Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 275
Filtrar
Mais filtros

Medicinas Complementares
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Anal Biochem ; 690: 115529, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38582243

RESUMO

Alchemilla vulgaris L., Trifolium pratense L. and Glycyrrhiza glabra L. are important remedies in traditional medicine, known for many usages, including treating gynecological diseases. Despite folkloric use of the plant materials, there is a lack of scientific data to support their therapeutic application. The aims of the present study were to evaluate the relative binding affinities (RBAs) of plant-derived phytoestrogens for estrogen receptor ß (ERß) using fluorescent biosensor in yeast and to apply this assay for the assessment of the potential of plant materials towards ERs and treatment of estrogen-related disorders. Ligand-binding domain of ERß fused with yellow fluorescent protein (ERß LBD-YFP) was expressed in S. cerevisiae and fluorescence was detected by fluorimetry and fluorescence microscopy. Structural basis for experimental results was explored by molecular docking. Yeast-based fluorescent assay was successfully optimized and applied for identification of natural phenolic compounds and phytoestrogen-rich plant extracts that interact with ERß-LBD, making this biosensor a valuable tool for screening estrogenic potential of a variety of plant extracts. This assay can be used for preliminary testing of plant-derived or fungal extracts, but also other sources of environmental substances with ER-modulating activity in order to assess their possible effects on the female reproductive system.

2.
Food Chem ; 448: 139127, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38608399

RESUMO

To address the food safety issues caused by toxins, we established a fluorescent copper nanocluster biosensor based on magnetic aptamer for the visual and quantitative detection of ZEN. Specifically, we utilized the docking-aided rational tailoring (DART) strategy to analyze intermolecular force and interaction sites between zearalenone (ZEN) and the aptamer, and optimize the long-chain aptamer step by step to enhance the binding affinity by 3.4 times. The magnetic bead-modified aptamer underwent conformational changes when competing with complementary sequences to bind with ZEN. Then, the released complementary sequences will be amplified in template-free mode with the presence of the terminal deoxynucleotidyl transferase (TdT), and generating T-rich sequences as the core sequences for the luminescence of copper nanoclusters. The luminescence could be visualized and quantitatively detected through ultraviolet irradiation. The proposed label-free aptasensor exhibited high sensitivity and specificity, with a low limit of detection (LOD) of 0.1 ng/mL.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Cobre , Zearalenona , Zearalenona/análise , Zearalenona/química , Cobre/química , Técnicas Biossensoriais/instrumentação , Aptâmeros de Nucleotídeos/química , Contaminação de Alimentos/análise , Limite de Detecção , Simulação de Acoplamento Molecular , Nanopartículas Metálicas/química , Fluorescência
3.
Talanta ; 274: 125944, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38537347

RESUMO

In this study, we present a one-pot, one-step, label-free miRNA detection method through a structural transition of a specially designed dumbbell-shape probe, initiating a rolling circle transition (RCT). In principle, target miRNA binds to right loop of the dumbbell probe (DP), which allows structural change of the DP to circular form, exposing a sequence complementary to the T7 promoter (T7p) previously hidden within the stem. This exposure allows T7 RNA polymerase to initiate RCT, producing a repetitive Mango aptamer sequence. TO1-biotin, fluorescent dye, binds to the aptamer, inducing a detectable enhancement of fluorescence intensity. Without miR-141, the DP stays closed, RCT is prevented, and the fluorescence intensity remains low. By employing this novel strategy, target miRNA was successfully identified with a detection of 73 pM and a dynamic linear range of 0-10 nM. Additionally, the method developed enables one-pot, one-step, and label-free detection of miRNA, demonstrating potential for point-of-care testing (POCT) applications. Furthermore, the practical application of the designed technique was demonstrated by reliably detecting the target miRNA in the human serum sample. We also believe that the conceived approach could be widely used to detect not only miRNAs but also diverse biomolecules by simply replacing the detection probe.


Assuntos
Aptâmeros de Nucleotídeos , MicroRNAs , Proteínas Virais , MicroRNAs/análise , MicroRNAs/sangue , Humanos , Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/métodos , Corantes Fluorescentes/química , Limite de Detecção , Conformação de Ácido Nucleico , Espectrometria de Fluorescência , RNA Polimerases Dirigidas por DNA/química
4.
Antioxidants (Basel) ; 13(2)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38397757

RESUMO

Deficient wound healing is frequently observed in patients diagnosed with diabetes, a clinical complication that compromises mobility and leads to limb amputation, decreasing patient autonomy and family lifestyle. Fibroblasts are crucial for secreting the extracellular matrix (ECM) to pave the wound site for endothelial and keratinocyte regeneration. The biosynthetic pathways involved in collagen production and crosslinking are intimately related to fibroblast redox homeostasis. In this study, two sets of human dermic fibroblasts were cultured in normal (5 mM) and high (25 mM)-glucose conditions in the presence of 1 µM selenium, as sodium selenite (inorganic) and the two selenium amino acids (organic), Se-cysteine and Se-methionine, for ten days. We investigated the ultrastructural changes in the secreted ECM induced by these conditions using scanning electron microscopy (SEM). In addition, we evaluated the redox impact of these three compounds by measuring the basal state and real-time responses of the thiol-based HyPer biosensor expressed in the cytoplasm of these fibroblasts. Our results indicate that selenium compound supplementation pushed the redox equilibrium towards a more oxidative tone in both sets of fibroblasts, and this effect was independent of the type of selenium. The kinetic analysis of biosensor responses allowed us to identify Se-cysteine as the only compound that simultaneously improved the sensitivity to oxidative stimuli and augmented the disulfide bond reduction rate in high-glucose-cultured fibroblasts. The redox response profiles showed no clear association with the ultrastructural changes observed in matrix fibers secreted by selenium-treated fibroblasts. However, we found that selenium supplementation improved the ECM secreted by high-glucose-cultured fibroblasts according to endothelial migration assessed with a wound healing assay. Direct application of sodium selenite and Se-cysteine on purified collagen fibers subjected to glycation also improved cellular migration, suggesting that these selenium compounds avoid the undesired effect of glycation.

5.
Anal Sci ; 40(4): 701-707, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38316711

RESUMO

In this work, a novel zirconium phosphonate (ZrPR1R2) was prepared by decorating both the aminoethoxy- group (R1) and the carboxypropyl- group (R2) on the zirconium phosphate layers in order to manipulate further the immobilization of the peroxidase (POD), and an antioxidant biosensor with higher sensitivity was constructed by dropping the POD/ZrPR1R2 composite onto the glassy carbon electrode surface. The activity of the POD/ZrPR1R2 composite was detected by Uv-vis spectra. The direct electrochemical behavior, the electrocatalytic response to dissolved oxygen and hydrogen peroxide, as well as the ability to detect total antioxidant capacity in tea sample were investigated by the methods of cyclic voltammetry. The results indicated that the immobilization of POD in ZrPR1R2 nanosheets matrix enhanced the enzymatic activity, and achieved the fast and direct electron transfer between POD and glassy carbon electrode. Moreover, the POD/ZrPR1R2 composite modified electrode show the electrocatalytic response to hydrogen peroxide in the linear range of 8.8×10-8 to 8.8×10-7 mol L-1, with the detection limit of 3.3×10-8 mol L-1. Attributing to the sensitive response to dissolved oxygen, the total antioxidant capacity can be detected directly in the real tea water by this POD/ZrPR1R2 composite modified electrode.


Assuntos
Antioxidantes , Técnicas Biossensoriais , Peroxidase , Peróxido de Hidrogênio/análise , Zircônio , Carbono , Eletrodos , Peroxidases , Oxigênio , Chá , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos
6.
ACS Appl Mater Interfaces ; 16(9): 11305-11314, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38406866

RESUMO

A black phosphorus (BP)-based reusable biosensor platform is developed for the repeated and real-time detection of cortisol using antibody-conjugated magnetic particle (MP) structures as a refreshable receptor. Here, we took advantage of the low-noise characteristics of a mechanically exfoliated BP-based field-effect transistor (FET) and hybridized it with anti-cortisol antibody-functionalized MPs to build a highly sensitive cortisol sensor. This strategy allowed us to detect cortisol down to 1 aM in real time and discriminate cortisol from other hormones. In this case, we could easily remove MPs with used antibodies from the surface of a BP-FET and reuse the chip for up to eight repeated sensing operations. Moreover, since our platform could be fabricated using conventional photolithography techniques and the sensor can be reused multiple times, one should be able to significantly reduce operation costs for practical applications. Furthermore, this method could be utilized to detect different hormones with high sensitivity and selectivity in complex environments such as artificial saliva solutions. In this respect, our reusable BP-FET biosensing platform can be a powerful tool for versatile applications such as clinical diagnosis and basic biological analysis by conjugating various antibodies.


Assuntos
Técnicas Biossensoriais , Hidrocortisona , Hidrocortisona/análise , Saliva/química , Fósforo , Magnetismo , Anticorpos
7.
Biosens Bioelectron ; 252: 116146, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38417286

RESUMO

Staphylococcus aureus contamination in food supplements poses substantial challenges to public health and large-scale production but the sensitive detection in a timely manner remains a bottleneck. Drawing inspiration from the sea hedgehog, gold nanostars (AuNSs) were leveraged to design an ultrasensitive surface-enhanced Raman scattering (SERS) biosensor for the determination of Staphylococcus aureus in food supplements. Besides the surface enhancement furnished by the AuNSs, Raman reporter molecules and specific aptamers sequentially self-assembled onto these AuNSs to construct the "three-in-one" SERS biosensor probe for label-based quantitation of Staphylococcus aureus. Following incubation with contaminated health product samples, the gold nanostars@Raman reporter-aptamer specifically recognize and assemble around Staphylococcus aureus cells, forming a distinctive sea hedgehog structure. This unique configuration results in an amplified Raman signal at 1338 cm-1 and an enhancement factor of up to 6.71 × 107. The entire quantitative detection process can be completed within 30 min, boasting an exceptional limit of detection as low as 1.0 CFU mL-1. The method exhibits a broad working range for the determination of Staphylococcus aureus, with concentrations spanning 2.15 CFU mL-1 to 2.15 × 105 CFU mL-1. Furthermore, it demonstrates outstanding precision, with relative standard deviation values consistently below 5.0%. As a showcase to validate the practicality of the SERS method, we conducted tests on determining Staphylococcus aureus in a herbal food supplement, i.e., Ginkgo Biloba extract (GBE); the results align closely with those obtained through the conventional lysogeny broth agar plate method, pointing to the potential applicability in real-world scenarios.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Nanopartículas Metálicas , Animais , Staphylococcus aureus , Nanopartículas Metálicas/química , Ouriços , Análise Espectral Raman/métodos , Técnicas Biossensoriais/métodos , Ouro/química , Aptâmeros de Nucleotídeos/química , Suplementos Nutricionais
8.
Int J Biol Macromol ; 258(Pt 2): 129126, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38163504

RESUMO

New pathogenic influenza virus strains are constantly emerging, posing a serious risk to both human health and economic growth. To effectively control the spread of this virus, there is an urgent need for early, rapid, sensitive, simple, and cost-effective detection technologies, as well as new and effective antiviral drugs. In this study, we have successfully achieved a significant milestone by successfully fusing the H7N9 influenza virus hemagglutinin (HA) protein with the nano-luciferase component, resulting in the development of a novel set of biosensors. This remarkable achievement marks the first instance of utilizing this biosensor technology for influenza antibody detection. Our biosensor technology also has the potential to facilitate the development of antiviral drugs targeting specific epitopes of the HA protein, providing a promising avenue for the treatment of H7N9 influenza virus infections. Furthermore, our biosensors have broad applications beyond H7N9 influenza virus detection, as they can be expanded for the detection of other pathogens and drug screening applications in the future. By providing a novel and effective solution to the detection and treatment of influenza viruses, our biosensors have the potential to revolutionize the field of infectious disease control.


Assuntos
Técnicas Biossensoriais , Subtipo H7N9 do Vírus da Influenza A , Influenza Humana , Humanos , Hemaglutininas , Avaliação Pré-Clínica de Medicamentos , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Antivirais
9.
Talanta ; 271: 125668, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38237282

RESUMO

In this work, an electrochemiluminescence (ECL) biosensor based on dual ECL quenching effects of silver nanoclusters (Ag NCs) and multiple cycling amplification was designed to achieve ultrasensitive detection of ATP. The specific recognition of target ATP to aptamer initiated multiple cycling amplification, and a small amount of target was converted into a large number of DNA product chains (S1) by amplification. After S1 opened hairpin DNA 2 (HP2), Ag NCs approached the surface of CdS quantum dots (QDs) modified-electrode by complementary DNA, resulting in a significant decrease of ECL intensity from CdS QDs. The quenching principle is as follows. Firstly, the absorption spectrum of Ag NCs overlaps well with the ECL emission spectrum of CdS QDs, leading to effective ECL resonance energy transfer (ECL-RET); Secondly, Ag NCs could catalyze electrochemical reduction of K2S2O8, leading to consumption of ECL co-reactant and reducing ECL of QDs. The double-ECL quenching achieved ultrasensitive biosensing detection of ATP with a wide range from 1 aM to 1 pM. This present work reported new principle of double-quenching QDs ECL by Ag NCs, and developed a novel ECL biosensor by combining with multiple cycle amplification technique, which has great contribution to the development of QDs ECL and biosensing applications.


Assuntos
Técnicas Biossensoriais , Compostos de Cádmio , Prata , Técnicas Eletroquímicas/métodos , Medições Luminescentes/métodos , DNA/genética , Técnicas Biossensoriais/métodos , Trifosfato de Adenosina
10.
Artigo em Inglês | MEDLINE | ID: mdl-37356818

RESUMO

Growing interest over recent years in personalized health monitoring coupled with the skyrocketing popularity of wearable smart devices has led to the increased relevance of wearable sweat-based sensors for biomarker detection. From optimizing workouts to risk management of cardiovascular diseases and monitoring prediabetes, the ability of sweat sensors to continuously and noninvasively measure biomarkers in real-time has a wide range of applications. Conventional sweat sensors utilize external stimulation of sweat glands to obtain samples, however; this stimulation influences the expression profile of the biomarkers and reduces the accuracy of the detection method. To address this limitation, our laboratory pioneered the development of the passive sweat sensor subfield, which allowed for our progress in developing a sweat chemistry panel. Passive sweat sensors utilize nanoporous structures to confine and detect biomarkers in ultra-low sweat volumes. The ability of passive sweat sensors to use smaller samples than conventional sensors enable users with sedentary lifestyles who perspire less to benefit from sweat sensor technology not previously afforded to them. Herein, the mechanisms and strategies of current sweat sensors are summarized with an emphasis on the emerging subfield of passive sweat-based diagnostics. Prospects for this technology include discovering new biomarkers expressed in sweat and expanding the list of relevant detectable biomarkers. Moreover, the accuracy of biomarker detection can be enhanced with machine learning using prediction algorithms trained on clinical data. Applying this machine learning in conjunction with multiplex biomarker detection will allow for a more holistic approach to trend predictions. This article is categorized under: Diagnostic Tools > Diagnostic Nanodevices Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Diagnostic Tools > Biosensing.


Assuntos
Técnicas Biossensoriais , Dispositivos Eletrônicos Vestíveis , Suor/química , Suor/metabolismo , Biomarcadores/análise
11.
J Inorg Biochem ; 251: 112441, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38103419

RESUMO

A prion-derived copper(II)-binding peptide was assembled onto a gold electrode for the building of a voltammetric biosensor for measuring the Cu2+ metal ion in biological samples. The chosen sequence was H-CVNITKQHTVTTTT-NH2, with an appended cysteine residue for binding to the gold surface as a self-assembled monolayer and a histidine residue as the anchorage point for copper(II) complexation. The biosensor showed a linear range of 10-7 to 10-6 M with an 8.0 × 10-8 M detection limit and a 1.0 × 10-7 M quantification limit, with good precision, trueness, and absence of matrix effect. The quantification of Cu2+ was performed in the presence of other transition metal ions, such as Zn2+, Cd2+, Fe2+, or Ni2+, which indicates the excellent selectivity of the biosensor. When the modified electrode was applied for measuring copper(II) in calcined coffee seeds, a difference in copper amount was observed between two Coffea arabica cultivars that were submitted to a treatment with a copper-based antifungal, showing the applicability of the biosensor in the agricultural field.


Assuntos
Técnicas Biossensoriais , Cobre , Cobre/química , Café , Peptídeos/química , Ouro/química , Íons
12.
Int J Mol Sci ; 24(24)2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38139102

RESUMO

Due to the limitations of conventional Brucella detection methods, including safety concerns, long incubation times, and limited specificity, the development of a rapid, selective, and accurate technique for the early detection of Brucella in livestock animals is crucial to prevent the spread of the associated disease. In the present study, we introduce a magnetic nanoparticle marker-based biosensor using frequency mixing magnetic detection for point-of-care testing and quantification of Brucella DNA. Superparamagnetic nanoparticles were used as magnetically measured markers to selectively detect the target DNA hybridized with its complementary capture probes immobilized on a porous polyethylene filter. Experimental conditions like density and length of the probes, hybridization time and temperature, and magnetic binding specificity, sensitivity, and detection limit were investigated and optimized. Our sensor demonstrated a relatively fast detection time of approximately 10 min, with a detection limit of 55 copies (0.09 fM) when tested using DNA amplified from Brucella genetic material. In addition, the detection specificity was examined using gDNA from Brucella and other zoonotic bacteria that may coexist in the same niche, confirming the method's selectivity for Brucella DNA. Our proposed biosensor has the potential to be used for the early detection of Brucella bacteria in the field and can contribute to disease control measures.


Assuntos
Brucella , Brucelose , Nanopartículas de Magnetita , Animais , Brucella/genética , Brucelose/diagnóstico , Brucelose/microbiologia , DNA , Primers do DNA/genética , Sensibilidade e Especificidade
13.
Anal Chim Acta ; 1280: 341868, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37858568

RESUMO

Sensitive and precise determination of virulent foodborne pathogens is significant for food safety. Herein, an ultrasensitive photoelectrochemical (PEC) bioanalysis was developed using the endogenous adenosine triphosphate (ATP)-responded Au@Cu2O core-shell nanocubes (Au@Cu2O NCs) to measure Escherichia coli O157: H7 (E. coli O157:H7) in food. Briefly, the phage-functionalized gold wire was used to specifically recognize the target pathogen. With the bacteriolysis of lysozyme, the endogenous ATP molecules were emitted from the captured target bacteria and enriched by another ATP aptamer-modified gold wire. Following the exchange with complementary DNA (cDNA) chains, the bonded ATP would be released. It could simultaneously etch the Au@Cu2O NCs and compete with external circuit electrons to combine photogenerated holes on the Au@Cu2O NCs-modified screen-printed electrode. With the synergy of the two signal amplification mechanisms, a significant attenuation of photocurrent signal appeared even with femtomolar ATP. Therefore, the purpose of ultrasensitive determination of E. coli O157:H7 was realized, which depended on the endogenous ATP rather than exogenous signal probes. The proposed biosensor presented a good analysis performance within 10-106 CFU/mL with a detection limit of 5 CFU/mL. Besides, its specificity, repeatability, and stability were also investigated and acceptable. The detection results for food samples matched well with the results detected by the plate counting method. This work gives an innovative and sensitive signal amplification strategy for PEC bioassays in foodborne pathogens detection.


Assuntos
Técnicas Biossensoriais , Escherichia coli O157 , Escherichia coli O157/genética , Trifosfato de Adenosina , Oligonucleotídeos , Ouro/química , Técnicas Biossensoriais/métodos , Microbiologia de Alimentos
14.
Anal Chim Acta ; 1279: 341799, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37827639

RESUMO

Xuebijing injection (XBJ) has a good therapeutic effect on the patients with severe coronavirus disease, but the material basis of XBJ with the anticoagulant effect to improve the coagulopathy and thromboembolism is still unclear. Herein, we developed a new strategy based on aggregation-induced emission (AIE) for monitoring thrombin activity and screening thrombin inhibitors from XBJ. The molecule AIE603 and the thrombin substrate peptide S-2238 were formed into AIE nanoparticle (AIENP) which emitted notable fluorescence due to the restriction of intramolecular motions. In the presence of thrombin, AIENP was specifically hydrolyzed and AIE603 was released from AIENP, leading to the decrease of fluorescence intensity. Furthermore, AIENP was combined with ultra-high performance liquid chromatography-fraction collector (UHPLC-FC) and ultra-high performance liquid chromatography quadrupole-time-of-flight mass spectrometry (UHPLC-Q-TOF/MS) for separation, preparation, screening and identification of the thrombin inhibitors from XBJ, a total of 58 chemical constituents were identified, among which 6 compounds possessed higher anticoagulant activity. Notably, the overall inhibition rate of the 6 mixed standards was equivalent to about 60% of the inhibition rate of XBJ. Therefore, this work provides a novel, cheap and simple method for monitoring thrombin activity and is promising to screen active substances from traditional Chinese medicines.


Assuntos
Medicamentos de Ervas Chinesas , Medicina Tradicional Chinesa , Humanos , Cromatografia Líquida de Alta Pressão/métodos , Anticoagulantes/farmacologia , Trombina , Medicamentos de Ervas Chinesas/análise , Espectrometria de Massas/métodos
15.
Biosens Bioelectron ; 240: 115607, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37660459

RESUMO

In this work, selenium and nitrogen co-doped carbon dots (SeN-CDs) possessing highly efficient electrochemiluminescence (ECL) and excellent biocompatibility were synthesized as a new emitter with S2O82- as a coreactant for constructing a biosensor to detect microRNA-221 (miRNA-221) sensitively. Notably, the SeN-CDs exhibited superior ECL performance compared with the N-doped CDs, in which selenium with excellent redox activity served as a coreaction accelerator for facilitating the electroreduction of S2O82- to significantly improve ECL efficiency. Furthermore, target-induced T7 exonuclease (T7 Exo)-assisted double cycle amplification strategy could convert traces of target miRNA-221 into large amounts of output DNA to capture three-dimensional (3D) nanostructures (DTN-Au NPs-DOX-Fc) loaded with large amounts of ECL signal quencher. The constructed biosensor could realize ultrasensitive detection of miRNA-221 and has a low detection limit reaching 2.3 aM, with a successful application to detect miRNA-221 in lysate of Hela and MHCC97-L cancer cell. This work explored a novel method to strengthen the ECL performance of CDs to construct an ECL biosensing platform with sensitive detecting of biomarkers and disease diagnosis.


Assuntos
Técnicas Biossensoriais , MicroRNAs , Racepinefrina , Selênio , Carbono , Nitrogênio
16.
Sensors (Basel) ; 23(17)2023 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-37687909

RESUMO

A uniformly oriented purple membrane (PM) monolayer containing photoactive bacteriorhodopsin has recently been applied as a sensitive photoelectric transducer to assay color proteins and microbes quantitatively. This study extends its application to detecting small molecules, using adenosine triphosphate (ATP) as an example. A reverse detection method is used, which employs AuNPs labeling and specific DNA strand displacement. A PM monolayer-coated electrode is first covalently conjugated with an ATP-specific nucleic acid aptamer and then hybridized with another gold nanoparticle-labeled nucleic acid strand with a sequence that is partially complementary to the ATP aptamer, in order to significantly minimize the photocurrent that is generated by the PM. The resulting ATP-sensing chip restores its photocurrent production in the presence of ATP, and the photocurrent recovers more effectively as the ATP concentration increases. Direct and single-step ATP detection is achieved in 15 min, with detection limits of 5 nM and a dynamic range of 5 nM-0.1 mM. The sensing chip exhibits high selectivity against other ATP analogs and is satisfactorily stable in storage. The ATP-sensing chip is used to assay bacterial populations and achieves a detection limit for Bacillus subtilis and Escherichia coli of 102 and 103 CFU/mL, respectively. The demonstration shows that a variety of small molecules can be simultaneously quantified using PM-based biosensors.


Assuntos
Bacteriorodopsinas , Nanopartículas Metálicas , Ácidos Nucleicos , Ouro , DNA , Trifosfato de Adenosina , Escherichia coli
17.
Biosensors (Basel) ; 13(9)2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37754074

RESUMO

As one of the most popular beverages in the world, coffee is a rich source of non-enzymatic bioactive compounds with antioxidant capacity. In this study, twelve commercial coffee beverages found in local Portuguese markets were assessed to determine their total phenolic and flavonoid contents, as well as their antioxidant capacity, by conventional optical procedures, namely, ferric reducing antioxidant power and DPPH-radical scavenging assay, and non-conventional procedures such as a homemade DNA-based biosensor against two reactive radicals: HO• and H2O2. The innovative DNA-based biosensor comprised an adenine-rich oligonucleotide adsorbed onto a carbon paste electrode. This method detects the different peak intensities generated by square-wave voltammetry based on the partial damage to the adenine layer adsorbed on the electrode surface by the free radicals in the presence/absence of antioxidants. The DNA-based biosensor against H2O2 presented a higher DNA layer protection compared with HO• in the presence of the reference gallic acid. Additionally, the phenolic profiles of the twelve coffee samples were assessed by HPLC-DAD, and the main contributors to the exhibited antioxidant capacity properties were caffeine, and chlorogenic, protocatechuic, neochlorogenic and gallic acids. The DNA-based sensor used provides reliable and fast measurements of antioxidant capacity, and is also cheap and easy to construct.


Assuntos
Antioxidantes , Café , Peróxido de Hidrogênio , DNA , Ácido Gálico , Adenina
18.
Chemphyschem ; 24(21): e202300002, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37535823

RESUMO

Environmentally friendly methods for silver nanoparticles (AgNPs) synthesis without the use of hazardous chemicals have recently drawn attention. In this work, AgNPs have been synthesized by microwave irradiation using only honey solutions or aqueous fresh pink radish extracts. The concentrations of honey, radish extract, AgNO3 and pH were varied. AgNPs presented mean sizes between 7.0 and 12.8 nm and were stable up to 120 days. The AgNPs were employed as co-catalyst (TiO2 @AgNPs) to increase the hydrogen photogeneration under UV-vis and only visible light irradiation, when compared to pristine TiO2 NPs. The prepared photocatalyst also showed hydrogen generation under visible light. Additionally, AgNPs were used to assemble a nanoplasmonic biosensor for the biodetection of extremely low concentrations of streptavidin, owing to its specific binding to biotin. It is shown here that green AgNPs are versatile nanomaterials, thus being potential candidates for hydrogen photogeneration and biosensing applications.


Assuntos
Nanopartículas Metálicas , Prata , Extratos Vegetais , Escherichia coli , Antibacterianos
19.
Biosens Bioelectron ; 237: 115454, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37331102

RESUMO

Violet phosphorene (VP) have been proved to be more stable than black phosphorene, but few reports for its application in electrochemical sensors. In this study, a highly-stable VP decorated with phosphorus-doped hierarchically porous carbon microsphere (PCM) with multiple enzyme-like activities as a nanozyme sensing platform for portable intelligent analysis of mycophenolic acid (MPA) in silage with machine learning (ML) assistance is successfully fabricated. The pore size distribution on the PCM surface is discussed using N2 adsorption tests, and morphological characterization indicates that the PCM is embedded in the layers of lamellar VP. The affinity of the VP-PCM nanozyme obtained under the guidance of the ML model reaches Km = 12.4 µmol/L for MPA. The VP-PCM/SPCE for the efficient detection of MPA exhibits high sensitivity, a wide detection range of 2.49 µmol/L - 71.14 µmol/L with a low limit of detection of 18.7 nmol/L. The proposed ML model with high prediction accuracy (R2 = 0.9999, MAPEP = 0.0081) assists the nanozyme sensor for intelligent and rapid quantification of MPA residues in corn silage and wheat silage with satisfactory recoveries of 93.33%-102.33%. The excellent biomimetic sensing properties of the VP-PCM nanozyme are driving the development of a novel MPA analysis strategy assisted by ML in the context of production requirements of livestock safety.


Assuntos
Técnicas Biossensoriais , Carbono , Carbono/química , Ácido Micofenólico , Microesferas , Fósforo/química , Porosidade , Silagem
20.
Talanta ; 264: 124692, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37276677

RESUMO

Cardiovascular diseases are among the major causes of mortality and morbidity. Warfarin is often prescribed for these disorders, an anticoagulant with inter and intra-dosage variability dose required to achieve the target international normalized ratio. Warfarin presents a narrow therapeutic index, and due to its variability, it can often be associated with the risk of hemorrhage, or in other patients, thromboembolism. Single-nucleotide polymorphisms are included in the causes that contribute to this variability. The Cytochrome P450 (CYP) 2C9*3 genetic polymorphism modifies its enzymatic activity, and hence warfarin's plasmatic concentration. Thus, the need for a selective, rapid, low-cost, and real-time detection device is crucial before prescribing warfarin. In this work, a disposable electrochemical DNA-based biosensor capable of detecting CYP2C9*3 polymorphism was developed. By analyzing genomic databases, two specific 78 base pairs DNA probes; one with the wild-type adenine (Target-A) and another with the cytosine (Target-C) single-nucleotide genetic variation were designed. The biosensor implied the immobilization on screen-printed gold electrodes of a self-assembled monolayer composed by mercaptohexanol and a linear CYP2C9*3 DNA-capture probe. To improve the selectivity and avoid secondary structures a sandwich format of the CYP2C9*3 allele was designed using complementary fluorescein isothiocyanate-labeled signaling DNA probe and enzymatic amplification of the electrochemical signal. Chronoamperometric measurements were performed at a range of 0.015-1.00 nM for both DNA targets achieving limit of detection of 42 p.m. The developed DNA-based biosensor was able to discriminate between the two synthetic target DNA targets, as well as the targeted denatured genomic DNA, extracted from volunteers genotyped as non-variant homozygous (A/A) and heterozygous (A/C) of the CYP2C9*3 polymorphism.


Assuntos
Hidrocarboneto de Aril Hidroxilases , Técnicas Biossensoriais , Humanos , Varfarina , Polimorfismo de Nucleotídeo Único , Farmacogenética , Citocromo P-450 CYP2C9/genética , Hidrocarboneto de Aril Hidroxilases/genética , Vitamina K Epóxido Redutases/genética , Anticoagulantes , DNA/genética , Genótipo , Sondas de DNA/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA