Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Front Microbiol ; 13: 1037292, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36466680

RESUMO

Five furanoids including a new analog (S)-1,4-di(furan-2-yl)-2-hydroxybutane-1,4-dione (1) together with four known ones, rhizosolaniol (2), 5-hydroxymethylfurfural (3), 2-furoic acid (4) and (2-furyl) oxoacetamide (5), were isolated from the fungal strain Ceratobasidium sp. (GS2) inducing seed germination of the endangered medicinal plant Gymnadenia conopsea of Orchidaceae. The structure of new furanoid 1 was determined mainly based on HR-ESI-MS and NMR spectral data. Modified Mosher's reactions were used to establish the stereochemistry of the hydroxyl group in 1, which was not stable in Mosher's reagents and transformed into four analogs 6-9. These degraded products (6-9) were elucidated based on UPLC-Q-TOF-MS/MS analysis, and compound 8 was further isolated from the degraded mixture and its structure was characterized through NMR experiments. Therefore, the absolute configuration of compound 1 was determined by electronic circular dichroism combined with quantum-chemical calculations adopting time-dependent density functional theory. Compounds (1-5), and 8 showed weak antioxidant activities, and compounds (2-4) displayed phytotoxicity on punctured detached green foxtail leaves. In addition, compounds 3 and 4 strongly showed inhibition activities on the seed germination of G. conopsea. This was the first chemical investigation of the symbiotic fungus of G. conopsea.

2.
PeerJ ; 8: e8346, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31988802

RESUMO

BACKGROUND: Anoectochilus roxburghii is a traditional Chinese medicine with potent medicinal activity owing to the presence of secondary metabolites, particularly flavonoids. A. roxburghii also maintains a symbiotic relationship with mycorrhizal fungi. Moreover, mycorrhizal fungi can induce metabolite synthesis in host plants. However, little is known about the role of mycorrhizal fungi in promoting the accumulation of flavonoid metabolites in A. roxburghii. METHODS: A. roxburghii and the isolated fungus Ceratobasidium sp. AR2 were cocultured. The portion of A. roxburghii above the medium treated with or without AR2 was studied by transcriptome and target metabolome analyses. RESULTS: AR2 promoted the growth and development of A. roxburghii. The contents of total flavonoid, rutin, isorhamnetin, and cyanidin-3-glucoside chloride were increased compared with those in uninoculated cultures. Transcriptome analysis suggested that 109 unigenes encoding key enzymes were potentially associated with changes in flavonoids. Quantitative real-time polymerase chain reaction of fourteen flavonoid-related unigenes showed that most flavonoid biosynthetic genes were significantly differentially expressed between inoculated and uninoculated plantlets. CONCLUSION: The isolate AR2 could significantly promote the growth and development of A. roxburghii and the accumulation of flavonoids. Overall, our findings highlighted the molecular basis of the effects of mycorrhizal fungi on flavonoid biosynthesis in A. roxburghii and provided novel insights into methods to improve the yield and quality of A. roxburghii.

3.
Zhongguo Zhong Yao Za Zhi ; 43(3): 478-483, 2018 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-29600611

RESUMO

In this study, an endophytic bacteria strain BZJN1 was isolated from Atractylodes macrocephala, and identified as Bacillus subtilis by physiological and biochemical tests and molecular identification. Strain BZJN1 could inhibit the growth of mycelia of Ceratobasidium sp. significantly, and the inhibition rate was more than 70%. The mycelium growth deformity with bulge as spherical and partially exhaustible in apex or central with microscopic observation. The inhibitory rates under 3% and 6% concentrations of the cell free fermentation were 22.7% and 38.7% expectively. The field test proved that the control efficacy of treatment of 1×108 cfu·mL⁻¹ is 75.27% and 72.37% after 10 and 20 days. All the treatments of strain BZJN1 was able to promote the growth of A. macrocephala, the treatment of 1×108 cfu·mL⁻¹ could able to increase the yield to 14.1%.


Assuntos
Atractylodes/microbiologia , Bacillus subtilis/fisiologia , Basidiomycota/patogenicidade , Agentes de Controle Biológico , Doenças das Plantas/prevenção & controle , Endófitos/classificação , Endófitos/isolamento & purificação , Doenças das Plantas/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA