyl]-ß-D-glucoside showed powerful effects on the stimulation of NGF secretion levels with 157.09 ± 8.53% and 154.74 ± 1.24%, respectively.


Assuntos
Abies , Anti-Inflamatórios/farmacologia , Fenóis , Extratos Vegetais
19.
Int Immunopharmacol ; 99: 107986, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34303280

RESUMO

Albiziae Cortex (AC) is a well-known traditional Chinese medicine with sedative-hypnotic effects and neuroprotective ability. However, the bioactive components of AC responsible for the neuro-protective actitivity remain unknown. Here, we investigated the anti-neuroinflammatory effects of (-)-syringaresinol (SYR) extracted from AC in microglia cells and wild-type mice. As a result, (-)-SYR significantly reduced lipopolysaccharide (LPS)-induced production of interleukin - 6 (IL-6), tumor necrosis factor α (TNF-α), interleukin -1 beta (IL-1ß), cycloxygenase-2 (COX-2), and nitric oxide (NO) in BV2 microglia cells. (-)-SYR also significantly reduced M1 marker CD40 expression and increased M2 marker CD206 expression. Moreover, we found that (-)-SYR inhibited LPS-induced NF-κB activation by suppressing the translocation of NF-κB p65 into the nucleus in a concentration-dependent manner. Meanwhile, estrogen receptor ß (ERß) was found to be implied in the anti-inflammatory activity of (-)-SYR in BV2 microglia. In vivo experiments revealed that administration of (-)-SYR in mice significantly reduced microglia/astrocytes activation and mRNA levels of proinflammatory mediators. Taken together, our data indicated that (-)-SYR exerted the anti-neuroinflammatory effects by inhibiting NF-κB activation and modulation of microglia polarization, and via interaction with ERß. The anti-neuroinflammatory activity of (-)-SYR may provide a new therapeutic avenue for the treatment of brain diseases associated with inflammation.


Assuntos
Receptor beta de Estrogênio/metabolismo , Furanos/farmacologia , Lignanas/farmacologia , Microglia/metabolismo , Albizzia/química , Animais , Anti-Inflamatórios/uso terapêutico , Sobrevivência Celular/efeitos dos fármacos , Citocinas/metabolismo , Receptor beta de Estrogênio/antagonistas & inibidores , Furanos/química , Lignanas/química , Lipopolissacarídeos/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Ativação de Macrófagos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Doenças Neuroinflamatórias/tratamento farmacológico , Proteína Oncogênica v-akt/metabolismo , Fator de Transcrição RelA/metabolismo
20.
Eur J Med Chem ; 224: 113713, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34315042

RESUMO

Dysregulation of neuroinflammation is a key pathological factor in the progressive neuronal damage of neurodegenerative diseases. An in-house natural products library of 1407 compounds were screened against neuroinflammation in lipopolysaccharide (LPS)-activated microglia cells to identify a novel hit 1,6-O,O-diacetylbritannilactone (OABL) with anti-neuroinflammatory activity. Furthermore, a 1,10-seco-eudesmane sesquiterpenoid library containing 33 compounds was constructed by semisynthesis of a major component 1-O-acetylbritannilactone (ABL) from the traditional Chinese medicinal herb Inula Britannica L. Compound 15 was identified as a promising anti-neuroinflammatory agent by nitrite oxide (NO) production screening. 15 could attenuate tumor necrosis factor-α (TNF-α) and prostaglandin E2 (PGE2) productions, and inhibit the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) at a submicromolar level. Mechanistic study revealed that 15 significantly modulated TLR4/NF-kB and p38 MAPK pathways, and upregulated the anti-oxidant response HO-1. Besides, 15 promoted the conversion of the microglia from M1 to M2 phenotype by increasing levels of arginase-1 and IL-10. The structure-activity relationships (SARs) analysis indicated that the α-methylene-γ-lactone motifs, epoxidation of C5=C10 bond and bromination of C14 were important to the activity. Parallel artificial membrane permeation assay (PAMPA) also demonstrated that 15 and OABL can overcome the blood-brain barrier (BBB). In all, compound 15 is a promising anti-neuroinflammatory lead with potent anti-inflammatory effects via the blockage of TLR4/NF-κB/MAPK pathways, favorable BBB penetration property, and low cytotoxicity.


Assuntos
Anti-Inflamatórios/uso terapêutico , NF-kappa B/antagonistas & inibidores , Doenças Neuroinflamatórias/tratamento farmacológico , Sesquiterpenos de Eudesmano/uso terapêutico , Receptor 4 Toll-Like/efeitos dos fármacos , Anti-Inflamatórios/farmacologia , Humanos , Modelos Moleculares , Sesquiterpenos de Eudesmano/farmacologia , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA