Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
ChemMedChem ; 19(5): e202300527, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38241069

RESUMO

A novel series of N-(4-cyano-1,3-oxazol-5-yl)sulfonamides have been synthesized and characterized by IR, 1 H NMR, 13 C NMR spectroscopy, elemental analysis and chromato-mass-spectrometry. The anticancer activities of all newly synthesized compounds were evaluated via a single high-dose assay (10 µM) against 60 cancer cell lines by the National Cancer Institute (USA) according to its screening protocol. Among them, compounds 2 and 10 exhibited the highest activity against the 60 cancer cell lines panel in the one-dose assay. Compounds 2 and 10 showed inhibitory activity within the GI50 parameter and in five dose analyses. However, their cytostatic activity was only observed against some cancer cell lines, and cytotoxic concentration was outside the maximum used, i. e., >100 µM. The COMPARE analysis showed that the average graphs of the tested compounds have a moderate positive correlation with compounds with the L-cysteine analog and vinblastine (GI50 ) as well as paclitaxel (TGI), which target microtubules. Therefore, disruption of microtubule formation may be one of the mechanisms of the anticancer activity of the tested compounds, especially since among tubulin inhibitors with antitumor activity, compounds with an oxazole motif are widely represented. Therefore, N-(4-cyano-1,3-oxazol-5-yl)sulfonamides may be promising for further functionalization to obtain more active compounds.


Assuntos
Antineoplásicos , Neoplasias , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Detecção Precoce de Câncer , Estrutura Molecular , Relação Estrutura-Atividade , Sulfanilamida/farmacologia , Sulfonamidas/química , Humanos
2.
BMC Complement Med Ther ; 24(1): 38, 2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38218817

RESUMO

BACKGROUND: Standard cancer treatments show a lack of selectivity that has led to the search for new strategies against cancer. The selective elimination of cancer cells modulating the redox environment, known as "selective oxycution", has emerged as a viable alternative. This research focuses on characterizing the unexplored Escallonia genus plant extracts and evaluating their potential effects on cancer's redox balance, cytotoxicity, and activation of death pathways. METHODS: 36 plant extracts were obtained from 4 different species of the Escallonia genus (E. illinita C. Presl, E. rubra (Ruiz & Pav.) Pers., E. revoluta (Ruiz & Pav.) Pers., and E. pulverulenta (Ruiz & Pav.) Pers.), which were posteriorly analyzed by their phytoconstituents, antioxidant capacity, and GC-MS. Further, redox balance assays (antioxidant enzymes, oxidative damage, and transcription factors) and cytotoxic effects (SRB, ∆Ψmt, and caspases actives) of those plant extracts were analyzed on four cell lines (HEK-293T, MCF-7, HT-29, and PC-3). RESULTS: 36 plant extracts were obtained, and their phytoconstituents and antioxidant capacity were established. Further, only six extracts had EC50 values < 10 µg*mL- 1, indicating high toxicity against the tested cells. From those, two plant extracts were selective against different cancer cell lines: the hexane extract of E. pulverulenta´s stem was selective for HT-29, and the ethyl acetate extract of E. rubra´s stem was selective for PC-3. Both extracts showed unbalanced redox effects and promoted selective cell death. CONCLUSIONS: This is the first study proving "selective oxycution" induced by Chilean native plant extracts.


Assuntos
Magnoliopsida , Neoplasias , Humanos , Antioxidantes/farmacologia , Estresse Oxidativo , Extratos Vegetais/farmacologia , Oxirredução , Células HT29 , Neoplasias/tratamento farmacológico
3.
J Ethnopharmacol ; 322: 117591, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38104872

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Ageratina adenophora (Sprengel) R.M.King & H.Rob. has been used as traditional indigenous medicine all across the globe for its diverse therapeutic applications such as anticancer, analgesic, antipyretic, thermogenic, antiseptic, antimicrobial as well as astringent. The various ethnic groups of India use plant parts to treat cuts and wounds, venomous insect bites, skin lesions, blisters, scabies and other skin irritations, gastritis and indigestion problems, cough, stomach ache and dysentery. The Portuguese traditionally extract the juice from the plant and use it for cancer, diabetes, liver disorder, gallbladder and stomach ailments. Nigerian healers use different parts of the plant to treat diabetes, fever and inflammation. AIM OF THE STUDY: The aim of this study is to investigate the cytotoxic potential of A. adenophora hydroalcoholic leaves extract (AHL) on Colorectal cancer (CRC) cell lines (HCT-116, HCT-15 and HT-29), synergistic potential with chemotherapeutic drugs 5FU and Cisplatin as well as reactive oxygen species (ROS) generation, based on the sample collected from Mao district of Manipur, India. Identification of bioactive phytocompounds in AHL was also performed by HRLCMS. METHODS: The AHL was evaluated for its cytotoxic as well as antiproliferative activities by 3-(4, 5-dimethylthiazol-2-yl)-2, 5 diphenyltetrazolium bromide (MTT) assay, clonogenic and cell migration assays. The total phenolic content (TPC) and total flavonoid content (TFC) were quantified by Folin-ciocalteu and Aluminium chloride assays respectively. Caspase 3 activation was evaluated using Caspase-3 Assay Kit. Apoptosis detection by flow cytometry was carried out using annexin V-FITC/PI apoptosis detection kit. The apoptotic cells were also visualized by Giemsa and 4',6-Diamidino-2-phenylindole (DAPI) staining. The intracellular Reactive oxygen species (ROS) generation was also evaluated using fluorescent probe 2',7'-dichlorodihydrofluorescein di-acetate (H2DCFDA) in flow cytometry. The combination effects of AHL with chemotherapeutic drugs 5FU and Cisplatin were also evaluated. The identification of phytochemical constituents of AHL were analysed by HR-LCMS. RESULTS: The AHL induced cytotoxic activity significantly in HCT-116 with IC50 of 65.65 ± 2.10 µg/mL, but non-cancerous cell HeK-293 was least cytotoxic. Colony formation and cell migration were inhibited in a dose and time dependent manner. The cell morphology upon AHL treatment was significantly altered with apoptotic features. The extract was rich in total phenolic (82.09 ± 0.35mgGAE/g) and total flavonoid (58.31 ± 0.55 mgQAE/g) contents. AHL induced apoptosis as detected by AnnexinV/PI, via activation of caspase 3 and elevated production of Reactive oxygen species (ROS). AHL in combination with 5FU and Cisplatin acts synergistically and potentiates the therapeutic properties of the extract. Sesquiterpenes, phenolic as well as flavonoid derivatives with anticancer properties were detected in AHL by HRLCMS, and these phytoconstituents may be attributed for anticancer property of AHL. CONCLUSION: The present study evaluates the effectiveness of AHL against Colorectal cancer cell lines. AHL is cytotoxic and induces apoptosis in HCT-116 cells by caspase 3 activation and increased ROS production that can be attributed to sesquiterpenoids. Thus, the plant A. adenophora has therapeutic potential for Colorectal cancer and can be further exploited for developing anticancer drug.


Assuntos
Ageratina , Antineoplásicos , Neoplasias Colorretais , Diabetes Mellitus , Humanos , Ageratina/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Caspase 3 , Cisplatino/farmacologia , Células HEK293 , Índia , Apoptose , Antineoplásicos/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Flavonoides/farmacologia , Fluoruracila/farmacologia , Linhagem Celular Tumoral
4.
Toxicol Res (Camb) ; 12(6): 1034-1040, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38145094

RESUMO

The increasing prevalence of cancer has led to a growing interest in alternative medicine methods and treatments. This study aimed to assess the cytotoxicity of isoquinoline alkaloids and herbal extracts from selected plants against human cancer cell lines, including melanoma and squamous cell carcinoma. The investigation involved in vitro cell viability assays using various cancer cell lines and normal skin fibroblasts as control cells. Additionally, a zebrafish model was employed for in vivo evaluation of cytotoxic activity. The results indicated that the tested alkaloids and extracts exhibited promising cytotoxic effects, showing higher potency than standard chemotherapeutic drugs. In comparison, these findings support the exploration of isoquinoline alkaloids and herbal extracts as potential candidates for developing novel anti-melanoma and anti-squamous cell carcinoma drugs. The primary inclusion criterion that was taken into consideration in this study effort was the therapeutic application of the cytotoxic effects of specific plant-based pharmacological components or chemicals produced from herbal extracts that are ordinarily cytotoxic.

5.
Molecules ; 28(22)2023 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-38005258

RESUMO

Photodynamic therapy (PDT) is an anticancer/antibacterial strategy in which photosensitizers (PSs), light, and molecular oxygen generate reactive oxygen species and induce cell death. PDT presents greater selectivity towards tumor cells than conventional chemotherapy; however, PSs have limitations that have prompted the search for new molecules featuring more favorable chemical-physical characteristics. Curcumin and its derivatives have been used in PDT. However, low water solubility, rapid metabolism, interference with other drugs, and low stability limit curcumin use. Chemical modifications have been proposed to improve curcumin activity, and metal-based PSs, especially ruthenium(II) complexes, have attracted considerable attention. This study aimed to characterize six Ru(II)-arene curcuminoids for anticancer and/or antibacterial PDT. The hydrophilicity, photodegradation rates, and singlet oxygen generation of the compounds were evaluated. The photodynamic effects on human colorectal cancer cell lines were also assessed, along with the ability of the compounds to induce ROS production, apoptotic, necrotic, and/or autophagic cell death. Overall, our encouraging results indicate that the Ru(II)-arene curcuminoid derivatives are worthy of further investigation and could represent an interesting option for cancer PDT. Additionally, the lack of significant in vivo toxicity on the larvae of Galleria mellonella is an important finding. Finally, the photoantimicrobial activity of HCurc I against Gram-positive bacteria is indeed promising.


Assuntos
Antineoplásicos , Complexos de Coordenação , Curcumina , Fotoquimioterapia , Rutênio , Humanos , Fármacos Fotossensibilizantes/química , Rutênio/farmacologia , Rutênio/química , Curcumina/farmacologia , Diarileptanoides , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Antineoplásicos/química , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico
6.
J Toxicol Environ Health A ; 86(9): 296-312, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-36919564

RESUMO

Cassia fistula L. is well known for its traditional medicinal properties as an anti-inflammatory, hepatoprotective, antifungal, antibacterial, antimutagenic, and wound healing agent. The aim of the present study was to determine antioxidant, genoprotective, and cytotoxic potential of different fractions of C. fistula bark including hexane (CaMH), chloroform (CaMC), ethyl acetate (CaME), and methanol (CaMM). Among all the fractions studied, CaMM exhibited maximal radical scavenging activity in antioxidant DPPH assay, Superoxide anion radical scavenging assay and nitric oxide radical scavenging assay displayed an IC50 value of 18.95, 29.41, and 13.38 µg/ml, respectively. CaMM fraction possessed the highest phenolic (130.37 mg gallic acid equivalent/g dry weight of extract) and flavonoid (36.96 mg rutin equivalent/g dry weight of fraction) content. Data demonstrated significant positive correlation between polyphenol levels and radical scavenging activity. Single cell gel electrophoresis (Comet assay) exhibited genoprotective potential of C. fistula bark fractions against DNA damage induced by hydrogen peroxide (H2O2) in human lymphocytes. CaMM fraction displayed highest protective ability against H2O2 induced-toxicity as evidenced by significant decrease in % tail DNA content from 30 to 7% at highest concentration (200 µg/ml). CaMM was found to be rich in catechin, gallic acid, chlorogenic acid, and kaempferol. The phenolic content and antioxidant ability of the fractions was markedly negatively correlated with H2O2- induced DNA damage in human lymphocytes. Cytotoxic potential was evaluated against dermal epidermoid carcinoma (A431), pancreatic (MIA PaCa-2) and brain glioblastoma (LN-18) cancer cell lines using MTT assay. Results showed that C. fistula bark fractions possessed highest toxicity against the skin carcinoma cells. CaMM fraction reduced over 50% cell growth at the concentration of 76.72 µg/ml in A431 cells. These findings suggest that fractions of C. fistula bark exhibit potential to be considered as therapeutic agents in various carcinomas.


Assuntos
Antineoplásicos , Cassia , Humanos , Antioxidantes/farmacologia , Antioxidantes/química , Metanol , Casca de Planta/química , Peróxido de Hidrogênio , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Estresse Oxidativo , Fenóis/análise
7.
BMC Complement Med Ther ; 23(1): 29, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36726100

RESUMO

BACKGROUND: Colorectal carcinoma is one of the most commonly diagnosed malignancies worldwide. Consumption of dietary supplements and nutraceuticals such as phenolic compounds may help combat colorectal carcinoma. The effect of two phenolic-rich extracts prepared from biotransformed grape pomace on the antioxidant properties and antiproliferative activity against two colorectal cancer cell lines (Caco-2 and SW620) were investigated. METHODS: A 15-day solid-state fermentation with the white-rot fungi Phanerochaete chrysosporium and Trametes gibbosa was used to biotransform grape pomace. Solid-liquid extraction was then performed to extract bioactive compounds. The extract was analyzed for the determination of phenolic compounds by ultra-high performance liquid chromatography and in vitro assays of biological activities (antioxidant activity, antiproliferative activity, cell cycle analysis). RESULTS: The 4 days of solid-state fermentation proved to be the optimal period to obtain the maximum yield of phenolic compounds. The tested extracts showed significant antioxidant and antiproliferative activities. Grape pomace treated with P. chrysosporium and T. gibbosa reduced cancer cell growth by more than 60% at concentrations (solid/liquid ratio) of 1.75 mg/mL and of 2.5 mg/mL, respectively. The cell cycle perturbations induced by the grape pomace extracts resulted in a significant increase in the number of cells in the S (9.8%) and G2/M (6.8%) phases of SW620 exposed to T. gibbosa after 48 hours, while P. chrysosporium increased the percentage of cells in the G1 phase by 7.7%. The effect of grape pomace extracts on Caco-2 was less pronounced. CONCLUSIONS: The obtained results suggest the presence of bioactive compounds in biotransformed grape pomace as a residue from winemaking, which could be used to prevent colon cancer.


Assuntos
Neoplasias Colorretais , Vitis , Humanos , Vitis/química , Antioxidantes/farmacologia , Antioxidantes/análise , Trametes , Células CACO-2 , Frutas/química , Extratos Vegetais/química , Fenóis/farmacologia , Fenóis/análise , Neoplasias Colorretais/tratamento farmacológico
8.
Afr Health Sci ; 22(2): 334-342, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36407358

RESUMO

Background: Pancreatic cancer does not show any symptoms in the early period and metastatic process is already passed when the diagnosis is done. Therefore, in the battle with pancreatic cancer, novel treatment strategies, particularly antiinvasive and antimetastatic strategies, are needed. The cytotoxic and anticancer effects of juglone and sodium selenite (NaSe) have been showed in various cancer cells. Objectives: In this study, it is aimed to investigate the synergistic effects of juglone and selenium on PANC-1 and BxPC-3 pancreatic cancer cells. Methods: Antimetastatic effects of juglone-NaSe were carried out by adhesion and invasion assays and the genes and protein expressions. Expression analysis of the CDH1, ITGB3 and COL4A3 genes and their proteins E-cadherin, ß3 integrin and tumstatin which play role in metastasis and angiogenesis processes, were done by qPCR and immunohistochemical analysis, respectively. Results: Study findings have provided evidences that the juglone-selenium has a cytotoxic and dose dependent suppressive effect on invasion and metastasis in PANC-1 and BxPC-3 cells. Conclusion: The juglone-NaSe has the potential to be a promising agent especially to inhibit invasion and metastasis in pancreatic cancer treatment. However, more in depth studies are needed to more clearly demonstrate the effects of juglone-selenium.


Assuntos
Antineoplásicos , Neoplasias Pancreáticas , Selênio , Humanos , Selênio/uso terapêutico , Linhagem Celular Tumoral , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias Pancreáticas
9.
Med Oncol ; 39(8): 116, 2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35674858

RESUMO

Onosma species have been used commonly for traditional medicine for years due to their bioactive compounds content. Onosma bourgaei aerial part was extracted with hexane and methanol successively. The methanol extract was subjected to chromatographic techniques to isolate allantoin (1), 3,4-dihydroxybenzaldehyde (2), luteolin-7-O-glucoside (3), apigenin-7-O-ß-glucoside (4), diosmetin-7-O-ß-glucoside (5), rosmarinic acid (6), and globoidnan A (7). The structure of isolated compounds were identified by spectroscopic techniques such as 1D-NMR, 2D-NMR, FTIR, and LC-TOF/MS/MS. Antiproliferative activity of extract and natural compounds were carried out using HeLa (human epithelial cervix adenocarcinoma, ATCC® CCL-2™), HT29 (human colorectal adenocarcinoma, ATCC® HTB38™), MCF7 (human mammary gland adenocarcinoma, ATCC® HTB22™), and A549 (human lung carcinoma, ATCC® CCL185™) cancerous cells and normal cells, FL (human epithelial amnion cell, ATCC® CCL62™). Lactate dehydrogenase (LDH) was performed for cytotoxicity. The compounds, 4, 6, and 7 displayed the strong antiproliferative activity against corresponding cell lines. Apigenin-7-O-ß-glucoside (4) revealed the excellent activity on HeLa, HT29, A549, and MCF6 cancer cell lines with the values of (IC50, µM) 167.3, 196.8 181.1, and 203.5, respectively, compared standard compound, cisplatin.


Assuntos
Adenocarcinoma , Antineoplásicos , Boraginaceae , Antineoplásicos/farmacologia , Apigenina , Glucosídeos , Humanos , Metanol , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Espectrometria de Massas em Tandem
10.
Molecules ; 27(10)2022 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-35630629

RESUMO

Tree nuts are rich in polar (phenolic compounds) and non-polar (tocols) antioxidants, with recognized effects in the prevention of diseases such as cancer. These biomolecules possess antiproliferative activity on cancer cells; however, the combined effect of both types of compounds has been scarcely studied, and this approach could give valuable information on the real anticancer potential of tree nuts. In the present study, the antiproliferative activity of pure tocols and phenolic compounds, tocol- and phenolic-rich extracts (TRE and PRE, respectively) from tree nuts and the extracts combinations, was evaluated in four cancer (HeLa, MCF7, PC3, A549) and one control (ARPE) cell lines. The most sensible cell lines were HeLa and MCF7. TRE and PRE from nuts were chemically characterized; γ and δ tocopherols, total tocols, total tocopherols and total phenolic compounds were negatively correlated with cell viability in MCF7 cells. In HeLa cells, only δ and total tocopherols were negatively correlated with cell viability. TRE and PRE had a low effect in reducing cell viability of the cancer cell lines, the most effective extracts were those of emory oak acorn (EOA), pecan nut (PEC) and walnut (WAL), and these were further studied for their pharmacological interactions, using the combination index and the isobologram methods. Combinations of both extracts showed a synergistic and strongly synergistic behavior in the three nuts (EOA, PEC and WAL), with combination indexes between 0.12 and 0.55. These results highlight the need to understand the interactions among components found in complex natural extracts or food products in order to fully understand their bioactivities.


Assuntos
Neoplasias , Nozes , Células HeLa , Humanos , Nozes/química , Fenóis/análise , Fenóis/farmacologia , Extratos Vegetais/análise , Extratos Vegetais/farmacologia , Tocoferóis/análise
11.
Molecules ; 27(8)2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35458677

RESUMO

Reusing food waste is becoming popular in pharmaceutical industries. Watermelon (Citrullus lanatus) rind is commonly discarded as a major solid waste. Here, the in vitro cytotoxic potential of watermelon rind extracts was screened against a panel of human cancer cell lines. Cell cycle analysis was used to determine the induction of cell death, whereas annexin V-FITC binding, caspase-3, BAX, and BCL-2 mRNA expression levels were used to determine the degree of apoptosis. VEGF-promoting angiogenesis and cell migration were also evaluated. Moreover, the identification of phytoconstituents in the rind extract was achieved using UPLC/T-TOF-MS/MS, and a total of 45 bioactive compounds were detected, including phenolic acids, flavonoids aglycones, and their glycoside derivatives. The tested watermelon rind extracts suppressed cell proliferation in seven cancer cell lines in a concentration-dependent manner. The cytotoxicity of the rind aqueous extract (RAE) was higher compared with that of the other extracts. In addition to a substantial inhibitory effect on cell migration, the RAE triggered apoptosis in HCT116 and Hep2 cells by driving the accumulation of cells in the S phase and elevating the activity of caspase-3 and the BAX/BCL-2 ratio. Thus, a complete phytochemical and cytotoxic investigation of the Citrullus lanatus rind extract may identify its potential potency as an anticancer agent.


Assuntos
Antineoplásicos , Citrullus , Antineoplásicos/metabolismo , Caspase 3/metabolismo , Citrullus/química , Humanos , Compostos Fitoquímicos/metabolismo , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Espectrometria de Massas em Tandem , Proteína X Associada a bcl-2/metabolismo
12.
Molecules ; 27(3)2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35163852

RESUMO

An alkaloid compound from the hairy root culture of Eurycoma longifolia has been isolated and characterised as 9-methoxycanthin-6-one. The aims of these studies were to investigate the in vitro anti-cancer activities of 9-methoxycanthin-6-one against ovarian cancer (A2780, SKOV-3), breast cancer (MCF-7), colorectal cancer (HT29), skin cancer (A375) and cervical cancer (HeLa) cell lines by using a Sulphorhodamine B assay, and to evaluate the mechanisms of action of 9-methoxycanthin-6-one via the Hoechst 33342 assay and proteomics approach. The results had shown that 9-methoxycanthin-6-one gave IC50 values of 4.04 ± 0.36 µM, 5.80 ± 0.40 µM, 15.09 ± 0.99 µM, 3.79 ± 0.069 µM, 5.71 ± 0.20 µM and 4.30 ± 0.27 µM when tested in A2780, SKOV-3, MCF-7, HT-29, A375 and HeLa cell lines, respectively. It was found that 9-methoxycanthin-6-one induced apoptosis in a concentration dependent manner when analysed via the Hoechst 33342 assay. 9-methoxycanthine-6-one were found to affect the expressions of apoptotic-related proteins, that were proteins pyruvate kinase (PKM), annexin A2 (ANXA2), galectin 3 (LGAL3), heterogeneous nuclear ribonucleoprotein A1 (HNRNP1A1), peroxiredoxin 3 (PRDX3), and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) from the differential analysis of 2-DE profiles between treated and non-treated 9-methoxycanthine-6-one. Proteins such as acetyl-CoA acyltransferase 2 (ACAA2), aldehyde dehydrogenase 1 (ALDH1A1), capping protein (CAPG), eukaryotic translation elongation factor 1 (EEF1A1), malate dehydrogenase 2 (MDH2), purine nucleoside phosphorylase (PNP), and triosephosphate isomerase 1 (TPI1) were also identified to be associated with A2780 cell death induced by 9-methoxycanthine-6-one. These findings may provide a new insight on the mechanisms of action of 9-methoxycanthin-6-one in exerting its anti-cancer effects in vitro.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Proteínas Reguladoras de Apoptose/metabolismo , Eurycoma/química , Neoplasias/tratamento farmacológico , Extratos Vegetais/farmacologia , Raízes de Plantas/química , Apoptose , Proliferação de Células , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Células Tumorais Cultivadas
13.
Nat Prod Res ; 36(16): 4293-4309, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34459687

RESUMO

The study of medicinal plants for cancer treatment has gained attention due to an increasing incidence of cancer worldwide and antineoplastics-related undesirable secondary effects. Most of the natural products of medicinal plants that have been evaluated for cytotoxic activity, are derived from leaves, bark, roots and flowers. However, natural products derived from wood have demonstrated a cytotoxic effect with promising results. Moreover, some fractions and compounds have been isolated of wood in order to increase the effect. This review presents in vitro experimental evidence of cytotoxic effect of natural products from wood against cancer cell lines. It also provides considerations and recommendations to obtain herbal medicines over time.


Assuntos
Neoplasias , Plantas Medicinais , Madeira , Antineoplásicos/farmacologia , Linhagem Celular Tumoral/efeitos dos fármacos , Humanos , Neoplasias/tratamento farmacológico , Madeira/metabolismo
14.
Biol Trace Elem Res ; 200(2): 582-590, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33759109

RESUMO

Nanotechnology is a possible solution to the drawbacks of cancer therapy because it decreases the clinical side effects of chemotherapeutic drugs and increases their clinical activity. Thus, this work compared the in vitro cytotoxic activity and in vivo side effects of cisplatin (CP) with those of CP-loaded green silver nanoparticles (CP-AgNPs). The cytotoxic activity of CP, green AgNPs, and CP-AgNPs against PC-3, a human prostate cancer cell line, was assessed using MTT assay. CP-AgNPs had a superior cytotoxic effect on PC-3 cells with a 50% inhibition of viability (IC50) of 27.05 µg/mL, followed by CP with an IC50 of 57.64 µg/mL and AgNPs with an IC50 125.4 µg/mL. To evaluate in vivo side effects, 40 male adult Wistar rats were assigned into four groups and intraperitoneally injected with normal saline (control), CP (2.5 mg/kg body weight), green AgNPs (0.1 mL/kg body weight), and CP-AgNPs (2.5 mg/kg body weight). Intraperitoneal CP injection caused a substantial reduction in erythrocyte and leukocyte counts and hemoglobin concentration and a marked increase in urea and creatinine levels and disturbed the renal oxidant/antioxidant status. Furthermore, it caused noticeable structural alterations and significant upregulation of renal Bax and caspase-3 mRNA along with a significant downregulation of B-cell lymphoma 2 mRNA expressions. The loading of CP on green AgNPs significantly relieved the CP-induced pathological alterations and considerably enhanced its therapeutic effectiveness on PC-3 cells. These outcomes reflect the possible use of CP-AgNPs as a more efficient and safer anticancer agent than free CP.


Assuntos
Antineoplásicos , Nanopartículas Metálicas , Neoplasias da Próstata , Animais , Linhagem Celular , Cisplatino , Humanos , Masculino , Extratos Vegetais , Neoplasias da Próstata/tratamento farmacológico , Ratos , Ratos Wistar , Prata
15.
Molecules ; 26(24)2021 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-34946592

RESUMO

The Curcuma longa plant is endowed with multiple traditional and therapeutic utilities and is here explored for its phytochemical constituents and cytotoxic potential. Turmeric rhizomes were extracted from three different solvents and screened for the presence of different phytochemical constituents, observation of which indicated that the polar solvents favoured extraction of greater versatile phytochemical constituents. These extracts were investigated for their cytotoxic potential by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay on three different of cell lines including SCC-29B (oral cancer cell line), DU-145 (prostate cancer cell line) and the Vero cell line (healthy cell line/non-cancerous cell line). This assay was performed by taking three extracts from isolated curcuminoids and a pure bioactive compound bisdemethoxycurcumin (BD). Bisdemethoxycurcumin was isolated from curcuminoids and purified by column and thin-layer chromatography, and its structural characterisation was performed with different spectroscopic techniques such as FTIR, NMR (1H Proton and 13C Carbon-NMR) and LC-MS. Amongst the extracts, the ethanolic extracts exhibited stronger cytotoxic potential against the oral cancer cell line (SCC-29B) with an IC50value of 11.27 µg/mL, and that this was too low of a cytotoxicity against the Vero cell line. Although, curcuminoids have also shown a comparable cytotoxic potential against SCC-29B (IC50 value 16.79 µg/mL), it was not as potent against the ethanolic extract, and it was even found to be cytotoxic against healthy cell lines at a very low dose. While considering the isolated compound, bisdemethoxycurcumin, it also possessed a cytotoxic potential against the prostate cancer cell line (DU-145) (IC50 value of 93.28 µg/mL), but was quite safe for the healthy cell line in comparison to doxorubicin.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Curcuma/química , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Animais , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Chlorocebus aethiops , Cromatografia Líquida de Alta Pressão , Relação Dose-Resposta a Droga , Doxorrubicina/farmacologia , Humanos , Estrutura Molecular , Compostos Fitoquímicos/química , Compostos Fitoquímicos/isolamento & purificação , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Relação Estrutura-Atividade , Células Vero
16.
Nanomaterials (Basel) ; 11(10)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34685014

RESUMO

The application of biological materials in synthesizing nanoparticles has become significant issue in nanotechnology. This research was designed to assess biogenic silver nanoparticles (AgNPs) fabricated using two aqueous extracts of Acacia arabica (Arabic Gum) (A-AgNPs) and Opophytum forsskalii (Samh) seed (O-AgNPs), which were used as reducing and capping agents in the NPs development, respectively. The current study is considered as the first report for AgNP preparation using Opophytum forsskalii extract. The dynamic light scattering, transmission electron microscopy, and scanning electron microscopy were employed to analyze the size and morphology of the biogenic AgNPs. Fourier transform infrared (FTIR) spectroscopy and chromatography/mass spectrometry (GC-MS) techniques were used to identify the possible phyto-components of plant extracts. The phyto-fabricated NPs were assessed for their antibacterial activity and also when combined with some antibiotics against Staphylococcus aureus (Gram-positive) and Pseudomonas aeruginosa and Escherichia coli (Gram-negative) and their anticandidal ability against Candida albicans using an agar well diffusion test. Furthermore, cytotoxicity against LoVo cancer cell lines was studied. The results demonstrated the capability of the investigated plant extracts to change Ag+ ions into spherical AgNPs with average size diameters of 91 nm for the prepared O-AgNPs and 75 nm for A-AgNPs. The phyto-fabricated AgNPs presented substantial antimicrobial capabilities with a zone diameter in the range of 10-29.3 mm. Synergistic effects against all tested strains were observed when the antibiotic and phyto-fabricated AgNPs were combined and assessed. The IC50 of the fabricated O-AgNPs against LoVo cancer cell lines was 28.32 µg/mL. Ten and four chemical components were identified in Acacia arabica (Arabic Gum) and Opophytum forsskalii seed extracts, respectively, by GC-MS that are expected as NPs reducing and capping agents. Current results could lead to options for further research, such as investigating the internal mechanism of AgNPs in bacteria, Candida spp., and LoVo cancer cell lines as well as identifying specific molecules with a substantial impact as metal-reducing agents and biological activities.

17.
Animal Model Exp Med ; 4(2): 87-103, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34179717

RESUMO

Cancer is a major stress for public well-being and is the most dreadful disease. The models used in the discovery of cancer treatment are continuously changing and extending toward advanced preclinical studies. Cancer models are either naturally existing or artificially prepared experimental systems that show similar features with human tumors though the heterogeneous nature of the tumor is very familiar. The choice of the most fitting model to best reflect the given tumor system is one of the real difficulties for cancer examination. Therefore, vast studies have been conducted on the cancer models for developing a better understanding of cancer invasion, progression, and early detection. These models give an insight into cancer etiology, molecular basis, host tumor interaction, the role of microenvironment, and tumor heterogeneity in tumor metastasis. These models are also used to predict novel cancer markers, targeted therapies, and are extremely helpful in drug development. In this review, the potential of cancer models to be used as a platform for drug screening and therapeutic discoveries are highlighted. Although none of the cancer models is regarded as ideal because each is associated with essential caveats that restraint its application yet by bridging the gap between preliminary cancer research and translational medicine. However, they promise a brighter future for cancer treatment.


Assuntos
Neoplasias , Avaliação Pré-Clínica de Medicamentos , Humanos , Neoplasias/tratamento farmacológico , Pesquisa Translacional Biomédica , Microambiente Tumoral
18.
Cells ; 10(3)2021 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-33804755

RESUMO

Plants have historically been a rich source of successful anticancer drugs and chemotherapeutic agents, with research indicating that this trend will continue. In this contribution, we performed high-throughput cytotoxicity screening of 702 extracts from 95 plant species, representing 40 families of the Brazilian Cerrado biome. Activity was investigated against the following cancer cell lines: colon (Colo205 and Km12), renal (A498 and U031), liver (HEP3B and SKHEP), and osteosarcoma (MG63 and MG63.3). Dose-response tests were conducted with 44 of the most active extracts, with 22 demonstrating IC50 values ranging from <1.3 to 20 µg/mL. A molecular networking strategy was formulated using the Global Natural Product Social Molecular Networking (GNPS) platform to visualize, analyze, and annotate the compounds present in 17 extracts active against NCI-60 cell lines. Significant cytotoxic activity was found for Salacia crassifolia, Salacia elliptica, Simarouba versicolor, Diospyros hispida, Schinus terebinthifolia, Casearia sylvestris var. lingua, Magonia pubescens, and Rapanea guianensis. Molecular networking resulted in the annotation of 27 compounds. This strategy provided an initial overview of a complex and diverse natural product data set, yielded a large amount of chemical information, identified patterns and known compounds, and assisted in defining priorities for further studies.


Assuntos
Ecossistema , Ensaios de Triagem em Larga Escala , Extratos Vegetais/análise , Extratos Vegetais/farmacologia , Brasil , Linhagem Celular Tumoral , Geografia , Humanos , Concentração Inibidora 50 , Solventes
19.
Biosci Rep ; 41(5)2021 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-33891003

RESUMO

Therapeutic strategies of plant origin are a better choice as both dietary plant products or its isolated active constituents against the development and progression of cancer. The present study aims to evaluate the anticancer activity of sumac (Rhus coriaria) against different human cancer MCF-7, PC-3, and SKOV3 cell lines. In addition, the study tries to explore a prospective mechanism of action, assessment of in vitro enzyme-inhibitory capacity of sumac extract against hCA I, II, IX, and XII. In the present study, the potential antitumor effects of sumac (Rhus coriaria) were explored in the human cancer cell lines; MCF-7, PC-3, and SKOV3 using in vitro assays. Apoptotic, cell survival, ELISA immunoassays were also conducted to reveal the inhibitory effects of sumac extract against hCA I, II, IX, and XII. In addition, both Clioquinol and Acetazolamide (AZM) were used as standards to explore the in vitro enzyme-inhibitory capacity of sumac extract against hCA I, II, IX, and XII. The hydro-alcoholic extract of R. coriaria (Sumac) was subjected to phytochemical analysis using GC/MS assays. Sumac at non-cytotoxic doses of 50 and 100 µM significantly modulates the growth of the MCF-7, PC-3, and SKOV3 cancer cells with a higher inhibitory effect and selectivity to carbonic anhydrase (CA) isoforms; hCA I, II, hCA IX, and XII. The data showed that sumac at doses of 50 and 100 µM significantly inhibited the growth, proliferation, and viability of cancer cells by activating the apoptotic process via caspase-3 overexpression and the regulation of Bcl-2 anti-apoptotic protein.


Assuntos
Antineoplásicos/farmacologia , Inibidores da Anidrase Carbônica/farmacologia , Extratos Vegetais/farmacologia , Rhus/química , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Células MCF-7 , Células PC-3
20.
Food Chem Toxicol ; 152: 112159, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33789120

RESUMO

There is increasing evidence that the excessive generation of free radicals in the human body plays a major role in the pathophysiology and development of various diseases, closely associated with oxidative damage. In this frame, the consumption of antioxidant nutrients through food or dietary supplements may prevent from the harmful effects of free radicals on human cells. This work proposes a holistic approach consisting of distinct methodologies, suitable to evaluate the antioxidant and chemoprotective activity of three novel dietary supplements, each one containing active substances with complementary properties. In the first step, this approach includes in vitro studies to evaluate the antioxidant activity of the dietary supplements by measuring the parameters of free radical scavenging capacity, of reducing power activity, as well as, their ability to protect biomolecules from oxidation. Furthermore, the evaluation of their antimutagenic and antigenotoxic effects is also presented. SubsequentlySub, the specific effects of the dietary supplements were examined in three cancer cell lines (HepG2, HeLa, MKN45), by measuring redox biomarkers such as glutathione, reactive oxygen species and thiobarbituric acid reactive substances, using flow cytometry and spectrophotometry. Our results indicate that all the dietary supplements exhibit high antioxidant, antimutagenic, antigenotoxic and lipid protective activity. The most prominent result is their capability to induce oxidative damage on cancer cells via the critical decrease of the levels of their intracellular glutathione, as well as the increase of ROS and lipid peroxidation levels after the administration of non-cytotoxic concentrations. We suggest that the proposed methodology could constitute a valuable tool for the characterization of dietary supplements based on their chemical and functional properties.


Assuntos
Anti-Inflamatórios/farmacologia , Antimutagênicos/farmacologia , Antioxidantes/farmacologia , Ácido Ascórbico/farmacologia , Suplementos Nutricionais , Linhagem Celular Tumoral , Glutationa/metabolismo , Humanos , Peroxidação de Lipídeos/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Salmonella typhimurium/efeitos dos fármacos , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA