RESUMO
In this research, we developed a biochar-based fertilizer using biogas slurry and biochar derived from lignocellulosic agro-residues. Biogas slurry was obtained through the anaerobic digestion of the organic fraction of municipal solid waste (fresh vegetable biomass and/or prepared food), while biochars were derived from residues from quinoa, maize, rice, and sugarcane. The biochar-based fertilizers were prepared using an impregnation process, where the biogas slurry was mixed with each of the raw biochars. Subsequently, we characterized the N, P and K concentrations of the obtained biochar-based fertilizers. Additionally, we analyzed their surface properties using SEM/EDS and FTIR and conducted a slow-release test on these biochar-based fertilizers to assess their capability to gradually release nutrients. Lastly, a bioassay using cucumber plants was conducted to determine the N, P, and K bioavailability. Our findings revealed a significant correlation (r > 0.67) between the atomic O/C ratio, H/C ratio, cation exchange capacity, surface area, and the base cations concentration with N, P, and/or K adsorption on biochar. These properties, in turn, were linked to the capability of the biochar-based fertilizer to release nutrients in a controlled manner. The biochar-based fertilizer derived from corn residues showed <15 % release of N, P and K at 24 h. Utilization of these biochar-based fertilizers had a positive impact on the mineral nutrition of cucumber plants, resulting in an average increase of 61 % in N, 32 % in P, and 19 % in K concentrations. Our results underscore the potential of biochar-based fertilizers in controlled nutrient release and enhanced plant nutrition. Integration of biochar and biogas slurry offers a promising and sustainable approach for NPK recovery and fertilizer production in agriculture. This study presents an innovative and sustainable approach combining the use of biochar for NPK recovery from biogas slurry and its use as a biochar-based fertilizer in agriculture.
Assuntos
Carvão Vegetal , Fertilizantes , Fertilizantes/análise , Carvão Vegetal/química , Anaerobiose , Agricultura/métodos , Nitrogênio/análise , Potássio/análise , Fósforo/análise , BiocombustíveisRESUMO
This study proposes measuring the risk of five alternative renewable diesel production technologies using a multi-criteria decision matrix strategy. Evaluated criteria include environmental, economic, technological, social, and process safety risks. The subjective Analytical Hierarchy Process (AHP) with stakeholder input provides criteria and sub-criteria weightings and the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) ranks alternatives. Alternative renewable diesel options are Green Diesel from first, second, and third-generation feedstocks, Fischer-Tropsch Diesel from second-generation biomass, and the transesterification of vegetable oils (VO) to make biodiesel. This study is a response to an earlier work measuring the sustainability of the same renewable technologies. While the previous work indicated Fischer-Tropsch Diesel as the most sustainable, this current work indicated the process as the "most risky," suggesting that risk is a significant driver of decision making over sustainability, and newly developed decision tools should address both perspectives.
Assuntos
Biocombustíveis , Óleos de Plantas , EsterificaçãoRESUMO
The global food systems face significant challenges driven by population growth, climate change, geopolitical conflicts, crises, and evolving consumer preferences. Intending to address these challenges, optimizing food production, adopting sustainable practices, and developing technological advancements are essential while ensuring the safety and public acceptance of innovations. This review explores the complex aspects of the future of food, encompassing sustainable food production, food security, climate-resilient and digitalized food supply chain, alternative protein sources, food processing, and food technology, the impact of biotechnology, cultural diversity and culinary trends, consumer health and personalized nutrition, and food production within the circular bioeconomy. The article offers a holistic perspective on the evolving food industry characterized by innovation, adaptability, and a shared commitment to global food system resilience. Achieving sustainable, nutritious, and environmentally friendly food production in the future involves comprehensive changes in various aspects of the food supply chain, including innovative farming practices, evolving food processing technologies, and Industry 4.0 applications, as well as approaches that redefine how we consume food.
RESUMO
The synthesis of silver nanoparticles (AgNPs) is usually based on expensive methods that use or generate chemicals that can negatively impact the environment. Our study presents a simple one-step synthesis process for obtaining AgNP using an aqueous extract of Amazonian fruit açai (Euterpe oleracea Mart.) as the reducing and stabilizing agents. The bio-synthesized AgNP (bio-AgNP) were comprehensively characterized by diverse techniques, and as a result, 20-nm spherical particles (transmission electron microscopy) were obtained. X-ray diffraction analysis (XRD) confirmed the presence of crystalline AgNP, and Fourier-transform infrared spectroscopy (FT-IR) suggested that polyphenolic compounds of açaí were present on the surface. The bio-AgNP showed antimicrobial activity against Staphylococcus aureus, Pseudomonas aeruginosa, and Acinetobacter baumannii. In Caenorhabditis elegans exposed to 10 µg/L bio-AgNP for 96 h, there were no significant effects on growth, reproduction, or reactive oxygen species (ROS) concentration; however, there was an increase in superoxide dismutase (SOD) and glutathione-S-transferase (GST) enzymatic activity. In contrast, when worms were exposed to chemically synthesized AgNP (PVP-AgNP), an increase in ROS, SOD, and GST activity and a reduction in oxidative stress resistance were observed. In conclusion, our study not only showcased the potential of açaí in the simple and rapid production of AgNP but also highlighted the broad-spectrum antimicrobial activity of the synthesized nanoparticles using our protocol. Moreover, our findings revealed that these AgNPs exhibited reduced toxicity to C. elegans at environmentally realistic concentrations compared with PVP-AgNP.
Assuntos
Anti-Infecciosos , Euterpe , Nanopartículas Metálicas , Animais , Prata/química , Nanopartículas Metálicas/toxicidade , Nanopartículas Metálicas/química , Espécies Reativas de Oxigênio , Caenorhabditis elegans , Espectroscopia de Infravermelho com Transformada de Fourier , Anti-Infecciosos/farmacologia , Superóxido Dismutase , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Antibacterianos/químicaRESUMO
The need for a sustainable and circular bioeconomy model is imperative due to petroleum non-renewability, scarcity and environmental impacts. Biorefineries systems explore biomass to its maximum, being an important pillar for the development of circular bioeconomy. Polyhydroxyalkanoates (PHAs) can take advantage of biorefineries, as they can be produced using renewable feedstocks, and are potential substitutes for petrochemical plastics. The present work aims to evaluate the current status of the industrial development of PHAs production in biorefineries and PHAs contributions to the bioeconomy, along with future development points. Advancements are noticed when PHA production is coupled in wastewater treatment systems, when residues are used as substrate, and also when analytical methodologies are applied to evaluate the production process, such as the Life Cycle and Techno-Economic Analysis. For the commercial success of PHAs, it is established the need for dedicated investment and policies, in addition to proper collaboration of different society actors.
Assuntos
Petróleo , Poli-Hidroxialcanoatos , Plásticos , BiomassaRESUMO
Biodiesel, unlike to its fossil-based homologue (diesel), is renewable. Its use contributes to greater sustainability in the energy sector, mainly by reducing greenhouse gas emissions. Current biodiesel production relies on plant- and animal-related feedstocks, resulting in high final costs to the prices of those raw materials. In addition, the production of those materials competes for arable land and has provoked a heated debate involving their use food vs. fuel. As an alternative, single-cell oils (SCOs) obtained from oleaginous microorganisms are attractive sources as a biofuel precursor due to their high lipid content, and composition similar to vegetable oils and animal fats. To make SCOs competitive from an economic point of view, the use of readily available low-cost substrates becomes essential. This work reviews the most recent advances in microbial oil production from non-synthetic sugar-rich media, particularly sugars from lignocellulosic wastes, highlighting the main challenges and prospects for deploying this technology fully in the framework of a Biorefinery concept.
Assuntos
Biocombustíveis , Saccharomyces cerevisiae , Óleos de PlantasRESUMO
Rheumatoid arthritis (RA) is an invalidating chronic autoimmune disorder characterized by joint inflammation and progressive bone damage. Dietary intervention is an important component in the treatment of RA to mitigate oxidative stress, a major pathogenic driver of the disease. Alongside traditional sources of antioxidants, microalgae-a diverse group of photosynthetic prokaryotes and eukaryotes-are emerging as anti-inflammatory and immunomodulatory food supplements. Several species accumulate therapeutic metabolites-mainly lipids and pigments-which interfere in the pro-inflammatory pathways involved in RA and other chronic inflammatory conditions. The advancement of the clinical uses of microalgae requires the continuous exploration of phytoplankton biodiversity and chemodiversity, followed by the domestication of wild strains into reliable producers of said metabolites. In addition, the tractability of microalgal genomes offers unprecedented possibilities to establish photosynthetic microbes as light-driven biofactories of heterologous immunotherapeutics. Here, we review the evidence-based anti-inflammatory mechanisms of microalgal metabolites and provide a detailed coverage of the genetic engineering strategies to enhance the yields of endogenous compounds and to develop innovative bioproducts.
Assuntos
Artrite Reumatoide , Microalgas , Humanos , Microalgas/metabolismo , Artrite Reumatoide/tratamento farmacológico , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Antioxidantes/metabolismo , Suplementos Nutricionais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/metabolismoRESUMO
Drawing on original ethnobotanical and anthropological research among Indigenous peoples across the Amazon, we examine synergies and dissonances between Indigenous and Western scientific knowledge about the environment, resource use, and sustainability. By focusing on the sensory dimension of Indigenous engagements with the environment-an approach we have described as "sensory ecology" and explored through the method of "phytoethnography"-we promote a symmetrical dialogue between Indigenous and scientific understandings around such phenomena as animal-plant mutualisms, phytochemical toxicity, sustainable forest management in "multinatural" landscapes, and the emergence of new diseases like the novel coronavirus SARS-CoV-2 (COVID-19). Drawing examples from our own and other published works, we explore the possibilities and limitations of a "parallax view" attempting to hold Indigenous and scientific knowledge in focus simultaneously. As the concept of "bioeconomy" emerges as a key alternative for sustainable development of the Amazon, we encourage a critical and urgent engagement between dominant Western conceptions and Indigenous Amazonian knowledge, practices, and cultural values. Cognitive science, which has long contributed to studies of Indigenous categorization and conceptualization of the natural world, continues to play an important role in building bridges of mutual communication and respect between Indigenous and scientific approaches to sustainability and biodiversity conservation.
Assuntos
COVID-19 , Animais , Humanos , SARS-CoV-2 , Biodiversidade , ConhecimentoRESUMO
Tropical countries face considerable economic losses due to mosquito-borne diseases which can be effectively combatted using plant-based mosquito repellents. Therefore, using a questionnaire survey, we selected the 25 top-ranked common but underutilized aromatic plants with mosquito repellent ability in Sri Lanka to investigate the rural sector's willingness to cultivate and supply them. Cinnamomum verum, Citrus aurantiifolia, Citrus sinensis, Citrus reticulata, Aegle marmelos, and Ocimum tenuiflorum were the common species thus identified. The willingness to cultivate and supply aromatic plants with mosquito repellent ability varied between 88% and 60%. The Chi-squared test indicated a significant association between gender and willingness to cultivate and supply these plants. Men had a higher willingness (82%). Persons formally educated up to elementary school level had the highest willingness (85%). The willingness from households with many non-income-generating members was 100%. The random forest model developed in this study identifies farmers' willingness to cultivate and supply aromatic plants with mosquito repellent properties. It was trained using an upsampling strategy. Our findings aid in understanding the scenarios involved with introducing, cultivating, and supplying aromatic plants.
RESUMO
The study aimed at zero-waste utilization of fish processing streams for cultivation of microalgae Galdieria sulphuraria. Wastewater from a fish processing facility, slam (mix of used fish feed and faeces), and dried pellet (sediments after enzymatic hydrolysis of rainbow trout) were investigated as potential sources of carbon, nitrogen, and phosphate for cultivation of G. sulphuraria. The pellet extract was found to support the growth of G. sulphuraria when appropriate diluted, at concentrations below 40 % (v/v). It was revealed that wastewater does not impact the growth negatively, however free amino nitrogen and carbon sources need to be supplied from another source. Therefore, only proteolyzed pellet extract (20 %, v/v) was selected for upscaling and a biomass concentration of 80 g L-1 (growth rate was 0.72 day-1) was achieved in a non-sterile fed-batch culture. Even though biomass was produced under non-sterile conditions no pathogens such as Salmonella sp. could be detected.
Assuntos
Microalgas , Rodófitas , Águas Residuárias , Processos Heterotróficos , Biomassa , Nitrogênio , Aquicultura , Carbono , Extratos VegetaisRESUMO
During the last decades, the cannabinoid research for therapeutic purposes has been rapidly advancing, with an ever-growing body of evidence of beneficial effects for a wide sort of conditions, including those related to mucosal and epithelial homeostasis, inflammatory processes, immune responses, nociception, and modulating cell differentiation. ß-caryophyllene (BCP) is a lipophilic volatile sesquiterpene, known as non-cannabis-derived phytocannabinoid, with documented anti-inflammatory, anti-proliferative and analgesic effects in both in vitro and in vivo models. Copaiba oil (COPA) is an oil-resin, mainly composed of BCP and other lipophilic and volatile components. COPA is reported to show several therapeutic effects, including anti-endometriotic properties and its use is widespread throughout the Amazonian folk medicine. COPA was nanoencapsulated into nanoemulsions (NE), then evaluated regarding the potential for transvaginal drug delivery and providing endometrial stromal cell proliferation in vitro. Transmission electron microscopy (TEM) showed that spherical NE were obtained with COPA concentration that varied from 5 to 7 wt%, while surfactant was maintained at 7.75 wt%. Dynamic light scattering (DLS) measurements showed droplet sizes of 30.03 ± 1.18, 35.47 ± 2.02, 43.98 ± 4.23 and PdI of 0.189, 0.175 and 0.182, respectively, with stability against coalescence and Ostwald ripening during 90 days. Physicochemical characterization results suggest that NE were able to both improve solubility and loading capacity, and increase thermal stability of COPA volatile components. Moreover, they showed slow and sustained release for up to eight hours, following the Higuchi kinetic model. Endometrial stromal cells from non-endometriotic lesions and ectopic endometrium were treated with different concentrations of COPA-loaded NE for 48 h to evaluate its effect on cell viability and morphology. The results suggested significant decrease in cell viability and morphological modifications in concentrations higher than 150 µg/ml of COPA-loaded NE, but not when cells were treated with the vehicle (without COPA). Given the relevance of Copaifera spp. species in folk medicine and their bio economical importance in the Amazon, the development of novel formulations to overcome the technological limitations related to BCP and COPA, is promising. Our results showed that COPA-loaded NE can lead to a novel, uterus-targeting, more effective and promising natural alternative treatment of endometriosis.
Assuntos
Endometriose , Óleos Voláteis , Feminino , Humanos , Endometriose/tratamento farmacológico , Endometriose/patologia , Sistemas de Liberação de Medicamentos , Tensoativos/química , Composição de MedicamentosRESUMO
Spent coffee grounds (SCGs) are a noticeable waste that may cause environmental pollution problems if not treated appropriately. Torrefaction is a promising low-temperature carbonization technique to achieve waste remediation, recovery, and circular bioeconomy efficiently. This study aims to maximize lipids retained in thermally degraded SCGs, thereby upgrading their fuel quality to implement resource sustainability and availability. This work also analyzes the lipid contribution to biochar's calorific value under various carbonization temperatures and times. Torrefaction can retain 11-15 wt% lipids from SCG, but the lipid content decreases when the pyrolysis temperature is higher than 300 °C. Extracted lipid content consisting of fatty acids echoed the results of diesel adsorption capacity. The lipid content in the biochar from SCG torrefied at 300 °C for 30 min is 11.00 wt%, and its HHV is 28.16 MJ kg-1. In this biochar, lipids contribute about 14.84% of the calorific value, and the other carbonized solid contributes 85.16%. On account of the higher lipid content in the biochar, it has the highest diesel adsorption amount per unit mass, with a value of 1.66 g g-1. This value accounts for a 22.1% improvement compared to its untorrefied SCG. Accordingly, torrefaction can sufficiently remediate SCG-derived environmental pollution. The produced biochar can become a spilled oil adsorbent. Furthermore, oil-adsorbed biochar (oilchar) is a potential solid fuel. In summary, SCG torrefaction can simultaneously achieve pollution remediation, waste valorization, resource sustainability, and circular bioeconomy.
Assuntos
Carvão Vegetal , Café , Temperatura , Ácidos GraxosRESUMO
Valorization of agro-food waste by converting it into a renewable resource plays a crucial role in a bio-based circular economy. Therefore, this study was designed to evaluate the suitability of distillery stillage (DS), which comes from alcohol production from cereals, for producing value-added products that can be used synergistically. The main objective was to investigate the usefulness of two substances for the recovery of phenolic acids, which have antioxidant activity, from the liquid fraction of DS: namely, tetrahydrofurfuryl alcohol (THFA) as a solvent and biochar as an adsorbent, both produced from the solid fraction of cereal processing waste. The effect of THFA concentration (80 and 100%) on phenolic acid yield in ultrasound-assisted extraction was studied. The solubilization predictions of phenolic compounds by the Hansen solubility parameters were in accordance with the experimental results: the yield of phenolic acids in the extracts was highest (3.76 µg g-1 dry mass) with 80% THFA. Among the extracted phenolic acids, hydroxycinnamic acids predominated over hydroxybenzoic acids, which may affect the bioactive properties of the extracts and their future applications for industrial purposes. Phenolic acids from the extracts were adsorbed on 17-170 g biochar L-1 and desorbed into water at 40-60 °C. The phenolic acid recovery was highest (â¼92%) when the biochar dose was 85 g L-1 and when desorption was performed at 50 °C. After adsorption/desorption, â¼95% of the antioxidant activity of the phenolic acids in the extracts was maintained. As biochar has a smaller specific surface area than commercial powdered activated carbon (PAC), the biochar dose should be about 5 times higher than an equivalent PAC dose for adsorption efficiency above 90%.
Assuntos
Carvão Vegetal , Eliminação de Resíduos , Grão Comestível/química , Antioxidantes/análise , Hidroxibenzoatos , Extratos VegetaisRESUMO
Carotenoids are naturally occurring pigments that are widely distributed in algae, fungi, bacteria, and plants. Carotenoids play a significant role in the food, feed, cosmetic, nutraceutical, and pharmaceutical industries. These pigments are effectively considered as a health-promoting compounds, which are widely used in our daily diet to reduce the risk of chronic diseases such as cardiovascular diseases, cancer, acute lung injury, cataracts, neural disorders, etc. In this context, this review paper demonstrates the synthesis of carotenoids and their potential application in the food and pharmaceutical industries. However, the demand for carotenoid production is increasing overtime, and the extraction and production are expensive and technically challenging. The recent developments in carotenoid biosynthesis, and key challenges, bottlenecks, and future perspectives were also discussed to enhance the circular bioeconomy.
Assuntos
Carotenoides , Fungos , Bactérias , Plantas , Suplementos NutricionaisRESUMO
Cyanobacteria have been identified as promising organisms to reuse nutrients from waste effluents and produce valuable compounds such as lipids, polyhydroxyalkanoates (PHAs), and pigments. However, almost all studies on cyanobacterial biorefineries have been performed under lab scale and short cultivation periods. The present study evaluates the cultivation of the cyanobacterium Synechocystis sp. in a pilot scale 30 L semi-continuous photobioreactor fed with secondary effluent for a period of 120 days to produce phycobiliproteins, polyhydroxybutyrate (PHB) and lipids. To this end, the harvested biomass from the semi-continuous photobioreactor was transferred into 5 L vertical column batch photobioreactors to perform PHB and lipid accumulation under nutrient starvation. Three hydraulic retention times (HRT) (6, 8 and 10 days) were tested in the semi-continuous photobioreactor to evaluate its influence on biomass growth and microbial community. A maximum biomass concentration of 1.413 g L-1 and maximum productivity of 173 mg L-1 d-1 was reached under HRT of 8 days. Microscopy analysis revealed a shift from Synechocystis sp. to Leptolyngbya sp. and green algae when HRT of 6 days was used. Continuous, stable production of phycobiliproteins in the semi-continuous photobioreactor was obtained, reaching a maximum content of 7.4%dcw in the biomass. In the batch photobioreactors a PHB content of 4.8%dcw was reached under 7 days of nitrogen and phosphorus starvation, while a lipids content of 44.7%dcw was achieved under 30 days of nitrogen starvation. PHB and lipids production was strongly dependent on the amount of nutrients withdrawn from the grow phase. In the case of lipids, their production was stimulated when there was only phosphorus depletion. While Nitrogen and phosphorus limitation was needed to enhance the PHB production. In conclusion, this study demonstrates the feasibility of cultivating cyanobacteria in treated wastewater to produce bio-based valuable compounds within a circular bioeconomy approach.
Assuntos
Microalgas , Synechocystis , Ficobiliproteínas , Biomassa , Águas Residuárias , Fósforo , Nitrogênio , LipídeosRESUMO
This study investigates the bioactive properties of different extracts of cardoon leaves in rescuing neuronal development arrest in an in vitro model of Rett syndrome (RTT). Samples were obtained from plants harvested at different maturity stages and extracted with two different methodologies, namely Naviglio® and supercritical carbon dioxide (scCO2). While scCO2 extracts more hydrophobic fractions, the Naviglio® method extracts phenolic compounds and less hydrophobic components. Only the scCO2 cardoon leaves extract obtained from plants harvested in spring induced a significant rescue of neuronal atrophy in RTT neurons, while the scCO2 extract from the autumn harvest stimulated dendrite outgrowth in Wild-Type (WT) neurons. The scCO2 extracts were the richest in squalene, 3ß-taraxerol and lupeol, with concentrations in autumn harvest doubling those in spring harvest. The Naviglio® extract was rich in cynaropicrin and exerted a toxic effect at 20 µM on both WT and RTT neurons. When cynaropicrin, squalene, lupeol and 3ß-taraxerol were tested individually, no positive effect was observed, whereas a significant neurotoxicity of cynaropicrin and lupeol was evident. In conclusion, cardoon leaves extracts with high content of hydrophobic bioactive molecules and low cynaropicrin and lupeol concentrations have pharmacological potential to stimulate neuronal development in RTT and WT neurons in vitro.
Assuntos
Cynara , Síndrome de Rett , Cynara/química , Esqualeno , Extratos Vegetais/farmacologia , Extratos Vegetais/químicaRESUMO
Polyhydroxyalkanoates (PHA) are the more attractive sustainable green plastic, and it has the potential to replace petroleum-based plastics (PBP) in the global market. Recently, most of the developed and developing countries have banned the use of traditional PBP. This increases the demand for green plastic production and positively impacts the global market. Producing green plastic from various waste streams such as whey, animal, and crude glycerol will be eco-friendly and cost-effective. However, the factors influencing the environmental sustainability of PHA production from different waste streams are still unclear. This review could be reinforced concrete to researchers to gather deep knowledge on techno-economic analysis, life-cycle assessment, environmental and ecological risks caused during PHA production from different waste streams.
Assuntos
Petróleo , Poli-Hidroxialcanoatos , Animais , Plásticos , Soro do LeiteRESUMO
Alternatives to conventional inorganic fertilizers are needed to cope with the growing global population and contamination due to the production and use of those inorganic compounds. The recovery of nutrients from wastewater and organic wastes is a promising option to provide fertilization in a circular economy approach. In this context, microalgae-based systems are an alternative to conventional wastewater treatment systems, reducing the treatment costs and improving the sustainability of the process, while producing nutrient-rich microalgal biomass. The aim of the present study is to evaluate the use of microalgal biomass produced during domestic wastewater treatment in high rate algal ponds as a biofertilizer in basil crops (Ocimum basilicum L.). Wastewater was successfully treated, with removal efficiencies in the secondary treatment of 69, 91 and 81% in terms of chemical oxygen demand (COD), total inorganic nitrogen (TIN) and phosphates (PO43-P), respectively. The microalgal biomass, composed mainly by Scenedesmus, presented the following composition: 12% of dry weight and nutrients concentration of 7.6% nitrogen (N), 1.6% phosphorus (P) and 0.9% potassium (K). The study compared the performance of 3 different fertilizers: 1) microalgae fertilizer (MF), 2) inorganic fertilizer (IF) as positive control and 3) the combination of both microalgae and inorganic fertilizer (MF + IF). Comparable plant growth (i.e., number of leaves, shoot fresh and dry weight and leaf fresh weight) was observed among treatments, except for leaf dry weight, which was significantly higher in the IF + MF and MF treatments (28 and 27%, respectively) in comparison with the control. However, the microalgae treatment provided the lowest chlorophyll, N and K leaf content. In conclusion, this study suggests that combining microalgae grown in wastewater with an inorganic fertilizer is a promising nutrients source for basil crops, enhancing the circular bioeconomy.
Assuntos
Microalgas , Nitrogênio , Biomassa , Clorofila , Produtos Agrícolas , Fertilizantes/análise , Nitrogênio/análise , Fosfatos , Fósforo , Potássio , Águas Residuárias/químicaRESUMO
The forest ecosystem is a source of material resources used since ancient times by mankind. Ferns are part of different oriental systems of traditional medicine due to the phytochemical variety of their fronds, which have allowed their traditional use to be validated through ethnopharmacological studies. In Europe, different cultures have used the same fern with a wide variety of applications due to its presence in most European forests. In recent years, studies on the phytocharacterization and biological activity of the fronds of the main European ferns have been published. In this study, the presence of polyphenolic phytochemicals has been evaluated by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) in the fronds of two wild ferns together with in vitro activities in non-tumoral and human tumoral cell lines. The polyphenols were extracted from Asplenium trichomanes L. and Ceterach officinarum Willd. by cold maceration using methanol. The main phytochemicals of polyphenolic origin in the extracts of A. trichomanes and C. officinarum determined by HPLC-MS/MS were the flavonol hyperoside and the phenolic acid chlorogenic acid, respectively. This different polyphenolic nature of both extracts contributes to the divergence of the behavior experienced in the biological activities tested, but none of the extracts showed a cytotoxic or phototoxic profile in the different tested cell lines. However, the cytoprotective values in front of the H2O2 oxidative stress induced in the 3T3 and HaCaT cell lines position these extracts as possible candidates for future health applications.
RESUMO
As supply chains of chemical fertilisers become more precarious, raw or derived bio-based fertilisers (herein referred to as bio-fertilisers) from the dairy processing industry could be good alternatives. However, their agronomic performance is relatively unknown, and where documented, the method to estimate this value is rarely presented. This pot study investigated aluminium-precipitated and calcium-precipitated dairy processing sludges (Al and Ca-DPS) and DPS-derived biochar as potential bio-fertilisers to grow ryegrass (Lolium perenne L.) and spring wheat (Triticum aestivum). The study aims were to examine how (1) application rate (optimal versus high) and (2) calculation methods (with and without chemical fertiliser response curves) can affect estimates of nitrogen and phosphorus mineral fertiliser equivalence value (N- and P-MFE) and associated agronomic advice. The results from both crops showed that for nitrogen application rates (125 or 160 kg ha-1 for ryegrass and 160 or 240 kg ha-1 for spring wheat) estimates of N-MFE increased for both Al-DPS and Ca-DPS as application rate increased. Dry matter yield response curves produced the highest % N-MFE results (e.g., ryegrass â¼50% and 70% for Al-DPS and Ca-DPS) with other calculation methods producing all similar results (e.g., ryegrass â¼20% for Al-DPS and Ca-DPS). For phosphorus application rates (40 or 80 kg ha-1 for ryegrass and 50 or 80 kg ha-1 for spring wheat), estimates of P-MFE did not increase with application rate. Negative P-MFE values obtained for Ca-DPS and DPS-biochar when growing ryegrass and spring wheat grain, respectively, indicated low plant available phosphorus. Overall, Al-DPS had better performance as a bio-fertiliser when compared to the other products tested. There was no significant difference between the two calculation methods of MFE, which suggests that the determination of MFE could be simplified by using one application as opposed to numerous application rates of fertilisers. Future work should focus on elucidating the N- and P-MFE of a wider range of DPS and STRUBIAS bio-fertilisers, and alternative methods should be investigated that enable a comparison across all bio-fertiliser types.