Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.718
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Microbiol Spectr ; 12(6): e0404723, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38651884

RESUMO

Due to fungal diseases that threaten immunocompromised patients, along with the limited availability of antifungal agents, there is an urgent need for new antifungal compounds to treat fungal infections. Here, we aimed to identify potential antifungal drugs from natural products using the fission yeast Schizosaccharomyces pombe as a model organism since it shares many features with some pathogenic fungi. Here, we identified tubeimoside I (TBMS1), an extract from Chinese herbal medicine, that showed strong antifungal activity against S. pombe. To gain insight into the underlying mechanism, we performed transcriptomics analyses of S. pombe cells exposed to TBMS1. A significant proportion of the differential expressed genes were involved in cell wall organization or biogenesis. Additionally, TBMS1 treatment of S. pombe cells resulted in pleiotropic phenotypes, including increased sensitivity to ß-glucanase, enhanced calcineurin activity, translocation of GFP-Prz1 to the nucleus, as well as enhanced dephosphorylation of Prz1, suggesting that TBMS1 disrupted cell wall integrity of S. pombe cells. Notably, calcofluor staining showed that abnormal deposits of cell wall materials were observed in the septum and cell wall of the TBMS1-treated cells, which were further corroborated by electron microscopy analysis. We also found that oxidative stress might be involved in the antifungal action of TBMS1. Moreover, we confirmed the antifungal activities of TBMS1 against several clinical isolates of pathogenic fungi. Collectively, our findings suggest that TBMS1, a novel antifungal compound, exerts its antifungal activity by targeting cell walls, which may pave the way for the development of a new class of antifungals. IMPORTANCE: Fungal infections pose a serious threat to public health and have become an emerging crisis worldwide. The development of new antifungal agents is urgently needed. Here, we identified compound tubeimoside I (TBMS1) for the first time showing strong antifungal activity, and explored the underlying mechanisms of its antifungal action by using the model yeast Schizosaccharomyces pombe. Notably, we presented multiple evidence that TBMS1 exerts its antifungal activity through targeting fungal cell walls. Moreover, we verified the antifungal activities of TBMS1 against several pathogenic fungi. Our work indicated that TBMS1 may serve as a novel antifungal candidate, which provides an important foundation for designing and developing new cell wall-targeting agents for combating life-threatening fungal infections.


Assuntos
Antifúngicos , Parede Celular , Schizosaccharomyces , Parede Celular/efeitos dos fármacos , Parede Celular/metabolismo , Schizosaccharomyces/efeitos dos fármacos , Antifúngicos/farmacologia , Triterpenos/farmacologia , Triterpenos/química , Testes de Sensibilidade Microbiana , Saponinas/farmacologia , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Schizosaccharomyces pombe/genética
2.
Rocz Panstw Zakl Hig ; 75(1): 75-81, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38587107

RESUMO

Background: Despite the extensive literature focused on propolis extract, few data exists on the bioactive compounds and biological activities in the Moroccan propolis and its economic value is low. Objective: In this research, the aim was to evaluate the total content of phenols and flavonoids as well as the antioxidant, antibacterial and antifungal activities of Moroccan propolis. Material and Methods: The polyphenol and flavonoid content of the Moroccan propolis from three geographic regions, was quantified in the ethanolic extract by colorimetric methods using folin-ciocalteu and aluminum chloride. The antioxidant activity was evaluated by the DPPH test and expressed as IC50. Disk diffusion and broth microdilution methods were used to examine in vitro antimicrobial activity against known human microorganism pathogens. Results: The obtained data revealed that Moroccan propolis samples presented significant variations in total polyphenols and flavonoids. All samples showed significant antioxidant activity with IC50 values ranging from 4.23±0.5 to 154±0.21 µg/ mL. A strong correlation between total phenolic activity, flavonoids and antioxidant activity was found. The in vitro study of antibacterial activity showed that the propolis samples exhibited a range of growth inhibitory actions against all bacterial strains tested with the highest activity against gram-positive bacteria. Only propolis from the Sidi Bennour region demonstrated an antifungal activity. Conclusion: The study data show that Moroccan propolis extracts have a promising content of antioxidant and antimicrobial compounds that could be exploited to prevent certain diseases linked to oxidative stress and pathogenic infections.


Assuntos
Anti-Infecciosos , Própole , Humanos , Antioxidantes/farmacologia , Antioxidantes/química , Flavonoides/farmacologia , Própole/farmacologia , Própole/química , Antifúngicos/farmacologia , Fenóis/farmacologia , Polifenóis , Extratos Vegetais/química , Anti-Infecciosos/farmacologia , Antibacterianos/farmacologia
3.
Fitoterapia ; 175: 105937, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38565381

RESUMO

Misuse of synthetic pesticides and antimicrobials in agriculture and the food industry has resulted in food contamination, promoting resistant pests and pathogen strains and hazards for humanity and the environment. Therefore, ever-increasing concern about synthetic chemicals has stimulated interest in eco-friendly compounds. Ferulago angulata (Schltdl.) Boiss. and Ferula assa-foetida L., as medicinal species with restricted natural distribution and unknown biological potential, aimed at investigation of their essential oil (EO) biological properties, were subjected. Z-ß-Ocimene and Z-1-Propenyl-sec-butyl disulfide molecules were identified as the major composition of the essential oil of the fruits of F. angulata and F. assa-foetida, respectively. In vitro antimicrobial activity and membrane destruction investigation by scanning electron microscopy imaging illustrated that F. angulata EO had potent antibacterial activity. Besides, the EOs of both plants exhibited significant anti-yeast activity against Candida albicans. In relation to insecticidal activity, both EOs indicated appropriate potential against Ephestia kuehniella; however, the F. assa-foetida EO had more toxicity on the studied pest. Among several insecticidal-related targets, acetylcholinesterase was identified as the main target of EO based on the molecular docking approach. Hence, in line with in vitro results, in silico evaluation determined that F. assa-foetida has a higher potential for inhibiting acetylcholinesterase and, consequently, better insecticide properties. Overall, in addition to the antioxidant properties of both EO, F. angulata EO could serve as an effective prevention against microbial spoilage and foodborne pathogens, and F. assa-foetida EO holds promise as a multi-purpose and natural biocide for yeast contamination and pest management particularly against E. kuehniella.


Assuntos
Ferula , Inseticidas , Óleos Voláteis , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Ferula/química , Inseticidas/farmacologia , Inseticidas/isolamento & purificação , Inseticidas/química , Animais , Candida albicans/efeitos dos fármacos , Frutas/química , Anti-Infecciosos/farmacologia , Anti-Infecciosos/isolamento & purificação , Simulação de Acoplamento Molecular , Microbiologia de Alimentos , Testes de Sensibilidade Microbiana , Óleos de Plantas/farmacologia , Óleos de Plantas/química , Óleos de Plantas/isolamento & purificação , Simulação por Computador , Antifúngicos/farmacologia , Antifúngicos/isolamento & purificação , Antifúngicos/química
4.
Polymers (Basel) ; 16(7)2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38611142

RESUMO

Penicillium digitatum is the causal agent of green mold, a primary postharvest disease of citrus fruits. This study evaluated the efficacy of a novel photoactive chitosan-riboflavin bioconjugate (CH-RF) to control green mold in vitro and in lemon fruit. The results showed total inhibition of P. digitatum growth on APDA supplemented with CH-RF at 0.5% (w/v) and a significant reduction of 84.8% at 0.25% (w/v). Lemons treated with CH-RF and kept under controlled conditions (20 °C and 90-95% relative humidity) exhibited a noteworthy reduction in green mold incidence four days post-inoculation. Notably, these effects persisted, with all treatments remaining significantly distinct from the control group until day 14. Furthermore, CH-RF showed high control of green mold in lemons after 20 days of cold storage (5 ± 1 °C). The disease incidence five days after cold storage indicated significant differences from the values observed in the control. Most CH-RF treatments showed enhanced control of green mold when riboflavin was activated by white-light exposure. These findings suggest that this novel fungicide could be a viable alternative to conventional synthetic fungicides, allowing more sustainable management of lemon fruit diseases.

5.
Plant Pathol J ; 40(2): 218-224, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38606450

RESUMO

Plants are treasure trove of novel compounds that have potential for antifungal chemicals and drugs. In our previous study, we had screened plant extracts obtained from more than eight hundred plant materials collected in Korea, and found that butanol fraction of the Actinostemma lobatum were most potent in suppressing growth of diverse fungal pathogens of plants. Here in this study, we describe further analysis of the butanol fraction, and summarize the results of subsequent antifungal activity test for the sub-fractions against a selected set of plant pathogenic fungi. This line of analyses allowed us to identify the sub-fractions that could account for a significant proportion of observed antifungal activity of initial butanol fraction from A. lobatum. Further analysis of these sub-fractions and determination of structure would provide the shortlist for novel compounds that can be a lead to new agrochemicals.

6.
Nanomaterials (Basel) ; 14(8)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38668204

RESUMO

The biosynthesis of silver nanoparticles (AgNPs) using plant extracts has become a safe replacement for conventional chemical synthesis methods to fight plant pathogens. In this study, the antifungal activity of biosynthesized AgNPs was evaluated both in vitro and under greenhouse conditions against root rot fungi of common beans (Phaseolus vulgaris L.), including Macrophomina phaseolina, Pythium graminicola, Rhizoctonia solani, and Sclerotium rolfsii. Among the eleven biosynthesized AgNPs, those synthesized using Alhagi graecorum plant extract displayed the highest efficacy in suppressing those fungi. The findings showed that using AgNPs made with A. graecorum at a concentration of 100 µg/mL greatly slowed down the growth of mycelium for R. solani, P. graminicola, S. rolfsii, and M. phaseolina by 92.60%, 94.44%, 75.93%, and 79.63%, respectively. Additionally, the minimum inhibitory concentration (75 µg/mL) of AgNPs synthesized by A. graecorum was very effective against all of these fungi, lowering the pre-emergence damping-off, post-emergence damping-off, and disease percent and severity in vitro and greenhouse conditions. Additionally, the treatment with AgNPs led to increased root length, shoot length, fresh weight, dry weight, and vigor index of bean seedlings compared to the control group. The synthesis of nanoparticles using A. graecorum was confirmed using various physicochemical techniques, including UV spectroscopy, Fourier-transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDS) analysis. Collectively, the findings of this study highlight the potential of AgNPs as an effective and environmentally sustainable approach for controlling root rot fungi in beans.

7.
BMC Plant Biol ; 24(1): 302, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38637784

RESUMO

BACKGROUND: Early blight (EB) of Tomatoes, caused by Alternaria solani, is a serious fungal disease that adversely affects tomato production. Infection is characterized by dark lesions on leaves, stems, and fruits. Several agrochemicals can be used to control infection, these chemicals may disrupt environmental equilibrium. An alternative technology is needed to address this significant fungal threat. This study was designed to control the growth of EB in tomatoes caused by A. solani, using green-fabricated silver nanoparticles (Ag-NPs). RESULTS: Ag-NPs were synthesized through an environmentally friendly and cost-effective approach using leaf extract of Quercus incana Roxb. (Fagaceae). The physico-chemical characterization of the Ag-NPs was conducted through UV-visible spectroscopy, scanning electron microscopy, X-ray diffraction analysis, and Fourier transform infrared spectrometry. The Ag-NPs produced were round with a mean diameter of 27 nm. The antifungal activity of these Ag-NPs was assessed through in vitro Petri plate and in vitro leaflet assays against A. solani. The green fabricated Ag-NPs exhibited excellent antifungal activity in vitro at a concentration of 100 mg/l against A. solani, inhibiting growth by 98.27 ± 1.58% and 92.79 ± 1.33% during Petri plate and leaflet assays, respectively. CONCLUSION: In conclusion, this study suggests the practical application of green-fabricated Ag-NPs from Q. incana leaf extract against A. solani to effectively control EB disease in tomatoes.


Assuntos
Alternaria , Nanopartículas Metálicas , Quercus , Solanum lycopersicum , Prata/química , Nanopartículas Metálicas/química , Antifúngicos , Espectroscopia de Infravermelho com Transformada de Fourier , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Difração de Raios X , Antibacterianos
8.
Genes (Basel) ; 15(3)2024 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-38540402

RESUMO

Fenugreek (Trigonella foenum-graecum L.) is a traditional medicinal plant for treating human diseases that is widely cultivated in many countries. However, the component and related metabolic pathways are still unclear. To understand the changes in expression of the component and related genes during seed development, this study employed metabolomic and transcriptomic analyses and integrative analysis to explore the metabolites and pathways involved in the growth of fenugreek. The antifungal activity of the fenugreek seeds was also analyzed. A total of 9499 metabolites were identified in the positive ion mode, and 8043 metabolites were identified in the negative ion mode. Among them, the main components were fatty acyls, prenol lipids, steroids, steroid derivatives, flavonoids, and isoflavonoids. Among these enriched pathways, the top 20 pathways were "flavone and flavonol biosynthesis", "isoflavonoid biosynthesis", and "flavonoid biosynthesis". 3,7-Di-O-methylquercetin, flavonoids, pseudobaptigenin, isoflavonoids, methylecgonine, alkaloids, and derivatives were the most significantly upregulated metabolites. There were 38,137 differentially expressed genes (DEGs) identified via transcriptomic analysis. According to the KEGG pathway enrichment analysis, 147 DEGs were significantly enriched in "flavonoid biosynthesis". Ten DEGs of the six key enzymes were found to be involved in three pathways related to flavonoid and alkaloid synthesis in fenugreek. The antifungal activity test revealed the inhibitory effect of the ethanol extract of fenugreek seeds on Alternaria tenuissima (Kunze)Wiltshire and Magnaporthe oryzae. These findings further prove that the use of botanical pesticides in fenugreek fruit has research value.


Assuntos
Trigonella , Humanos , Trigonella/genética , Antifúngicos/metabolismo , Extratos Vegetais/metabolismo , Flavonoides/metabolismo , Sementes/genética , Sementes/química
9.
J Agric Food Chem ; 72(15): 8550-8568, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38546976

RESUMO

Pathogenic fungi pose a significant threat to crop yields and human healthy, and the subsequent fungicide resistance has greatly aggravated these agricultural and medical challenges. Hence, the development of new fungicides with higher efficiency and greater environmental friendliness is urgently required. In this study, luvangetin, isolated and identified from the root of Zanthoxylum avicennae, exhibited wide-spectrum antifungal activity in vivo and in vitro. Integrated omics and in vitro and in vivo transcriptional analyses revealed that luvangetin inhibited GAL4-like Zn(II)2Cys6 transcriptional factor-mediated transcription, particularly the FvFUM21-mediated FUM cluster gene expression, and decreased the biosynthesis of fumonisins inFusarium verticillioides. Moreover, luvangetin binds to the double-stranded DNA helix in vitro in the groove mode. We isolated and identified luvangetin, a natural metabolite from a traditional Chinese edible medicinal plant and uncovered its multipathogen resistance mechanism. This study is the first to reveal the mechanism underlying the antifungal activity of luvangetin and provides a promising direction for the future use of plant-derived natural products to prevent and control plant and animal pathogenic fungi.


Assuntos
Fumonisinas , Fungicidas Industriais , Fusarium , Zanthoxylum , Animais , Humanos , Fungicidas Industriais/farmacologia , Fungicidas Industriais/metabolismo , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Zanthoxylum/metabolismo , Fumonisinas/metabolismo
10.
Cureus ; 16(2): e54348, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38500909

RESUMO

Background Oral candidiasis is the most prevalent oral fungal infection, and existing antifungal agents have side effects such as drug intolerance, resistance, and toxicity. Herbal essential oils are emerging as an alternative therapeutic approach for treating fungal infections. Origanum vulgare (O. vulgare), commonly known as oregano, and Syzygium aromaticum (S. aromaticum), commonly known as clove, are known to have antifungal properties and are effective against fluconazole-resistant strains. A combination of essential oils has a synergistic effect and aids in achieving effective antifungal activity at sufficiently low concentrations, which could lead to reduced side effects and resistance. Aim of the study This study aimed to formulate and develop an herbal antifungal gel containing O. vulgare and S. aromaticum and evaluate its synergistic antifungal efficacy against oral Candida albicans (C. albicans). Methodology Minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) determinations of O. vulgare and S. aromaticum essential oils were performed individually and in combination to assess the antifungal activity against C. albicans. Based on the obtained MIC and MFC of essential oils in combination, an herbal antifungal gel was formulated. Further, to determine the biocompatible nature of the gel, a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was performed. Results We found that a combination of O. vulgare and S. aromaticum essential oils showed antifungal activity at a lesser concentration, with a MIC of 0.19 µl/ml and MFC of 0.39 µl/ml when compared to their individual concentrations. Based on our results, an antifungal herbal gel comprising a concentration of 0.6 µl/ml of both essential oils was developed to achieve synergistic antifungal activity against oral C. albicans. The MTT assay of the herbal gel did not show any cytotoxicity. Conclusion The novel herbal antifungal gel containing O. vulgare and S. aromaticum is biocompatible in nature and provides an alternative therapeutic approach for treating oral candidiasis.

11.
Sci Rep ; 14(1): 5934, 2024 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-38467843

RESUMO

The present study reports the green synthesis of silver nanoparticles (AgNPs) in powder form using the leaf extract of Azadirachta indica. The synthesis of AgNPs was confirmed by UV-vis spectroscopy, FTIR, XRD, FESEM, and EDX. The synthesized AgNPs were in a powdered state and dispersed completely in 5% polyethylene glycol (PEG) and demonstrated prolonged shelf life and enhanced bioavailability over a year without any aggregation. The resulting silver nanoformulation demonstrated complete inhibition against Sclerotinia sclerotiorum and Colletotrichum falcatum and 68% to 80% inhibition against Colletotrichum gloeosporioides and Rhizoctonia solani respectively, at 2000 ppm. The EC50 values determined through a statistical analysis were 66.42, 157.7, 19.06, and 33.30 ppm for S. sclerotiorum, C. falcatum, C. gloeosporioides, and R. solani respectively. The silver nanoformulation also established significant cytotoxicity, with a 74.96% inhibition rate against the human glioblastoma cell line U87MG at 250 ppm. The IC50 value for the cancerous cell lines was determined to be 56.87 ppm through statistical analysis. The proposed silver nanoformulation may be used as a next-generation fungicide in crop improvement and may also find application in anticancer investigations. To the best of our knowledge, this is also the first report of silver nanoformulation demonstrating complete inhibition against the economically significant phytopathogen C. falcatum.


Assuntos
Antineoplásicos , Nanopartículas Metálicas , Humanos , Prata/química , Antifúngicos/farmacologia , Nanopartículas Metálicas/química , Fungos/metabolismo , Linhagem Celular , Antineoplásicos/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Antibacterianos/farmacologia
12.
ChemistryOpen ; : e202300243, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528316

RESUMO

In this work, we sought to validate the use of Euphorbia calyptrata (L.), a Saharan and Mediterranean medicinal plant, in traditional pharmacopeia. GC-MS/MS identified volatile compounds of potential therapeutic interest. Antioxidant tests were performed using ß-carotene decolorization, DPPH radical scavenging, FRAP, beta-carotene bleaching, and TAC. The antimicrobial activity was evaluated on solid and liquid media for bacterial and fungal strains to determine the zone of inhibition and the minimum growth concentration (MIC) of the microbes tested. The hemolytic activity of these essential oils was assessed on red blood cells isolated from rat blood. Phytochemical characterization of the terpenic compounds by GC-MS/MS revealed 31 compounds, with alpha-Pinene dominating (35.96 %). The antioxidant power of the essential oils tested revealed an IC50 of 67.28 µg/mL (DPPH), EC50 of 80.25.08±1.42 µg/mL (FRAP), 94.83±2.11 µg/mL (beta carotene) and 985.07±0.70 µg/mL (TAC). Evaluating solid media's antibacterial and antifungal properties revealed a zone of inhibition between 10.28 mm and 25.80 mm and 31.48 and 34.21 mm, respectively. On liquid media, the MIC ranged from 10.27 µg/mL to 24.91 µg/mL for bacterial strains and from 9.32 µg/mL to 19.08 µg/mL for fungal strains. In molecular docking analysis, the compounds naphthalene, shogunal, and manol oxide showed the greatest activity against NADPH oxidase, with Glide G scores of -5.294, -5.218 and -5.161 kcal/mol, respectively. For antibacterial activity against E. coli beta-ketoacyl-[acyl carrier protein] synthase, the most potent molecules were cis-Calamenene, alpha.-Muurolene and Terpineol, with Glide G-scores of -6.804, -6.424 and -6.313 kcal/mol, respectively. Hemolytic activity revealed a final inhibition of 9.42±0.33 % for a 100 µg/mL concentration. The essential oils tested have good antioxidant, antimicrobial, and hemolytic properties thanks to their rich phytochemical composition, and molecular docking analysis confirmed their biological potency.

13.
Crit Rev Microbiol ; : 1-11, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38497208

RESUMO

INTRODUCTION: In 2022, the World Health Organization published a report encouraging researchers to focus on Candida spp. to strengthen the global response to fungal oral infections and antifungal resistance. In the context of innovative research, it seems pertinent to investigate the antifungal potential of natural extracts of plants and the methodology involved in the recent reports. The aim of this systematic review is to identify the current state of in vitro research on the evaluation of the ability of plant extracts to inhibit Candida spp. MATERIAL AND METHODS: A bibliographic search has been developed to on a 10-year period to identify which plant extracts have an antifungal effect on the Candida spp. found in the oral cavity. RESULTS: A total of 20 papers were reviewed and fulfilled all the selection criteria and were included in the full data analysis. DISCUSSION: Plants have been tested in a wide range of states - whole extracts, extraction of particular components such as flavonoids or polyphenols, or even using the plant to synthesize nanoparticles. Of forty-five plants tested, five of them did not show any effect against Candida spp., which weren't part of the same family. There is a wide range of plant that exhibit antifungal proprieties. CONCLUSION: Many plants have been tested in a wide range of states - whole extracts, extraction of components such as flavonoids or polyphenols, or even using the plant to synthetize nanoparticles. The combination of plants, the addition of plants to a traditional antifungal and the interference with adhesion provided by some plants seem to be promising strategies. Nonetheless, on contrary to drugs, there is a critical lack of standardization on methodologies and protocols, which makes it difficult to compare data and, consequently, to conclude, beyond doubts, about the most promising plants to fight Candida spp. oral infections.

14.
ACS Appl Mater Interfaces ; 16(12): 15143-15155, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38481099

RESUMO

Realizing controllable input of botanical pesticides is conducive to improving pesticide utilization, reducing pesticide residues, and avoiding environmental pollution but is extremely challenging. Herein, we constructed a smart pesticide-controlled release platform (namely, SCRP) for enhanced treatment of tobacco black shank based on encapsulating honokiol (HON) with mesoporous hollow structured silica nanospheres covered with pectin and chitosan oligosaccharide (COS). The SCRP has a loading capacity of 12.64% for HON and could effectively protect HON from photolysis. Owing to the pH- and pectinase-sensitive property of the pectin, the SCRP could smartly release HON in response to a low pH or a rich pectinase environment in the black shank-affected area. Consequently, the SCRP effectively inhibits the infection of P. nicotianae on tobacco with a controlled rate for tobacco black shank of up to 87.50%, which is mainly due to the SCRP's capability in accumulating ROS, changing cell membrane permeability, and affecting energy metabolism. In addition, SCRP is biocompatible, and the COS layer enables SCRP to show a significant growth-promoting effect on tobacco. These results indicate that the development of a stimuli-responsive controlled pesticide release system for plant disease control is of great potential and value for practical agriculture production.


Assuntos
Praguicidas , Praguicidas/farmacologia , Preparações de Ação Retardada/farmacologia , Preparações de Ação Retardada/química , Poligalacturonase , Agricultura , Pectinas
15.
Fitoterapia ; 174: 105880, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38431026

RESUMO

An undescribed trichodenone derivative (1), two new diketopiperazines (3 and 4) along with a bisabolane analog (2) were isolated from Trichoderma hamatum b-3. The structures of the new findings were established through comprehensive analyses of spectral evidences in HRESIMS, 1D and 2D NMR, Marfey's analysis as well as comparisons of ECD. The absolute configuration of 2 was unambiguously confirmed by NMR, ECD calculation and Mo2(AcO)4 induced circular dichroism. Compounds 1-4 were tested for their fungicidal effects against eight crop pathogenic fungi, among which 1 showed 51% inhibition against Sclerotinia sclerotiorum at a concentration of 50 µg/mL.


Assuntos
Hypocreales , Trichoderma , Estrutura Molecular , Dicetopiperazinas/química , Trichoderma/química
16.
World J Microbiol Biotechnol ; 40(4): 129, 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38459287

RESUMO

Fungal infections represent a challenging threat to the human health. Microsporum gypseum and Trichophyton rubrum are pathogenic fungi causing various topical mycoses in humans. The globally emerging issue of resistance to fungi demands the development of novel therapeutic strategies. In this context, the application of nanoliposomes as vehicles for carrying active therapeutic agents can be a suitable alternative. In this study, rhinacanthin-C was isolated from Rhinacanthus naustus and encapsulated in nano-liposomal formulations, which were prepared by the modified ethanol injection method. The two best formulations composed of soybean phosphatidylcholine (SPC), cholesterol (CHL), and tween 80 (T80) in a molar ratio of 1:1:0 (F1) and 1:1:0.5 (F2) were proceeded for experimentation. The physical characteristics and antifungal activities were performed and compared with solutions of rhinacanthin-C. The rhinacanthin-C encapsulating efficiencies in F1 and F2 were 94.69 ± 1.20% and 84.94 ± 1.32%, respectively. The particle sizes were found to be about 221.4 ± 13.76 nm (F1) and 115.8 ± 23.33 nm (F2), and zeta potential values of -38.16 mV (F1) and -40.98 mV (F2). Similarly, the stability studies of rhinacanthin-C in liposomes demonstrated that rhinacanthin-C in both formulations was more stable in mediums with pH of 4.0 and 6.6 than pure rhinacanthin-C when stored at the same conditions. Rhinacanthin-C in F1 was slightly more stable than F2 when stored in mediums with a pH of 10.0 after three months of storage. However, rhinacanthin-C in both formulations was less stable than pure rhinacanthin-C in a basic medium of pH 10.0. The antifungal potential was evaluated against M. gypsum and T. rubrum. The findings revealed a comparatively higher zone of inhibition for F1. In the MIC study, SPC: CHL: T80 showed higher inhibition against M. gypseum and a slightly higher inhibition against T. rubrum compared to free rhinacanthin-C solution. Moreover, rhinacanthin-C showed significant interaction against 14α-demethylase in in silico study. Overall, this study demonstrates that nanoliposomes containing rhinacanthin-C can improve the stability and antifungal potential of rhinacanthin-C with sustained and prolonged duration of action and could be a promising vehicle for delivery of active ingredients for targeting various fungal infections.


Assuntos
Acanthaceae , Micoses , Naftoquinonas , Humanos , Antifúngicos/farmacologia , Extratos Vegetais/farmacologia , Naftoquinonas/química , Acanthaceae/química
17.
Sci Rep ; 14(1): 5676, 2024 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-38453942

RESUMO

Actinobacteria are one of the predominant groups that successfully colonize and survive in various aquatic, terrestrial and rhizhospheric ecosystems. Among actinobacteria, Nocardia is one of the most important agricultural and industrial bacteria. Screening and isolation of Nocardia related bacteria from extreme habitats such as endolithic environments are beneficial for practical applications in agricultural and environmental biotechnology. In this work, bioinformatics analysis revealed that a novel strain Nocardia mangyaensis NH1 has the capacity to produce structurally varied bioactive compounds, which encoded by non-ribosomal peptide synthases (NRPS), polyketide synthase (PKS), and post-translationally modified peptides (RiPPs). Among NRPS, five gene clusters have a sequence homology with clusters encoding for siderophore synthesis. We also show that N. mangyaensis NH1 accumulates both catechol- and hydroxamate-type siderophores simultaneously under iron-deficient conditions. Untargeted LC-MS/MS analysis revealed a variety of metabolites, including siderophores, lipopeptides, cyclic peptides, and indole-3-acetic acid (IAA) in the culture medium of N. mangyaensis NH1 grown under iron deficiency. We demonstrate that four CAS (chrome azurol S)-positive fractions display variable affinity to metals, with a high Fe3+ chelating capability. Additionally, three of these fractions exhibit antioxidant activity. A combination of iron scavenging metabolites produced by N. mangyaensis NH1 showed antifungal activity against several plant pathogenic fungi. We have shown that the pure culture of N. mangyaensis NH1 and its metabolites have no adverse impact on Arabidopsis seedlings. The ability of N. mangyaensis NH1 to produce siderophores with antifungal, metal-chelating, and antioxidant properties, when supplemented with phytohormones, has the potential to improve the release of macro- and micronutrients, increase soil fertility, promote plant growth and development, and enable the production of biofertilizers across diverse soil systems.


Assuntos
Actinobacteria , Nocardia , Nocardia/genética , Nocardia/metabolismo , Sideróforos/metabolismo , Ecossistema , Antifúngicos/farmacologia , Cromatografia Líquida , Espectrometria de Massas em Tandem , Actinobacteria/metabolismo , Ferro/metabolismo , Bactérias/metabolismo , Genômica , Metaboloma , Solo
18.
PeerJ ; 12: e17023, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38440409

RESUMO

Adansonia digitata L. is a royal tree that is highly valued in Africa for its medicinal and nutritional properties. The objective of this study was to use its fruit shell extract to develop new, powerful mono and bimetallic nanoparticles (NPs) and biochar (BC) using an eco-friendly approach. Silver (Ag), iron oxide (FeO), the bimetallic Ag-FeO NPs, as well as (BC) were fabricated by A. digitata fruit shell extract through a reduction process and biomass pyrolysis, respectively, and their activity against tomato pathogenic fungi Alternaria sp., Sclerotinia sclerotiorum, Fusarium equiseti, and Fusarium venenatum were detected by agar dilution method. The Ag, FeO, Ag-FeONPs, and BC were characterized using a range of powerful analytical techniques such as ultraviolet-visible (UV-Vis) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier Transform-Infra Red (FT-IR), dynamic light scatter (DLS), and zeta potential analysis. The fabricated Ag, FeO and Ag-FeO NPs have demonstrated a remarkable level of effectiveness in combating fungal strains. UV-Vis spectra ofAg, FeO, Ag-FeONPs, and BC show broad exhibits peaks at 338, 352, 418, and 480 nm, respectively. The monometallic, bimetallic NPs, and biochar have indicated the presence in various forms mostly in Spherical-shaped. Their size varied from 102.3 to 183.5 nm and the corresponding FTIR spectra suggested that the specific organic functional groups from the plant extract played a significant role in the bio-reduction process. Ag and Ag-FeO NPs exhibited excellent antifungal activity against pathogenic fungi Alternaria sp., S. sclerotiorum, F. equiseti, and F. venenatum. The current study could be a significant achievement in the field of antifungal agents since has the potential to develop new approaches for treating fungal infections.


Assuntos
Adansonia , Carvão Vegetal , Solanum lycopersicum , Espectroscopia de Infravermelho com Transformada de Fourier , Antifúngicos/farmacologia , Alternaria , Raios Infravermelhos , Extratos Vegetais
19.
Infect Disord Drug Targets ; 24(7): e020224226666, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38305295

RESUMO

The global prevalence of fungal infections is alarming in both the pre- and post- COVID period. Due to a limited number of antifungal drugs, there are hurdles in treatment strategies for fungal infections due to toxic potential, drug interactions, and the development of fungal resistance. All the antifungal targets (existing and newer) and pipeline molecules showing promise against these targets are reviewed. The objective was to predict or repurpose phyto-based antifungal compounds based on a dual target inhibition approach (Sterol-14-α- demethylase and HSP-90) using a case study. In pursuit of repurposing the phytochemicals as antifungal agents, a team of researchers visited Aravalli Biodiversity Park (ABP), Delhi, India, to collect information on available medicinal plants. From 45 plants, a total of 1149 ligands were collected, and virtual screening was performed using Schrodinger Suite 2016 software to get 83 hits against both the target proteins: Sterol-14-α-demethylase and HSP-90. After analysis of docking results, ligands were selected based on their interaction against both the target proteins and comparison with respective standard ligands (fluconazole and ganetespib). We have selected Isocarthamidin, Quercetin and Boeravinone B based on their docking score and binding interaction against the HSP-90 (Docking Score -9.65, -9.22 and -9.21, respectively) and 14-α-demethylase (Docking Score -9.19, -10.76 and -9.74 respectively). The docking protocol was validated and MM/GBSA studies depicted better stability of selected three ligands (Isocarthamidin, Quercetin, Boeravinone B) complex as compared to standard complex. Further, MD simulation studies were performed using the Desmond (67) software package version 2018-4. All the findings are presented as a case study for the prediction of dual targets for the repurposing of certain phytochemicals as antifungal agents.


Assuntos
Antifúngicos , Reposicionamento de Medicamentos , Simulação de Acoplamento Molecular , Compostos Fitoquímicos , Antifúngicos/farmacologia , Antifúngicos/química , Índia , Humanos , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/química , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Esterol 14-Desmetilase/metabolismo , Esterol 14-Desmetilase/química , Plantas Medicinais/química , Quercetina/farmacologia , Quercetina/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Micoses/tratamento farmacológico , Micoses/microbiologia
20.
Appl Environ Microbiol ; 90(3): e0233523, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38376235

RESUMO

Panax ginseng, a prized medicinal herb, has faced increasingly challenging field production due to soil degradation and fungal diseases in Northeast China. Wild-simulated cultivation has prevailed because of its sustainable soil management and low disease incidence. Despite the recognized benefits of rhizosphere microorganisms in ginseng cultivation, their genomic and functional diversity remain largely unexplored. In this work, we utilized shotgun metagenomic analysis to reveal that Pseudomonadota, Actinomycetota, and Acidobacteriota were dominant in the ginseng rhizobiome and recovered 14 reliable metagenome-assembled genomes. Functional analysis indicated an enrichment of denitrification-associated genes, potentially contributing to the observed decline in soil fertility, while genes associated with aromatic carbon degradation may be linked to allelochemical degradation. Further analysis demonstrated enrichment of Actinomycetota in 9-year-old wild-simulated ginseng (WSG), suggesting the need for targeted isolation of Actinomycetota bacteria. Among these, at least three different actinomycete strains were found to play a crucial role in fungal disease resistance, with Streptomyces spp. WY144 standing out for its production of actinomycin natural products active against the pathogenic fungus Ilyonectria robusta. These findings not only enhance our understanding of the rhizobiome of WSG but also present promising avenues for combating detrimental fungal pathogens, underscoring the importance of ginseng in both medicinal and agricultural contexts.IMPORTANCEWild-simulated ginseng, growing naturally without human interference, is influenced by its soil microbiome. Using shotgun metagenomics, we analyzed the rhizospheric soil microbiome of 7- and 9-year-old wild-simulated ginseng. The study aimed to reveal its composition and functions, exploring the microbiome's key roles in ginseng growth. Enrichment analysis identified Streptomycetes in ginseng soil, with three strains inhibiting plant pathogenic fungi. Notably, one strain produced actinomycins, suppressing the ginseng pathogenic fungus Ilyonectria robusta. This research accelerates microbiome application in wild-simulated ginseng cultivation, offering insights into pathogen protection and supporting microbiome utilization in agriculture.


Assuntos
Hypocreales , Microbiota , Panax , Streptomyces , Humanos , Criança , Panax/microbiologia , Solo/química , Rizosfera , Metagenoma , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA