Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Tipo de documento
Intervalo de ano de publicação
1.
J Orthop Res ; 42(9): 1933-1942, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38520666

RESUMO

Osteoarthritis (OA) is a common degenerative joint disease, and subchondral osteosclerosis is an important pathological change that occurs in its late stages. Cardamonin (CD) is a natural flavonoid isolated from Alpinia katsumadai that has anti-inflammatory activity. The objectives of this study were to investigate the therapeutic effects and potential mechanism of CD in regulating OA subchondral osteosclerosis at in vivo and in vitro settings. Eight-week-old male C57BL/6J mice were randomly divided into four groups: sham operation, anterior cruciate ligament transection (ACLT)-induced OA model, low-dose and high-dose CD treated ACLT-OA model groups. Histological assessment and immunohistochemical examinations for chondrocyte metabolism-related markers metalloproteinase-13, ADAMTS-4, Col II, and Sox-9 were performed. Microcomputed tomography was used to assess the sclerosis indicators in subchondral bone. Further, MC3T3-E1 (a mouse calvarial preosteoblast cell line) cells were treated with various concentrations of CD to reveal the influence and potential molecular pathways of CD in osteogenic differentiations. Animal studies suggested that CD alleviated the pathological changes in OA mice such as maintaining integrity and increasing the thickness of hyaline cartilage, decreasing the thickness of calcified cartilage, decreasing the Osteoarthritis Research Society International score, regulating articular cartilage metabolism, and inhibiting subchondral osteosclerosis. In vitro investigation indicated that CD inhibited alkaline phosphatase expression and production of calcium nodules during osteogenic differentiation of MC3T3-E1 cells. In addition, CD inhibited the expression of osteogenic differentiation-related indicators and Wnt/ß-catenin pathway-related proteins. In conclusion, CD inhibits osteogenic differentiation by downregulating Wnt/ß-catenin signaling and alleviating subchondral osteosclerosis in a mouse model of OA.


Assuntos
Diferenciação Celular , Chalconas , Camundongos Endogâmicos C57BL , Osteoartrite , Osteogênese , Osteosclerose , Via de Sinalização Wnt , Animais , Masculino , Chalconas/farmacologia , Chalconas/uso terapêutico , Osteogênese/efeitos dos fármacos , Via de Sinalização Wnt/efeitos dos fármacos , Camundongos , Osteosclerose/tratamento farmacológico , Osteoartrite/tratamento farmacológico , Osteoartrite/metabolismo , Diferenciação Celular/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , beta Catenina/metabolismo
2.
Chem Biodivers ; 19(12): e202200727, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36251014

RESUMO

Campomanesia reitziana D. Legrand (Myrtaceae) displays antiulcer properties when given to rodents. The major active chemical components of C. reitziana are chalcones, including 4',6'-dihydroxy-2'-methoxy-3',5'-dimethylchalcone or dimethyl cardamonin (DMC); therefore, we hypothesized that this compound could have antiulcer effects and the present study aimed to evaluate its gastroprotective and gastric healing properties. DMC was isolated from the fruits of C. reitziana, and its gastroprotective effect was evaluated by ethanol and indomethacin-induced gastric ulcer models in mice (0.1 mg/kg, i.p. and 1 and 3 mg/kg, p.o.). Oxidative stress and inflammatory parameters were analyzed in the gastric tissue. Moreover, its gastric healing effect was evaluated in rats. In addition, the compound's mode of action was evaluated in vivo and in vitro by measuring H+ -K+ -ATPase activity. Finally, the cytotoxic potential of DMC was tested in fibroblasts and human gastric adenocarcinoma cells. The DMC reduced the ethanol-induced gastric ulcer in mice by 77 %, increased the adhered mucus, and reduced lipoperoxides levels. The block of nonprotein sulfhydryls (NP-SH) compounds by pretreatment with N-ethylmaleimide (NEM), the inhibition of nitric oxide synthase with Nω-nitro-L-arginine methyl ester hydrochloride (L-NAME), or the antagonism of α2 receptor using yohimbine reversed the gastroprotective effects of DMC. Furthermore, DMC reduced the acidity of gastric content in pylorus-ligated rats but did not change H+ , K+ -ATPase (isolated from rabbit) activity in vitro. DMC reduced the lesion area in acetic acid-induced ulcers and decreased myeloperoxidase activity. DMC did not change the viability of fibroblast cells (L929) but reduced the viability of human gastric adenocarcinoma cells (AGS). The results confirmed that DMC could significantly enhance the gastric healing process and prevent ulcers due to improving protective factors on the gastric mucosa and reducing gastric acid secretion.


Assuntos
Antiulcerosos , Chalconas , Myrtaceae , Úlcera Gástrica , Humanos , Ratos , Camundongos , Animais , Coelhos , Chalconas/farmacologia , Chalconas/uso terapêutico , Úlcera Gástrica/induzido quimicamente , Úlcera Gástrica/tratamento farmacológico , Úlcera Gástrica/patologia , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Extratos Vegetais/química , Roedores , Úlcera/tratamento farmacológico , Frutas , Ratos Wistar , Antiulcerosos/farmacologia , Antiulcerosos/uso terapêutico , Antiulcerosos/química , Etanol , Adenosina Trifosfatases
3.
Curr Res Food Sci ; 5: 1845-1872, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36276240

RESUMO

Cancer is among the major cause of demise worldwide. Though the array of anticancer chemical medications is available but unfortunately, they are also associated with negative health effects. The invaluable therapeutic potential of spices makes them an integral part of our daily diet. Therefore, the present work focuses on the traditional uses of 46 spices and the phytochemical analysis of 31 spices. Out of them, only 29 spices are explored for their cytotoxicity against different cancer cell lines. The pre-clinical and clinical anticancer studies of spices along with their toxicity, mechanism of actions like Wnt/ß-catenin, phosphatidylinositol-3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR), JAK/STAT, mitogen-activated protein kinase (MAPK), Notch-mediated pathways and Quantitative structure-activity relationship (QSAR) studies were also focused. Curcumin was found as one of the most explored bioactive in every aspect such as in-vitro, in-vivo, clinical as well as SAR anticancer studies while some other bioactive such as 1,8-Cineole, trans-Anethole, Diosgenin, Trigonelline are either unexplored or least explored for their clinical and SAR studies. In fact, traditional medicinal uses of spices also provide solid shreds of evidence for the new leads towards the invention of novel anticancer agents. Therefore, further research can be designed for the anticancer marketed formulation from spices after having their placebo and related toxicological data.

4.
Phytother Res ; 36(4): 1736-1747, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35142404

RESUMO

Cardamonin is a chalcone with neuroprotective activity. The aim of our study was to explore the functions and mechanism of action of cardamonin in ischemic stroke. Oxygen-glucose deprivation and reperfusion (OGD/R)-induced human brain microvascular endothelial cells (HBMECs) and middle cerebral artery occlusion (MCAO) mouse model were utilized to mimic ischemic stroke. Cell viability was analyzed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide. Permeability was investigated via fluorescein isothiocyanate-dextran assay. Apoptosis was detected by TdT-Mediated dUTP Nick End Labeling staining. Hypoxia-inducible factor (HIF)-1α and vascular endothelial growth factor A (VEGFA) protein levels were measured using Western blotting. Brain injury was evaluated by 2,3,5-triphenyltetrazolium chloride staining, neurological score and brain water content. The 37 overlapping targets of ischemic stroke and cardamonin were predicted to be associated with the HIF-1/VEGFA signaling. Cardamonin alleviated OGD/R-induced viability reduction and increase of permeability and apoptosis in HBMECs. Cardamonin increased OGD/R-induced activation of the HIF-1α/VEGFA pathway. Inhibition of the HIF-1α/VEGFA signaling using inhibitor relieved the effect of cardamonin on cell viability, permeability and apoptosis in HBMECs under OGD/R. Cardamonin mitigated brain injury and promoted activation of the HIF-1α/VEGFA signaling in MCAO-treated mice. Overall, cardamonin protected against OGD/R-induced HBMEC damage and MACO-induced brain injury through activating the HIF-1α/VEGFA pathway.


Assuntos
Lesões Encefálicas , Isquemia Encefálica , AVC Isquêmico , Traumatismo por Reperfusão , Animais , Apoptose , Isquemia Encefálica/tratamento farmacológico , Chalconas , Células Endoteliais/metabolismo , Glucose/metabolismo , Humanos , Hipóxia , Subunidade alfa do Fator 1 Induzível por Hipóxia , Infarto da Artéria Cerebral Média/tratamento farmacológico , Camundongos , Oxigênio/metabolismo , Traumatismo por Reperfusão/tratamento farmacológico , Fator A de Crescimento do Endotélio Vascular/metabolismo
5.
J Nat Med ; 76(1): 220-233, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34751899

RESUMO

Paclitaxel is widely used in the first-line treatment of ovarian cancer. Nevertheless, the development of acquired resistance to paclitaxel is a major obstacle for the therapy in clinic. Cardamonin is a novel anticancer chalcone which exhibits a wide range of pharmacological activities. However, the effect of cardamonin on paclitaxel-resistant ovarian cancer cells and its underlying molecular mechanisms are unknown. Here, we revealed whether cardamonin had a resensitivity for paclitaxel and furtherly explored the underlying mechanisms on SKOV3-Taxol cells. Our results showed that cardamonin combined with paclitaxel had a synergistic effect of anti-proliferation in SKOV3-Taxol cells, and CI was less than one. Cells apoptosis and G2/M phase arrest were enhanced by cardamonin with paclitaxel in a concentration-dependent way on SKOV3-Taxol cells (P < 0.05). Cardamonin significantly increased drug accumulation in SKOV3-Taxol cells (P < 0.05). Similar to verapamil, cardamonin decreased MDR1 mRNA and P-gp expression (P < 0.05). Cardamonin restrained NF-κB activation in SKOV3-Taxol cells (P < 0.05). Inhibitory effect of P-gp and NF-κB p65 (nuclear protein) expression was enhanced by cardamonin combined with PDTC, a NF-κB inhibitor. Cardamonin significantly inhibited the upregulation of NF-κB p65 (nuclear protein) and P-gp expression induced by TNF-α (P < 0.05). Taken together, cardamonin enhanced the effect of paclitaxel on inhibiting cell proliferation, inducing apoptosis and G2/M phase arrest, and then strengthened the cytotoxic effect of paclitaxel in SKOV3-Taxol cells. The mechanism might be involved in inhibition of P-gp efflux pump, reducing MDR1 mRNA and P-gp expression by cardamonin via suppression of NF-κB activation in SKOV3-Taxol cells.


Assuntos
Chalconas , Neoplasias Ovarianas , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Apoptose , Linhagem Celular Tumoral , Chalconas/farmacologia , Humanos , Paclitaxel/farmacologia
6.
Phytomedicine ; 93: 153785, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34638032

RESUMO

BACKGROUND: Acute lung injury (ALI) is a systemic inflammatory process, which has no pharmacological therapy in clinic. Accumulating evidence has demonstrated that natural compounds from herbs have potent anti-inflammatory efficacy in several disease models, which could be the potential candidates for the treatment of ALI. HYPOTHESIS/PURPOSE: Anti-inflammatory screening from natural product bank may provide new anti-inflammatory compounds for therapeutic target discovery and ALI treatment. METHODS: 165 natural compounds were screened for their anti-inflammatory activity in LPS-stimulated macrophages. PCR array, SPR and ELISA were used to determine the potential target of the most active compound, Cardamonin (CAR). The pharmacological effect of CAR was further evaluated in both LPS-stimulated macrophages and ALI mice model. RESULTS: Out of the screened 165 compounds, CAR significantly inhibited LPS-induced inflammatory cytokine secretion in macrophages. We further showed that CAR significantly inhibited NF-κB and JNK signaling activation, and thereby inflammatory cytokine production via directly interacting with MD2 in vitro. In vivo, our data show that CAR treatment inhibited LPS-induced lung damage, systemic inflammatory cytokine production, and reduced macrophage infiltration in the lungs, accompanied with reduced TLR4/MD2 complex in lung tissues, Treatment with CAR also dose-dependently increased survival in the septic mice induced by DH5α bacterial infection. CONCLUSION: We demonstrate that a natural product, CAR, attenuates LPS-induced lung injury and sepsis by inhibiting inflammation via interacting with MD2, leading to the inactivation of the TLR4/MD2-MyD88-MAPK/NF-κB pathway.


Assuntos
Lesão Pulmonar Aguda , Chalconas , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Animais , Chalconas/farmacologia , Citocinas/metabolismo , Lipopolissacarídeos , Pulmão/metabolismo , Antígeno 96 de Linfócito , Camundongos , NF-kappa B/metabolismo
7.
Pharmacol Res ; 174: 105919, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34601080

RESUMO

With the coming of the era of the aging population, hypertension has become a global health burden to be dealt with. Although there are multiple drugs and procedures to control the symptoms of hypertension, the management of it is still a long-term process, and the side effects of conventional drugs pose a burden on patients. Flavonoids, common compounds found in fruits and vegetables as secondary metabolites, are active components in Chinese Herbal Medicine. The flavonoids are proved to have cardiovascular benefits based on a plethora of animal experiments over the last decade. Thus, the flavonoids or flavonoid-rich plant extracts endowed with anti-hypertension activities and probable mechanisms were reviewed. It has been found that flavonoids may affect blood pressure in various ways. Moreover, despite the substantial evidence of the potential for flavonoids in the control of hypertension, it is not sufficient to support the clinical application of flavonoids as an adjuvant or core drug. So the synergistic effects of flavonoids with other drugs, pharmacokinetic studies, clinical trials and the safety of flavonoids are also incorporated in the discussion. It is believed that more breakthrough studies are needed. Overall, this review may shed some new light on the explicit recognition of the mechanisms of anti-hypertension actions of flavonoids, pointing out the limitations of relevant research at the current stage and the aspects that should be strengthened in future researches.


Assuntos
Anti-Hipertensivos/uso terapêutico , Medicamentos de Ervas Chinesas/uso terapêutico , Flavonoides/uso terapêutico , Animais , Anti-Hipertensivos/classificação , Medicamentos de Ervas Chinesas/classificação , Flavonoides/classificação , Humanos , Medicina Tradicional Chinesa , Fitoterapia
8.
Antioxidants (Basel) ; 10(2)2021 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-33498683

RESUMO

Selenoenzymes, whose activity depends on adequate selenium (Se) supply, and phase II enzymes, encoded by target genes of nuclear factor erythroid 2-related factor 2 (Nrf2), take part in governing cellular redox homeostasis. Their interplay is still not entirely understood. Here, we exposed HepG2 hepatoma cells cultured under Se-deficient, Se-adequate, or Se-supranutritional conditions to the Nrf2 activators sulforaphane, cardamonin, or diethyl maleate. Nrf2 protein levels and intracellular localization were determined by immunoblotting, and mRNA levels of Nrf2 target genes and selenoproteins were assessed by qRT-PCR. Exposure to electrophiles resulted in rapid induction of Nrf2 and its enrichment in the nucleus, independent of the cellular Se status. All three electrophilic compounds caused an enhanced expression of Nrf2 target genes, although with differences regarding extent and time course of their induction. Whereas Se status did not significantly affect mRNA levels of the Nrf2 target genes, gene expression of selenoproteins with a low position in the cellular "selenoprotein hierarchy", such as glutathione peroxidase 1 (GPX1) or selenoprotein W (SELENOW), was elevated under Se-supplemented conditions, as compared to cells held in Se-deficient media. In conclusion, no major effect of Se status on Nrf2 signalling was observed in HepG2 cells.

9.
Biomed Pharmacother ; 134: 111155, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33370628

RESUMO

Osteosarcoma (OS) is the most common type of bone malignant tumors. Clinical commonly used therapeutic drugs of OS treatment are prone to toxic and side effects, so it is very urgent to develop new drugs with low toxicity and low side effects. As a Chinese herbal medicine, Cardamonin (CAR) (C16H14O4) has inhibitory effects in various tumors. In the present study, we investigated the effects of CAR on OS cells in vitro and in vivo. We found that CAR inhibited cell proliferation, reduced migration, decreased invasion, and induced G2 / M arrest of OS cells. Notably, we demonstrated that CAR had no obvious effect on proliferation and apoptosis of normal cells. Besides, CAR repressed tumor growth of OS cells in xenograft mouse model. Mechanically, we found that CAR increased the phosphorylation level of P38 and JNK. In summary, our research validates that CAR may inhibit the proliferation, migration, and invasion of OS and promote apoptosis possibly by activating P38 and JNK Mitogen-activated protein kinase (MAPK) signaling pathway.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Neoplasias Ósseas/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Chalconas/farmacologia , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Osteossarcoma/tratamento farmacológico , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Apoptose/efeitos dos fármacos , Neoplasias Ósseas/enzimologia , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Ativação Enzimática , Feminino , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , Invasividade Neoplásica , Osteossarcoma/enzimologia , Osteossarcoma/patologia , Fosforilação , Transdução de Sinais , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Fitoterapia ; 146: 104724, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32946945

RESUMO

Particulate matter with an aerodynamic diameter equal to or less than 2.5 µm (PM2.5) is a form of air pollutant that causes significant lung damage when inhaled. Cardamonin, a flavone found in Alpinia katsumadai Heyata seeds, has been reported to have anti-inflammatory and anticoagulative activity. The aim of this study was to determine the protective effects of cardamonin on PM2.5-induced lung injury. Mice were treated with cardamonin via tail-vein injection 30 min after the intratracheal instillation of PM2.5. The results showed that cardamonin markedly reduced the pathological lung injury, lung wet/dry weight ratio, and hyperpermeability caused by PM2.5. Cardamonin also significantly inhibited PM2.5-induced myeloperoxidase (MPO) activity in lung tissue, decreased the levels of PM2.5-induced inflammatory cytokines and effectively attenuated PM2.5-induced increases in the number of lymphocytes in the bronchoalveolar lavage fluid (BALF). And, cardamonin increased the phosphorylation of mammalian target of rapamycin (mTOR) and dramatically suppressed the PM2.5-stimulated expression of toll-like receptor 2 and 4 (TLR 2,4), MyD88, and the autophagy-related proteins LC3 II and Beclin 1. In conclusion, these findings indicate that cardamonin has a critical anti-inflammatory effect due to its ability to regulate both the TLR2,4-MyD88 and mTOR-autophagy pathways and may thus be a potential therapeutic agent against PM2.5-induced lung injury.


Assuntos
Anti-Inflamatórios/uso terapêutico , Autofagia , Chalconas/uso terapêutico , Lesão Pulmonar/tratamento farmacológico , Material Particulado/efeitos adversos , Transdução de Sinais , Animais , Líquido da Lavagem Broncoalveolar/citologia , Células Cultivadas , Citocinas/metabolismo , Células Endoteliais/efeitos dos fármacos , Lesão Pulmonar/induzido quimicamente , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Serina-Treonina Quinases TOR/metabolismo , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/metabolismo
11.
Antioxidants (Basel) ; 9(9)2020 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-32906636

RESUMO

The skin is constantly exposed to various types of chemical stresses that challenge the immune cells, leading to the activation of T cell-mediated hypersensitivity reactions including atopic dermatitis. Previous studies have demonstrated that a variety of natural compounds are effective against development of atopic dermatitis by modulating immune responses. Cardamonin is a natural compound abundantly found in cardamom spices and many other medicinal plant species. In the present study, we attempted to examine whether cardamonin could inhibit oxazolone-induced atopic dermatitis in vivo. Our results show that topical application of cardamonin onto the ear of mice suppressed oxazolone-induced inflammation in the ear and hyperplasia in the spleen. Cardamonin also inhibited oxazolone-induced destruction of connective tissues and subsequent infiltration of mast cells into the skin. In addition, we found that the production of Th2 cytokines is negatively regulated by NRF2, and the induction of NRF2 by cardamonin contributed to suppressing oxazolone-induced Th2 cytokine production and oxidative damages in vivo. Together, our results demonstrate that cardamonin is a promising natural compound, which might be effective for treatment of atopic dermatitis.

12.
Phytomedicine ; 65: 153064, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31645009

RESUMO

BACKGROUND: Obesity develops when dietary energy intake exceeds energy expenditure, and can be associated with metabolic syndrome. Recent studies have shown that dietary phytochemicals can promote energy expenditure by inducing the browning of white adipose tissue (WAT). PURPOSE: This study investigated whether cardamonin induces the browning of 3T3-L1 adipocytes through the activation of protein kinase A (PKA). METHODS: Anti-obesity potential of cardamonin was evaluated in 3T3-L1 adipocytes. Adipocyte-specific genes were observed using western blot, qPCR analysis and immunocytochemistry. RESULTS: Cardamonin treatment inhibited lipid droplet accumulation and reduced the expression of the adipogenic proteins C/EBPα and FABP4, and the lipogenic proteins LPAATθ, lipin 1, DGAT1, SREBP1, and FAS. Cardamonin also induced the expression of the browning marker genes PRDM16, PGC1α, and UCP1 at the mRNA and protein levels, and induced mRNA expression of CD137, a key marker of beige adipocytes. It also increased the expression of the ß-oxidation genes CPT1 and PPARα at the mRNA and protein levels. In addition, cardamonin increased PKA phosphorylation and the mRNA and protein expression of the downstream lipolytic enzymes adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL). CONCLUSION: Our findings demonstrate novel effects of cardamonin to stimulate adipocyte browning, suppress lipogenesis, and promote lipolysis, implying it may have potential as an anti-obesity agent.


Assuntos
Adipócitos/efeitos dos fármacos , Fármacos Antiobesidade/farmacologia , Chalconas/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Lipogênese/efeitos dos fármacos , Células 3T3-L1 , Adipócitos/metabolismo , Adipócitos/patologia , Adipogenia/efeitos dos fármacos , Adipogenia/genética , Animais , Regulação da Expressão Gênica/efeitos dos fármacos , Lipase/metabolismo , Lipólise/efeitos dos fármacos , Camundongos , Oxirredução/efeitos dos fármacos , Esterol Esterase/metabolismo , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/metabolismo
13.
Acta Pharm Sin B ; 9(4): 734-744, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31384534

RESUMO

Aberrant activation of NLRP3 inflammasome has been implicated in the pathogenesis of diverse inflammation-related diseases, and pharmacological molecules targeting NLRP3 inflammasome are of considerable value to identifying potential therapeutic interventions. Cardamonin (CDN), the major active ingredient of the traditional Chinese medicinal herb Alpinia katsumadai, has exerted an excellent anti-inflammatory activity, but the mechanism underlying this role is not fully understood. Here, we show that CDN blocks canonical and noncanonical NLRP3 inflammasome activation triggered by multiple stimuli. Moreover, the suppression of CDN on inflammasome activation is specific to NLRP3, not to NLRC4 or AIM2 inflammasome. Besides, the inhibitory effect is not dependent on the expression of NF-κB-mediated inflammasome precursor proteins. We also demonstrate that CDN suppresses the NLRP3 inflammasome through blocking ASC oligomerization and speckle formation in a dose-dependent manner. Importantly, CDN improves the survival of mice suffering from lethal septic shock and attenuates IL-1ß production induced by LPS in vivo, which is shown to be NLRP3 dependent. In conclusion, our results identify CDN as a broad-spectrum and specific inhibitor of NLRP3 inflammasome and a candidate therapeutic drug for treating NLRP3 inflammasome-driven diseases.

14.
Am J Chin Med ; 47(3): 635-656, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31023073

RESUMO

Cardamonin, the chalcone class, is one of the natural components from the spicy herbaceous plant (Alpinia conchigera Griff) and has anticancer activities in many human cancer cell lines. There is, however, no information to show that cardamonin induces cell apoptosis and alters apoptosis associated gene expressions in mouse leukemia cells. Thus, we investigated the effects of cardamonin on the apoptotic cell death and associated gene expression in mouse leukemia WEHI-3 cells in vitro. Results indicated that cardamonin decreased total viable cell number via induced cell morphological changes and apoptotic cell death in WEHI-3 cells that were assay by contrast-phase microscopy and flow cytometry examinations, respectively. The flow cytometry assay indicated that cardamonin increased reactive oxygen species (ROS) and Ca 2+ production, decreased the levels of mitochondrial membrane potential ( ΔΨm) and increased caspase-3, -8 and -9 activities in WEHI-3 cells. Western blotting was performed to analyze expression of relevant pro- and anti-apoptotic proteins and results showed that cardamonin decreased anti-apoptotic protein of Bcl-2 but increased pro-apoptotic protein of Bax in WEHI-3 cells. Furthermore, cardamonin increased cytochrome c, AIF and Endo G release, increased GRP78, caspase-12 that were associated with ER stress and increased Fas, Fas-Ligand and FADD expression. Furthermore, cardamonin increased the gene expressions of DAP (death-associated protein), TMBIM4 transmembrane (BAX inhibitor motif containing 4), ATG5 (autophagy related 5) but decreased the gene expression of DDIT3 (DNA-damage inducible transcript 3), DDIT4 (DNA-damage-inducible transcript 4), BAG6 (BCL2-associated athanogene 6), BCL2L13 [BCL2-like 13 (apoptosis facilitator)] and BRAT1 (BRCA1-associated ATM activator 1) that are associated with apoptosis pathways. Based on those findings, we may suggest cardamonin induced apoptotic cell death through Fas and Fas-Ligand-, caspase- and mitochondria-dependently pathways and also affects the apoptotic gene expression in WEHI-3 cells in vitro.


Assuntos
Apoptose/efeitos dos fármacos , Apoptose/genética , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Chalconas/farmacologia , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Leucemia/genética , Leucemia/patologia , Animais , Linhagem Celular Tumoral , Chaperona BiP do Retículo Endoplasmático , Camundongos
15.
Nat Prod Res ; 33(6): 862-865, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29183163

RESUMO

Pinocembrin (1) and cardamonin (2) from Sozuku showed a suppressive effect on umu gene expression of SOS response in Salmonella typhimurium TA1535/pSK1002 against the mutagen furylfuramide. Compounds 1 and 2 suppressed 52% and 36% of SOS-inducing activity at a concentration of 0.20 µmol/mL. The ID50 value of 1 was 0.18 µmol/mL. These compounds showed the suppression of 2-amino-3,4-dimethylimidazo-[4,5-f]quinolone (MeIQ) and UV irradiation-induced SOS response. Pinostrobin (3) and 5,7-dimethoxyflavanone (4), methyl ethers of 1, showed similar activity to 1 against MeIQ-induced SOS response, but that of furylfuramide and UV irradiation were decreased. On the other hand, compounds 1-4 did not show the suppression of activated MeIQ-induced SOS response. Furthermore, compounds 1-4 showed potent antimutagenic activity against MeIQ mutagenesis in Ames test using the S. typhimurium TA100 and TA98 strains.


Assuntos
Alpinia/química , Antimutagênicos/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Flavonoides/farmacologia , Resposta SOS em Genética , Salmonella typhimurium/efeitos dos fármacos , Antimutagênicos/isolamento & purificação , Chalconas/isolamento & purificação , Chalconas/farmacologia , Flavanonas/isolamento & purificação , Flavanonas/farmacologia , Flavonoides/isolamento & purificação , Furilfuramida , Testes de Mutagenicidade , Mutagênicos , Compostos Fitoquímicos/isolamento & purificação , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Quinolinas , Sementes/química
16.
Acta Pharmaceutica Sinica B ; (6): 734-744, 2019.
Artigo em Inglês | WPRIM | ID: wpr-774947

RESUMO

Aberrant activation of NLRP3 inflammasome has been implicated in the pathogenesis of diverse inflammation-related diseases, and pharmacological molecules targeting NLRP3 inflammasome are of considerable value to identifying potential therapeutic interventions. Cardamonin (CDN), the major active ingredient of the traditional Chinese medicinal herb , has exerted an excellent anti-inflammatory activity, but the mechanism underlying this role is not fully understood. Here, we show that CDN blocks canonical and noncanonical NLRP3 inflammasome activation triggered by multiple stimuli. Moreover, the suppression of CDN on inflammasome activation is specific to NLRP3, not to NLRC4 or AIM2 inflammasome. Besides, the inhibitory effect is not dependent on the expression of NF-B-mediated inflammasome precursor proteins. We also demonstrate that CDN suppresses the NLRP3 inflammasome through blocking ASC oligomerization and speckle formation in a dose-dependent manner. Importantly, CDN improves the survival of mice suffering from lethal septic shock and attenuates IL-1 production induced by LPS , which is shown to be NLRP3 dependent. In conclusion, our results identify CDN as a broad-spectrum and specific inhibitor of NLRP3 inflammasome and a candidate therapeutic drug for treating NLRP3 inflammasome-driven diseases.

17.
BMC Complement Altern Med ; 18(1): 317, 2018 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-30514289

RESUMO

BACKGROUND: Autophagy occurs in cells that undergoing nutrient deprivation. Glycolysis rapidly supplies energy for the proliferation of cancer cells. Cardamonin inhibits proliferation and enhances autophagy by mTORC1 suppression in ovarian cancer cells. Here, we investigate the relationship between cardamonin-triggered autophagy and glycolysis inhibition via mTORC1 suppression. METHODS: Treated with indicated compounds, ATP content and the activity of hexokinase (HK) and lactate dehydrogenase (LDH) were analyzed by the assay kits. Autophagy was detected by monodansylcadaverin (MDC) staining. The relationship between cardamonin-triggered autophagy and glycolysis inhibition via mTORC1 suppression was analyzed by Western blot. RESULTS: We found that cardamonin inhibited the lactate secretion, ATP production, and the activity of HK and LDH. The results demonstrated that cardamonin enhanced autophagy in SKOV3 cells, as indicated by acidic compartments accumulation, microtubule-associated protein 1 Light Chain 3-II (LC3-II) and lysosome associated membrane protein 1 up-regulation. Our results showed that the activation of mTORC1 signaling and the expression HK2 were reduced by cardamonin; whereas the phosphorylation of AMPK (AMP-activated protein kinase) was increased. We also confirmed that the AMPK inhibitor, Compound C, reversed cardamonin-induced upregulation of LC3-II. CONCLUSION: These results suggest that cardamonin-induced autophagy is associated with inhibition on glycolysis by down-regulating the activity of mTORC1 in ovarian cancer cells.


Assuntos
Autofagia/efeitos dos fármacos , Chalconas/farmacologia , Glicólise/efeitos dos fármacos , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo , Linhagem Celular Tumoral , Humanos
18.
Molecules ; 23(9)2018 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-30177603

RESUMO

Pain is one of the most common cause for hospital visits. It plays an important role in inflammation and serves as a warning sign to avoid further injury. Analgesics are used to manage pain and provide comfort to patients. However, prolonged usage of pain treatments like opioids and NSAIDs are accompanied with undesirable side effects. Therefore, research to identify novel compounds that produce analgesia with lesser side effects are necessary. The present study investigated the antinociceptive potentials of a natural compound, cardamonin, isolated from Boesenbergia rotunda (L) Mansf. using chemical and thermal models of nociception. Our findings showed that intraperitoneal and oral administration of cardamonin (0.3, 1, 3, and 10 mg/kg) produced significant and dose-dependent inhibition of pain in abdominal writhing responses induced by acetic acid. The present study also demonstrated that cardamonin produced significant analgesia in formalin-, capsaicin-, and glutamate-induced paw licking tests. In the thermal-induced nociception model, cardamonin exhibited significant increase in response latency time of animals subjected to hot-plate thermal stimuli. The rota-rod assessment confirmed that the antinociceptive activities elicited by cardamonin was not related to muscle relaxant or sedative effects of the compound. In conclusion, the present findings showed that cardamonin exerted significant peripheral and central antinociception through chemical- and thermal-induced nociception in mice through the involvement of TRPV1, glutamate, and opioid receptors.


Assuntos
Analgésicos/administração & dosagem , Chalconas/administração & dosagem , Ácido Glutâmico/metabolismo , Dor/tratamento farmacológico , Receptores Opioides/metabolismo , Canais de Cátion TRPV/metabolismo , Administração Oral , Analgésicos/farmacologia , Animais , Chalconas/farmacologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Injeções Intraperitoneais , Camundongos , Dor/etiologia , Dor/metabolismo , Extratos Vegetais/administração & dosagem , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Zingiberaceae/química
19.
Fitoterapia ; 125: 161-173, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29355749

RESUMO

Cardamonin is a natural chalcone that has been shown to exhibit high anticancer activity. In an attempt to discover analogues of cardamonin with enhanced anticancer activity, 19 analogues were synthesized and tested against A549 and HK1 cell lines. Results of the MTS cell viability assay showed that several derivatives possessed cytotoxic activities that were several-fold more potent than cardamonin. SAR analysis showed the importance of the ketone and alkene groups for bioactivity, while substituting cardamonin's phenolic groups with more polar moieties resulted in activity enhancement. As part of the SAR study and further exploration of chemical space, the effect of metal coordination on cytotoxicity was also investigated, but it was only possible to successfully obtain the Cu (II) complex of cardamonin (19). Compound 19 was the most active analogue possessing IC50 values of 13.2µM and 0.7µM against A549 and HK1 cells, corresponding to a 5- and 32-fold increase in activity, respectively. It was also able to significantly inhibit the migration of A549 and HK1 cells. Further mode of action studies have shown that the most active analogue, 19, induced DNA damage resulting in G2/M-phase cell- cycle arrest in both cell lines. These events further led to the induction of apoptosis by the compound via caspase-3/7 and caspase-9 activation, PARP cleavage and downregulation of Mcl-1 expression. Moreover, 19 inhibited the expression levels of p-mTOR and p-4EBP1, which indicated that it exerted its anticancer activity, at least in part, via inhibition of the mTOR signalling pathway.


Assuntos
Apoptose/efeitos dos fármacos , Caspases/metabolismo , Chalconas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Linhagem Celular Tumoral , Chalconas/síntese química , Humanos , Estrutura Molecular , Relação Estrutura-Atividade
20.
Pharmacol Res ; 130: 273-291, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29305909

RESUMO

Inflammation is one of the major causative factor of cancer and chronic inflammation is involved in all the major steps of cancer initiation, progression metastasis and drug resistance. The molecular mechanism of inflammation driven cancer is the complex interplay between oncogenic and tumor suppressive transcription factors which include FOXM1, NF-kB, STAT3, Wnt/ß- Catenin, HIF-1α, NRF2, androgen and estrogen receptors. Several products derived from natural sources modulate the expression and activity of multiple transcription factors in various tumor models as evident from studies conducted in cell lines, pre-clinical models and clinical samples. Further combination of these natural products along with currently approved cancer therapies added an additional advantage and they considered as promising targets for prevention and treatment of inflammation and cancer. In this review we discuss the application of multi-targeting natural products by analyzing the literature and future directions for their plausible applications in drug discovery.


Assuntos
Antineoplásicos/uso terapêutico , Produtos Biológicos/uso terapêutico , Neoplasias/tratamento farmacológico , Polifenóis/uso terapêutico , Fatores de Transcrição/metabolismo , Animais , Humanos , Terapia de Alvo Molecular , Neoplasias/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA