Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 31(13): 20246-20257, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38372921

RESUMO

An effective way to reduce herbicide quantity is to use adjuvants in order to optimize the amount of herbicide and improve its control efficiency. In order to screen for efficient herbicide tank-mix adjuvants, improve the control of weeds in maize fields, reduce the amount of effective ingredients, and improve the adsorption and digestion behavior of herbicides in soil, this study evaluated the synergistic effects and soil behavior of four types of tank-mix adjuvants combined with herbicides. Different types of adjuvants can enhance herbicide production. Surface tension was significantly reduced by 13% after the pesticide solution was applied with AgroSpred™ Prime. The contact angle with the foliar surface was significantly reduced and solution wettability improved using Atp Lus 245-LQ-(TH). The permeability of topramezone and atrazine in leaves of Amaranthus retroflexus L. and Digitaria sanguinalis (L.) Scop. was increased by 22-96% after adding either tank-mix adjuvant. The solution drying time and maximum retention on leaves were not affected by the tank-mix adjuvants. Ethyl and methylated vegetable oils can reduce the adsorption of topramezone in the soil, thus reducing its half-life in soil. The tank-mix adjuvants had no significant effect on soil dissipation or adsorption of atrazine. AgroSpred™ Prime and Atp Lus 245-LQ-(TH) have the best synergistic effect on topramezone and atrazine in the control of A. retroflexus L. and D. sanguinalis (L.) Scop. in maize fields.


Assuntos
Atrazina , Herbicidas , Pirazóis , Herbicidas/análise , Adjuvantes Imunológicos , Solo , Zea mays , Trifosfato de Adenosina
2.
Sci Total Environ ; 917: 170238, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38280601

RESUMO

We experimentally assessed the impact of the application of herbicides and fertilizers derived from agricultural activity through the individual and simultaneous addition of glyphosate, atrazine, and nutrients (nitrogen 'N' and phosphorus 'P') on the biofilm community and their resilience when the experimental factors were removed. We hypothesize that i) the presence of agrochemicals negatively affects the biofilm community leading to the simplification of the community structure; ii) the individual or simultaneous addition of herbicides and nutrients produces differential responses in the biofilm; and iii) the degree of biofilm recovery differs according to the treatment applied. Environmentally relevant concentrations of glyphosate (0.7 mgL-1), atrazine (44 µgL-1), phosphorus (1 mg P L-1 [KH2PO4]), and nitrogen (3 mg N L-1[NaNO3]) were used. Chlorophyll a, ash-free dry weight, abundance of main biofilm groups and nutrient contents in biofilm were analyzed. At initial exposure time, all treatments were dominated by Cyanobacteria; through the exposure period, it was observed a progressive replacement by Bacillariophyceae. This replacement occurred on day 3 for the control and was differentially delayed in all herbicides and/or nutrient treatments in which the abundance of cyanobacteria remains significant yet in T5. A significant correlation was observed between the abundance of cyanobacteria and the concentration of atrazine, suggesting that this group is less sensitive than diatoms. The presence of agrochemicals exerted differential effects on the different algal groups. Herbicides contributed to phosphorus and nitrogen inputs. The most frequently observed interactions between experimental factors (nutrients and herbicides) was additivity excepting for species richness (antagonistic effect). In the final recovery time, no significant differences were found between the treatments and the control in most of the evaluated parameters, evincing the resilience of the community.


Assuntos
Atrazina , Cianobactérias , Diatomáceas , Herbicidas , Poluentes Químicos da Água , Herbicidas/toxicidade , Atrazina/toxicidade , Clorofila A , Glifosato , Fósforo , Biofilmes , Nitrogênio/análise , Fertilização , Poluentes Químicos da Água/toxicidade
3.
Ecotoxicol Environ Saf ; 269: 115780, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38056123

RESUMO

The granulosa cells (GCs) of birds are essential for the reproduction and maintenance of populations in nature. Atrazine (ATR) is a potent endocrine disruptor that can interfere with reproductive function in females and Diaminochlorotriazine (DACT) is the primary metabolite of ATR in the organism. Melatonin (MT) is an endogenous hormone with antioxidant properties that plays a crucial role in development of animal germ cells. However, how ATR causes mitochondrial dysfunction, abnormal secretion of steroid hormones, and whether MT prevents ATR-induced female reproductive toxicity remains unclear. Thus, the purpose of this study is to investigate the protective effect of MT against ATR-induced female reproduction. In the present study, the GCs of quail were divided into 6 groups, as follows: C (Serum-free medium), MT (10 µM MT), A250 (250 µM ATR), MA250 (10 µM MT+250 µM ATR), D200 (200 µM DACT) and MD200 (10 µM MT+200 µM DACT), and were cultured for 24 h. The results revealed that ATR prevented GCs proliferation and decreased cell differentiation. ATR caused oxidative damage and mitochondrial dysfunction, leading to disruption of steroid synthesis, which posed a severe risk to GC's function. However, MT supplements reversed these changes. Mechanistically, our study exhibited that the ROS/SIRT1/STAR axis as a target for MT to ameliorate ATR-induced mitochondrial dysfunction and steroid disorders in GCs, which provides new insights into the role of MT in ATR-induced reproductive capacity and species conservation in birds.


Assuntos
Atrazina , Herbicidas , Melatonina , Doenças Mitocondriais , Animais , Feminino , Atrazina/toxicidade , Atrazina/metabolismo , Células da Granulosa/metabolismo , Herbicidas/toxicidade , Herbicidas/metabolismo , Melatonina/farmacologia , Doenças Mitocondriais/induzido quimicamente , Espécies Reativas de Oxigênio/metabolismo , Sirtuína 1/efeitos dos fármacos , Sirtuína 1/metabolismo , Esteroides/metabolismo , Codorniz/genética , Codorniz/metabolismo
4.
J Agric Food Chem ; 71(50): 20325-20335, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38052101

RESUMO

Atrazine (ATZ) is a highly persistent herbicide that harms organism health. Lycopene (LYC) is an antioxidant found in plants and fruits. The aim of this study is to investigate the mechanisms of atrazine-induced mitochondrial damage and lycopene antagonism in the liver. The mice were divided into seven groups by randomization: blank control (Con group), vehicle control (Vcon group), 5 mg/kg lycopene (LYC group), 50 mg/kg atrazine (ATZ1 group), ATZ1+LYC group, 200 mg/kg atrazine (ATZ2 group), and ATZ2+LYC group. The present study performed a holistic assessment based on mitochondria to show that ATZ causes the excessive fission of mitochondria and disrupts mitochondrial biogenesis. However, the LYC supplementation reverses these changes. ATZ causes increased mitophagy and exacerbates the production of oxidized mitochondrial DNA (Ox-mtDNA) and mitochondrial stress. This study reveals that LYC could act as an antioxidant to repair Ox-mtDNA and restore the disordered mitochondrial function caused by ATZ.


Assuntos
Atrazina , Camundongos , Animais , Licopeno/metabolismo , Atrazina/toxicidade , Atrazina/metabolismo , Antioxidantes/metabolismo , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Mitocôndrias/metabolismo , Hepatócitos , Estresse Oxidativo
5.
Plants (Basel) ; 12(12)2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37375903

RESUMO

There are various herbicides which were used in the agriculture industry. Atrazine (ATZ) is a chlorinated triazine herbicide that consists of a ring structure, known as the triazine ring, along with a chlorine atom and five nitrogen atoms. ATZ is a water-soluble herbicide, which makes it capable of easily infiltrating into majority of the aquatic ecosystems. There are reports of toxic effects of ATZ on different systems of the body but, unfortunately, majority of these scientific reports were documented in animals. The herbicide was reported to enter the body through various routes. The toxicity of the herbicide can cause deleterious effects on the respiratory, reproductive, endocrine, central nervous system, gastrointestinal, and urinary systems of the human body. Alarmingly, few studies in industrial workers showed ATZ exposure leading to cancer. We embarked on the present review to discuss the mechanism of action of ATZ toxicity for which there is no specific antidote or drug. Evidence-based published literature on the effective use of natural products such as lycopene, curcumin, Panax ginseng, Spirulina platensis, Fucoidans, vitamin C, soyabeans, quercetin, L-carnitine, Telfairia occidentalis, vitamin E, Garcinia kola, melatonin, selenium, Isatis indigotica, polyphenols, Acacia nilotica, and Zingiber officinale were discussed in detail. In the absence of any particular allopathic drug, the present review may open the doors for future drug design involving the natural products and their active compounds.

6.
Environ Pollut ; 330: 121833, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37201570

RESUMO

The effects of triazine herbicides on glucose metabolism remain unclear. In this study, we aimed to assess the associations between serum triazine herbicides and glycemia-related risk indicators in general adults, and to evaluate the mediating role of natural immunoglobulin M antibodies (IgM) in the above associations among uninfected participants. We measured the concentrations of atrazine, cyanazine, and IgM in serum, as well as fasting plasma glucose (FPG), and fasting plasma insulin in 4423 adult participants from the Wuhan-Zhuhai cohort baseline population, enrolled in 2011-2012. Generalized linear models were used to evaluate the associations of serum triazine herbicides with glycemia-related risk indicators, and mediation analyses were performed to evaluate the mediating role of serum IgM in the above associations. The median levels of serum atrazine and cyanazine were 0.0237 µg/L and 0.0786 µg/L, respectively. Our study found significant positive associations of serum atrazine, cyanazine, and Σtriazine with FPG levels, risk of impaired fasting glucose (IFG), abnormal glucose regulation (AGR), and type 2 diabetes (T2D). Additionally, serum cyanazine and Σtriazine were found to be significant positive associated with the homeostatic model assessment of insulin resistance (HOMA-IR) levels. Significant negative linear relationships were observed in associations of serum IgM with serum triazine herbicides, FPG, HOMA-IR levels, the prevalence of T2D, and AGR (P < 0.05). Furthermore, we observed a significant mediating role by IgM in the associations of serum triazine herbicides with FPG, HOMA-IR, and AGR, with the proportions ranging from 2.96% to 7.71%. To ensure the stability of our findings, we conducted sensitivity analyses in normoglycemic participants and found that the association of serum IgM with FPG and the mediating role by IgM remained stable. Our results suggest that triazine herbicides exposure is positively associated with abnormal glucose metabolism, and decreasing serum IgM may partly mediate these associations.


Assuntos
Atrazina , Diabetes Mellitus Tipo 2 , Herbicidas , Resistência à Insulina , Adulto , Humanos , Glicemia/metabolismo , Resistência à Insulina/fisiologia , Análise de Mediação , População do Leste Asiático , Jejum , Glucose , Triazinas
7.
Sci Total Environ ; 880: 163054, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-36963691

RESUMO

The synergistic activation of persulfate by multiple factors could degrade pollutants more efficiently. However, the co-activation method based on metal ions has the risk of leakage. The non-metallic coupling method could achieve the same efficiency as the metal activation and meanwhile release environmental stress. In this study, the original biochar (BC) was prepared through using Chinese medicinal residue of Acanthopanax senticosus as the precursor. Compared with other biochar, the pore size structure was higher and toxicity risk was lower. The ultrasonic (US)/Acanthopanax senticosus biochar (ASBC)/persulfate oxidation system was established for Atrazine (ATZ). Results showed that 45KHz in middle and low frequency band cooperated with ASBC600 to degrade nearly 70 % of ATZ within 50 min, and US promoted the formation of SO4- and OH. Meanwhile, the synergy index of US and ASBC was calculated to be 1.18, which showed positive synergistic effect. Finally, the potential toxicity was examined by using Toxicity Characteristic Leaching Procedure (TCLP) and luminescent bacteria. This study provides a promising way for the activation of persulfate, which is expected to bring a new idea for the win-win situation of pollutant degradation and solid waste resource utilization.


Assuntos
Atrazina , Eleutherococcus , Poluentes Químicos da Água , Atrazina/toxicidade , Atrazina/análise , Medicina Tradicional Chinesa , Metais , Carvão Vegetal/química , Poluentes Químicos da Água/análise
8.
Biol Trace Elem Res ; 201(11): 5257-5271, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36790584

RESUMO

Atrazine, as an herbicide, is used widely worldwide. Because of its prolonged persistence in the environment and accumulation in the body, atrazine exposure is a potential threat to human health. The present study evaluated the possible protective effects of zinc oxide nanoparticles and vitamin C against atrazine-induced hepatotoxicity in rats. Atrazine administered to rats orally at a dose of 300 mg/kg for 21 days caused liver oxidative stress as it increased malondialdehyde (MDA) formation and decreased reduced glutathione (GSH) contents. Atrazine induced inflammation accompanied by apoptosis via upregulation of hepatic gene expression levels of NF-κB, TNF-α, BAX, and caspase-3 and downregulation of Bcl-2 gene expression levels. Additionally, it disturbed the metabolic activities of cytochrome P450 as it downregulated hepatic gene expression levels of CYP1A1, CYP1B1, CYP2E1. The liver function biomarkers were greatly affected upon atrazine administration, and the serum levels of AST and ALT were significantly increased, while BWG%, albumin, globulins, and total proteins levels were markedly decreased. As a result of the above-mentioned influences of atrazine, histopathological changes in liver tissue were recorded in our findings. The administration of zinc oxide nanoparticles or vitamin C orally at a dose of 10 mg/kg and 200 mg/kg, respectively, for 30 days prior and along with atrazine, could significantly ameliorate the oxidative stress, inflammation, and apoptosis induced by atrazine and regulated the hepatic cytochrome P450 activities. Furthermore, they improved liver function biomarkers and histopathology. In conclusion, our results revealed that zinc oxide nanoparticles and vitamin C supplementations could effectively protect against atrazine-induced hepatotoxicity.


Assuntos
Atrazina , Doença Hepática Induzida por Substâncias e Drogas , Nanopartículas , Óxido de Zinco , Humanos , Ratos , Animais , Óxido de Zinco/farmacologia , Atrazina/toxicidade , Atrazina/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ácido Ascórbico/farmacologia , Ácido Ascórbico/metabolismo , Fígado/metabolismo , Antioxidantes/metabolismo , Estresse Oxidativo , Apoptose , Vitaminas/farmacologia , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Biomarcadores/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Imunomodulação
9.
Environ Sci Pollut Res Int ; 30(13): 36545-36556, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36564684

RESUMO

Atrazine (ATZ) is the second most commonly used herbicide worldwide, resulting in the pollution of water bodies and affecting the economic benefits of aquaculture. ATZ is known to cause liver damage in the common carp, Cyprinus carpio L., one of the most widely cultivated fish in China, but the underlying mechanisms are poorly understood. In this study, juvenile common carp Cyprinus carpio L. were exposed to three different environmental levels (0.4, 0.8, and 1.2 µg/L) of ATZ for 12 weeks and changes in the liver transcriptomes between the high-dose group and the control group were analyzed. The data showed that different levels of ATZ exposure caused hepatotoxicity in juvenile carp, shown by biochemical parameters and histopathological changes. Comparative transcriptomics showed that high-dose ATZ exposure led to alterations in the expression of various lipid metabolism-related gene changes, including genes associated with metabolic pathways, fatty acid metabolism, and fatty acid elongation. Furthermore, a connection network analysis of the top 100 differentially expressed genes (DEGs) showed a variety of associations between high-dose ATZ-induced liver damage and the principal DEGs, indicating the complexity of hepatotoxicity induced by ATZ. In conclusion, the molecular mechanisms underlying ATZ-triggered hepatotoxicity in juvenile carp are primarily related to impaired lipid metabolism.


Assuntos
Atrazina , Carpas , Doença Hepática Induzida por Substâncias e Drogas , Poluentes Químicos da Água , Animais , Atrazina/toxicidade , Perfilação da Expressão Gênica , Transcriptoma , Exposição Ambiental , Ácidos Graxos , Poluentes Químicos da Água/toxicidade
10.
J Environ Sci (China) ; 126: 81-94, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36503806

RESUMO

Sulfite (S(IV)) is a promising substitute for sulfate radical-based advanced oxidation processes. Here, a composite of in-situ anchoring NiCo2O4 nanosheets on biochar (BC) was firstly employed as a heterogeneous activator for sulfite (NiCo2O4@BC-sulfite) to degrade atrazine (ATZ) in the neutral environment. The synergistic coupling of BC and NiCo2O4 endows the resulting composite excellent catalytic activity. 82% of the degradation ratio of ATZ (1 mg/L) could be achieved within 10 min at initial concentrations of 0.6 g/L NiCo2O4@BC, 3.0 mmol/L sulfite in neutral environment. When further supplementing sulfite into the system at 20 min (considering the depletion of sulfite), outstanding degradation efficiency (∼ 100%) were achieved in the next 10 min without any other energy input by the NiCo2O4@BC-sulfite system. The features of the prepared catalysts and the effects of some key parameters on ATZ degradation were systematically examined. A strong inner-sphere complexation (Co2+/Ni2+-SO32-) was explored between sulfite and the metal sites on the NiCo2O4@BC surface. The redox cycle of the surface metal efficiently mediated sulfite activation and triggered the series radical chain reactions. The generated radicals, in particular the surface-bound radicals were involved in ATZ degradation. High performance liquid chromatography-tandem mass spectrometry (LC-MS) technique was used to detect the degradation intermediates. Density functional theory (DFT) calculations were performed to illustrate the possible degradation pathways of ATZ. Finally, an underlying mechanism for ATZ removal was proposed. The present study offered a low-cost and sustainable catalyst for sulfite activation to remove ATZ in an environmentally friendly manner from wastewater.


Assuntos
Atrazina , Sulfitos , Águas Residuárias , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas
11.
Environ Sci Pollut Res Int ; 30(11): 30048-30061, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36418831

RESUMO

Atrazine toxicity is one of the limiting factors inhibiting sensitive plant growth. Previous studies showed that atrazine-degrading bacteria could alleviate atrazine toxicity. However, there is limited information on how atrazine-degrading bacteria and plant growth-promote bacteria alleviate atrazine toxicity in soybeans. Therefore, the current study aimed to explore the atrazine removal, phosphorus utilization, and the oxidative stress alleviation of atrazine-degrading bacterium Arthrobacter sp. DNS10 and/or inorganic phosphorus-solubilizing bacterium Enterobacter sp. P1 in the reduction of atrazine toxicity in soybean. The results showed that atrazine exposure to soybean seedlings led to significant inhibition in growth, atrazine removal, and phosphorus utilization. However, the co-inoculatied strains significantly increased seedlings biomass, chlorophyll a/b contents, and total phosphorus in leaves accompanied by great reduction of the atrazine-induced antioxidant enzymes activities and malonaldehyde (MDA) contents, as well as atrazine contents in soil and soybeans under atrazine stress. Furthermore, transcriptome analysis highlighted that co-inoculated strains increased the expression levels of genes related to photosynthetic-antenna proteins, carbohydrate metabolism, and fatty acid degradation in leaves. All the results suggest that the co-inoculation mitigates atrazine-induced oxidative stress on soybean by accelerating atrazine removal from soil and phosphorus accumulation in leaves, enhancing the chlorophyll contents, and regulating plant transcriptome. It may be suggested that co-inoculation of atrazine-degrading bacteria and inorganic phosphorus-solubilizing bacteria can be used as a potential method to alleviate atrazine toxicity to the sensitive crops.


Assuntos
Arthrobacter , Atrazina , Herbicidas , Atrazina/análise , Herbicidas/análise , Glycine max/metabolismo , Arthrobacter/metabolismo , Plântula/metabolismo , Enterobacter , Clorofila A/análise , Biodegradação Ambiental , Solo , Estresse Oxidativo , Antioxidantes/metabolismo , Fósforo/metabolismo , Microbiologia do Solo
12.
J Environ Manage ; 320: 115870, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36056489

RESUMO

Biopurification systems (BPS) or biobeds are bioprophylaxis systems to prevent pesticide point-source contamination, whose efficiency relies mostly on the pesticide removal capacity of the biomixture, the majority component of a BPS. The adaptation of the components of the biomixtures to local availabilities is a key aspect to ensure the sustainability of the system. In this work, the removal of atrazine (ATZ) was evaluated in biomixtures formulated with three sugarcane by-products as alternative lignocellulosic substrates. Based on the capacity of actinobacteria to tolerate and degrade diverse pesticides, the effect of biomixtures bioaugmentation with actinobacteria was evaluated as a strategy to enhance the depuration capacity of biobeds. Also, the effect of ATZ and/or the bioaugmentation on microbial developments and enzymatic activities were studied. The biomixtures formulated with bagasse, filter cake, or harvest residue, reached pesticide removal values of 37-41% at 28 d of incubation, with t1/2 between 37.9 ± 0.4 d and 52.3 ± 0.4 d. The bioaugmentation with Streptomyces sp. M7 accelerated the dissipation of the pesticide in the biomixtures, reducing ATZ t1/2 3-fold regarding the controls, and achieving up to 72% of ATZ removal. Atrazine did not exert a clear effect on microbial developments, although most of the microbial counts were less in the contaminated biomixtures at the end of the assay. The bioaugmentation improved the development of the microbiota in general, specially actinobacteria and fungi, regarding the non-bioaugmented systems. The inoculation with Streptomyces sp. M7 enhanced acid phosphatase activity and/or reversed a possible effect of the pesticide over this enzymatic activity.


Assuntos
Actinobacteria , Atrazina , Praguicidas , Poluentes do Solo , Streptomyces , Actinobacteria/metabolismo , Atrazina/metabolismo , Biodegradação Ambiental , Solo/química , Poluentes do Solo/metabolismo , Streptomyces/metabolismo
13.
Sci Total Environ ; 851(Pt 2): 158278, 2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-36029817

RESUMO

The application of chemically modified biochar is a promising strategy for the remediation of contaminated (e.g., pesticides) soil. In this study, H3PO4 was used to modify peanut shell to improve the remediation performance of biochar. Surface area (980.19 m2/g), pore volume (0.12 cm3/g), and the functional groups (OH, CO, and phosphorus-containing groups) on the biochar were increased by H3PO4 treatment. The sorption experimental data were well fitted by Freundlich model, while the sorption affinity (Kf) of H3PO4 modified biochar (PBC) for atrazine was 128 times greater than that of the untreated biochar (BC) in the aquatic systems. The Kf values of PBC-amended soil to atrazine were increased by 13.57 times than that of single soil. The strong sorption of PBC on atrazine delayed the degradation of atrazine in soil, and the residual percentage of atrazine in soil and soil-PBC mixture were 4.90% and 71.44% at the end of 60-day incubation, with the degradation half-life increased from 13.3 to 121.6 d. The analysis of high-throughput sequencing results showed that atrazine reduced the diversity of soil microbial community, but the abundance of microorganisms with degradation function increased and became dominant species. The addition of PBC in soil accelerated the microbial remediation of atrazine stress, which may promote the soil nitrogen cycle. Therefore, amendment of atrazine contaminated soil with PBC can reduce the environmental risk of atrazine and benefit the soil microbial ecology.


Assuntos
Atrazina , Recuperação e Remediação Ambiental , Praguicidas , Poluentes do Solo , Atrazina/análise , Poluentes do Solo/análise , Adsorção , Carvão Vegetal/química , Solo/química , Bactérias , Fósforo
14.
Toxicol Mech Methods ; 32(4): 259-267, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34663174

RESUMO

Atrazine (ATR), a commonly applied herbicide in agriculture, has been found to cause hippocampal injury in rodents. However, the underlying toxicological targets and mechanisms are unclear. In this study, network pharmacology analysis and in vitro model were integrated to investigate the effect and mechanism of ATR-induced hippocampal neurotoxicity. In total, 71 targets of hippocampal neurotoxicity induced by ATR were predicted. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes enrichment (KEGG) enrichment analysis suggested that these targets were related to multiple GO terms and signaling pathways. To further investigate the underlying mechanisms, the top 10 hub targets were screened and included tumor protein p53 (Tp53), caspase 3 (Casp3), prostaglandin-endoperoxide synthase 2 (Ptgs2), cAMP-responsive element-binding protein 1 (Creb1), estrogen receptor 1 (Esr1), Jun proto-oncogene (Jun), brain-derived neurotrophic factor (Bdnf), catalase (Cat), sirtuin 1 (Sirt1) and Fos proto-oncogene (Fos). Moreover, the cell counting kit-8 (CCK8) and lactate dehydrogenase (LDH) assay showed that ATR had time and dose-dependent cytotoxicity on H19-7 cells. TUNEL staining revealed that ATR increased the apoptotic ratio. In addition, Real-time quantitative polymerase chain reaction (RT-qPCR) results indicated that the mRNA expression levels of all hub targets showed significant changes, except Esr1 and Jun. Our study demonstrated that ATR mainly acted on multiple targets and signaling pathways to exert its hippocampal neurotoxicity. These results provided initial evidence for the further exploration of the toxicological mechanism of ATR.


Assuntos
Atrazina , Medicamentos de Ervas Chinesas , Síndromes Neurotóxicas , Atrazina/toxicidade , Hipocampo , Humanos , Farmacologia em Rede , Síndromes Neurotóxicas/etiologia
15.
Environ Pollut ; 293: 118558, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34808310

RESUMO

Recently, the development of ecofriendly and biocompatible agrochemical delivery systems has garnered widespread attention because of their great potential in sustainable agri-food applications. Atrazine (ATZ) is a globally used herbicide used to control weeds, but it suffers from poor aqueous solubility, poor efficacy, and environmental loss. Herein, we report a novel, eco-friendly and biocompatible clove oil-based nanoemulsion as a green nanocarrier to enhance the solubility, bioavailability, and control release of ATZ. Food grade surfactants, Tween 80 and Phosphatidylcholine (PC) were used to formulate clove oil nanoemulsion with size <200 nm using ultrasonic emulsification technique, without any use of organic solvent. The ATZ encapsulation efficiency in NEm was greater than 95%. DLS confirms the nanosize (106 nm) and monodispersity of NEm. HRTEM reveals the spherical morphology of the nanodroplets. FTIR and DSC confirm the successful incorporation of ATZ inside the NEm oil droplet core. ATZ loaded NEm showed excellent thermal and storage stability, low Ostwald ripening rate, slow and sustained herbicide release behavior, which is of vital importance for an herbicide formulation. The release rate was better than commercial ATZ and free ATZ formulations. Results from herbicidal activity assays demonstrate that ATZ NEm exhibited excellent herbicidal activity even at low concentrations as compared to commercial ATZ analogs. In consideration of biocompatible excipients, free of organic solvent, and a simple fabrication process, ATZ loaded clove oil NEm can hold great potential in weed control and sustainable agri-food applications.


Assuntos
Óleo de Cravo , Herbicidas , Emulsões , Fosfatidilcolinas , Polissorbatos , Água
16.
Environ Pollut ; 287: 117635, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34182386

RESUMO

The presence of atrazine, a triazine herbicide, and its residues in agriculture soil poses a serious threat to human health and environment through accumulation in edible plant parts. Hence, the present study focused on atrazine induced stress amelioration of Andrographis paniculata, an important medicinal plant, by a plant growth promoting and atrazine degrading endophytic bacterium CIMAP-A7 inoculation. Atrazine has a non-significant effect at a lower dose while at a higher dose (lower: 25 and higher: 50 mg kg-1) 22 and 36% decrease in secondary metabolite content and plant dry weight of A. paniculata was recorded, respectively. Endophyte CIMAP-A7 inoculation significantly reduced atrazine soil content, by 78 and 51% at lower and a higher doses respectively, than their respective control treatments. Inoculation of CIMAP-A7 exhibited better plant growth in terms of increased total chlorophyll, carotenoid, protein, and metabolite content with reduced atrazine content under both atrazine contaminated and un-contaminated treatments. Atrazine induced oxidative stress in A. paniculata was also ameliorated by CIMAP-A7 by reducing stress enzymes, proline, and malondialdehyde accumulation under contaminated soil conditions than un-inoculated treatments. Furthermore, the presence of atrazine metabolites deisopropylatrazine (DIA) and desethylatrazine (DEA) strongly suggests a role of CIMAP-A7 in mineralization however, the absence of these metabolites in uninoculated soil and all plant samples were recorded. These findings advocate that the amelioration of atrazine induced stress with no/least pesticide content in plant tissues by plant-endophyte co-interactions would be efficient in the remediation of atrazine contaminated soils and ensure safe crop produce.


Assuntos
Andrographis , Atrazina , Herbicidas , Poluentes do Solo , Atrazina/análise , Atrazina/toxicidade , Biodegradação Ambiental , Herbicidas/toxicidade , Humanos , Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade
17.
Aquat Toxicol ; 236: 105866, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34052718

RESUMO

Herbicides are among the most detected pesticides in coastal environments. Herbicides may impact non-target organisms, but invertebrates that have a symbiotic relationship with microalgae (zooxanthellae) may be particularly susceptible. How zooxanthellae influence the response of organisms to herbicides, however, remains untested. We exposed zooxanthellate and azooxanthellate Cassiopea xamachana medusae to environmentally relevant concentrations of the herbicide atrazine (0 µg L - 1, 7 µg L - 1 and 27 µg L - 1) for 20 days. We hypothesised that atrazine would have adverse effects on the size, rate of bell contractions and, respiration of medusae, but that effects would be more severe in zooxanthellate than azooxanthellate medusae. We also predicted that photosynthetic efficiency, chlorophyll a (Chla) content and zooxanthellae density would decrease in zooxanthellate medusae exposed to atrazine. Both zooxanthellate and azooxanthellate medusae shrank, yet the size-specific respiration rates were not constant during the experiment. Photosynthetic efficiency of zooxanthellate medusae significantly decreased at 7 and 27 µgL-1 atrazine, but atrazine did not affect the Chla content or zooxanthellae density. Our results showed that even though atrazine inhibited photosynthesis, zooxanthellae were not expelled from the host. We conclude that the presence of zooxanthellae did not increase the susceptibility of C. xamachana medusae to atrazine.


Assuntos
Herbicidas/toxicidade , Cifozoários/fisiologia , Poluentes Químicos da Água/toxicidade , Animais , Atrazina , Clorofila A , Microalgas , Fotossíntese/efeitos dos fármacos , Cifozoários/efeitos dos fármacos , Simbiose
18.
Environ Sci Technol ; 55(14): 9591-9600, 2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34029066

RESUMO

The diffusive gradients in thin films (DGT) technique has been successfully and widely applied to investigate the labile fractions of inorganic contaminants in soils and sediments, but there have been almost no applications to organic contaminants. Here we developed and tested the approach for the pesticide Atrazine (ATR) in a controlled soil experiment and in situ in an intact lake sediment core. The soil study explored the relationships between soil solution, DGT measured labile ATR and solvent extractable ATR in dosed soils of different organic matter, pH status and incubation times. The results are further interpreted using the DIFS (DGT-induced fluxes in soils and sediments) model. Resupply of ATR to the soil solution was partially sustained by the solid phase in all the soils. This was due to small labile pool size and slow kinetics, with soil pH being an important controlling factor. The in situ sediment study successfully used a DGT probe to examine labile ATR distribution through the core on the subcm scale. It demonstrated-for the first time-an easy to use in situ technique to investigate the effects of redox on resupply kinetics and biogeochemical processes of trace organic contaminants in sediments.


Assuntos
Praguicidas , Solo , Difusão , Monitoramento Ambiental , Sedimentos Geológicos , Cinética , Fósforo/análise
19.
Environ Sci Pollut Res Int ; 28(26): 35064-35072, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33661496

RESUMO

Atrazine is one of the most used herbicides in China. It is a persistent organic pollutant but has been widely used on Chinese farmlands for a long time. To assess its dietary and ecological risks to human and environment, in this study, atrazine residues were extracted with acetonitrile and then plant samples were detected with gas chromatography coupled with mass spectrometry (GC-MS) and soil samples were determined with gas chromatography coupled with nitrogen-phosphorus detector (GC-NPD). The limit of quantification (LOQ) of the method was 0.01 mg/kg for all matrices. The recoveries ranged from 82.0 to 105.4% for plant samples and 75.6 to 85.6% for soil samples. The final residues of atrazine in all plant samples were lower than LOQ. Dietary risk assessment suggested that under good agricultural practices (GAP) conditions, intake of atrazine from apples, grapes, and tea would exhibit an acceptably low health risk on consumers. However, the final residues of atrazine in soil samples were <0.01-9.2 mg/kg, and the half-lives were 2.0-9.1 days. Based on the species sensitivity distribution (SSD) model, the potential affected fraction (PAF) of atrazine in soil samples ranges from 0.01 to 65.8%. Atrazine residues in 43.1% soil samples were higher than 0.11 mg/kg, which was the hazardous concentration for 5% of species (HC5) of atrazine in soil. These results suggested that the ecological risks of atrazine in apples, grapes, and tea garden soil would exhibit a high risk on environmental species even under the same GAP conditions. This study could provide guidance for comprehensive risk assessment of atrazine properly used in apple, grape, and tea gardens.


Assuntos
Atrazina , Herbicidas , Malus , Resíduos de Praguicidas , Poluentes do Solo , Vitis , Atrazina/análise , China , Cromatografia Gasosa-Espectrometria de Massas , Herbicidas/análise , Humanos , Resíduos de Praguicidas/análise , Medição de Risco , Solo , Poluentes do Solo/análise , Chá
20.
Environ Pollut ; 275: 116641, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33611208

RESUMO

Chemical pollutants, such as pesticides, often leach into aquatic environments and impact non-target organisms. Marine invertebrates have complex life cycles with multiple life-history stages. Exposure to pesticides during one life-history stage potentially influences subsequent stages; a process known as a carry-over effect. Here, we investigated carry-over effects on the jellyfish Aurelia coerulea. We exposed polyps to individual and combined concentrations of atrazine (2.5 µg/L) and chlorpyrifos (0.04 µg/L) for four weeks, after which they were induced to strobilate. The resultant ephyrae were then redistributed and exposed to either the same conditions as their parent-polyps or to filtered seawater to track potential carry-over effects. The percentage of deformities, ephyrae size, pulsation and respiration rates, as well as the metabolic profile of the ephyrae, were measured. We detected a subtle carry-over effect in two metabolites, acetoacetate and glycerophosphocholine, which are precursors of the neurotransmitter acetylcholine, important for energy metabolism and osmoregulation of the ephyrae. Although these carry-over effects were not reflected in the other response variables in the short-term, a persistent reduction of these two metabolites could have negative physiological consequences on A. coerulea jellyfish in the long-term. Our results highlight the importance of considering more than one life-history stage in ecotoxicology, and measuring a range of variables with different sensitivities to detect sub-lethal effects caused by anthropogenic stressors. Furthermore, since we identified few effects when using pesticides concentrations corresponding to Australian water quality guidelines, we suggest that future studies consider concentrations detected in the environment, which are higher than the water quality guidelines, to obtain a more realistic scenario by possible risk from pesticide exposure.


Assuntos
Praguicidas , Cifozoários , Poluentes Químicos da Água , Animais , Austrália , Ecotoxicologia , Metaboloma , Praguicidas/toxicidade , Poluentes Químicos da Água/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA