Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Int. j. morphol ; 42(3): 876-890, jun. 2024. ilus, tab
Artigo em Inglês | LILACS | ID: biblio-1564627

RESUMO

SUMMARY: Stroke is the leading cause of acquired physical disability in adults and second leading cause of mortality throughout the world. Treatment strategies to curb the effects of stroke would be of great benefit. Pongamia pinnata is a recent attraction in medicine, owing to its abundant medicinal benefits with minimal side effects. The present study aimed to examine acute and subacute effect of Pongamia pinnata leaf extract on transient cerebral hypoperfusion and reperfusion (tCHR) in Wistar rats. 24 adult Wistar rats (12 each for acute and subacute study) were divided in to four groups each viz normal control group, tCHR + NS group, tCHR + 200mg/kg bw and tCHR + 400mg/kg bw groups. Cerebral ischemia induction was carried out by bilateral common carotid artery occlusion and reperfusion. Ethanolic extract of Pongamia pinnata leaves were orally administered for 7 days and 21 days after the surgical procedure for acute and subacute study respectively. Behavioural analysis, histological assessment, and estimation of mRNA levels of HIF-1, GDNF, BDNF and NF-kB were performed. In both acute and subacute study, there was significant improvement in the beam walking assay, neuronal count, decreased neuronal damage in histological sections and higher mRNA expression of BDNF and GDNF in the treatment groups. There was no significant difference in the expression of HIF1 and NF-kB. Thus, Pongamia pinnata has excellent neurorestorative property reversing many of the effects of ischemic stroke induced by tCHR in rats with the underlying mechanism being an improvement in the expression of neurotrophic factors GDNF and BDNF.


El ataque cerebrovascular es la principal causa de discapacidad física adquirida en adultos y la segunda causa de mortalidad en todo el mundo. Las estrategias de tratamiento para frenar los efectos del ataque cerebrovascular serían de gran beneficio. Pongamia pinnata es una atracción reciente en la medicina, debido a sus abundantes beneficios medicinales con mínimos efectos secundarios. El presente estudio tuvo como objetivo examinar el efecto agudo y subagudo del extracto de hoja de Pongamia pinnata sobre la hipoperfusión y reperfusión cerebral transitoria (tCHR) en ratas Wistar. Se dividieron 24 ratas Wistar adultas (12 cada una para el estudio agudo y subagudo) en cuatro grupos, el grupo control normal, el grupo tCHR + NS, los grupos tCHR + 200 mg/kg de peso corporal y tCHR + 400 mg/kg de peso corporal. La inducción de la isquemia cerebral se llevó a cabo mediante oclusión y reperfusión bilateral de la arteria carótida común. El extracto etanólico de hojas de Pongamia pinnata se administró por vía oral durante 7 días y 21 días después del procedimiento quirúrgico para estudio agudo y subagudo respectivamente. Se realizaron análisis de comportamiento, evaluación histológica y estimación de los niveles de ARNm de HIF-1, GDNF, BDNF y NF-kB. Tanto en el estudio agudo como en el subagudo, hubo una mejora significativa en el ensayo de desplazamiento del haz, el recuento neuronal, una disminución del daño neuronal en las secciones histológicas y una mayor expresión de ARNm de BDNF y GDNF en los grupos con tratamiento. No hubo diferencias significativas en la expresión de HIF1 y NF-kB. Por lo tanto, Pongamia pinnata tiene una excelente propiedad neurorestauradora que revierte muchos de los efectos del ataque cerebrovascular isquémico inducido por tCHR en ratas, siendo el mecanismo subyacente una mejora en la expresión de los factores neurotróficos GDNF y BDNF.


Assuntos
Animais , Ratos , Extratos Vegetais/administração & dosagem , Acidente Vascular Cerebral/tratamento farmacológico , Millettia/química , Extratos Vegetais/farmacologia , Córtex Cerebral/efeitos dos fármacos , Isquemia Encefálica/tratamento farmacológico , Administração Oral , NF-kappa B , Ratos Wistar , Fator Neurotrófico Derivado do Encéfalo/genética , Modelos Animais de Doenças , Fator 1 Induzível por Hipóxia/genética , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Reação em Cadeia da Polimerase em Tempo Real , Fatores de Crescimento Neural/administração & dosagem
2.
Noro Psikiyatr Ars ; 61(1): 11-14, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38496222

RESUMO

Introduction: Metabolic dysfunctions are critical in the pathology of Alzheimer's disease. Impaired zinc homeostasis, in particular, is a significant issue in this disease that has yet to be explained. Gene expression of ZIP14 in brain tissue has been previously reported. But to date, only one study has reported reduced ZIP14 levels in aged brain tissue. We investigated how dietary zinc deprivation and supplementation impact ZIP14 levels in the cerebral cortex in rats with sporadic Alzheimer's disease (sAH) produced by intracerebroventricular streptozotocin (icv-STZ). Impaired zinc homeostasis, in particular, is a significant issue with this condition that has yet to be elucidated. Methods: Animals were divided into 5 groups in equal numbers (n=8): Sham 1 group: icv received artificial cerebrospinal fluid (aCSF); Sham 2 group: retrieved icv aCSF and intraperitoneal (ip) saline, STZ group: received 3 mg/kg icv-STZ; STZ-Zn-Deficient group: received 3 mg/kg icv-STZ and fed a zinc-deprived diet; STZ-Zn-Supplemented: It received 3 mg/kg icv-STZ and ip zinc sulfate (5 mg/kg/day ZIP 14 levels (ng/L) in cortex tissue samples taken from animals sacrificed under general anesthesia were determined by ELISA at the final stage of the experimental applications. Results: Decreased ZIP14 levels in the sporadic Alzheimer's group were severely by zinc deficiency. Zinc supplementation treated the reduction in ZIP14 levels. Conclusion: The results of the current study show that ZIP14 levels in cerebral cortex tissue, which are suppressed in the experimental rat Alzheimer model and are even more critically reduced in zinc deficiency, can be restored by zinc supplementation.

3.
CNS Neurol Disord Drug Targets ; 23(10): 1263-1274, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38299273

RESUMO

INTRODUCTION: Bisphenol A (BPA) is a chemical compound that has been used in many industries, such as paints and dental sealants. Taurine is a semi-essential amino acid with antioxidant, anti-inflammatory, and anti-apoptotic actions. AIM: This study aimed to evaluate the possible protective effect of taurine on BPA-induced structural changes in the cerebral cortex of rats using histological and immunohistochemical methods. METHODS: 35 Wistar rats (180-200 gm) were divided into control: 10 rats; Group I: 5 rats received corn oil (0.5 mL/day); Group II (Bisphenol low dose; BPAL): 5 rats received a low dose of BPA (25 mg/kg/three times/week); Group III (Bisphenol high dose; BPAH): 5 rats received a high dose of BPA (100 mg/kg/three times/week; Group IV: (BPAL + taurine): 5 rats received taurine 100 mg/kg/day and BPAL (25 mg/kg/three times/week); Group V: (BPAH + taurine): 5 rats received taurine 100 mg/kg/day and BPH (100 mg/kg/ three times/week). RESULTS: BPAL& BPAH groups showed significant dose-dependent histological changes of the neuropil, pyramidal, and neuroglial cells at H&E stained sections, significantly increased GFAP, caspase- 3 immunohistochemical reaction with cells positive for Ki67 with many mitotic figures. BPAL + taurine and BPAH + taurine groups showed amelioration of the previously mentioned results. CONCLUSION: Taurine ameliorated the structural changes induced by BPA in the cerebral cortex of rats.


Assuntos
Compostos Benzidrílicos , Córtex Cerebral , Fenóis , Ratos Wistar , Taurina , Animais , Taurina/farmacologia , Fenóis/farmacologia , Compostos Benzidrílicos/farmacologia , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Ratos , Fármacos Neuroprotetores/farmacologia , Masculino , Imuno-Histoquímica , Antioxidantes/farmacologia
4.
Chem Biol Interact ; 387: 110823, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38049026

RESUMO

Chronic hyperglycemia-induced neuropathological changes include neuronal apoptosis, astrogliosis, decrease in neurotrophic support, impaired synaptic plasticity, and impaired protein quality control (PQC) system. Vitamin B12 is indispensable for neuronal development and brain function. Several studies reported the neuroprotective effect of B12 supplementation in diabetic patients. However, the underlying molecular basis for the neuroprotective effect of B12 supplementation in diabetes needs to be thoroughly investigated. Two-month-old Sprague-Dawley rats were randomly assigned into three groups: Control (CN), diabetes (D; induced with streptozotocin; STZ), and diabetic rats supplemented with vitamin B12 (DBS; vitamin B12; 50 µg/kg) for four months. At the end of 4 months of experimentation, the brain was dissected to collect the cerebral cortex (CC). The morphology of CC was investigated with H&E and Nissl body staining. Neuronal apoptosis was determined with TUNEL assay. The components of neurotrophic support, astrogliosis, synaptic plasticity, and PQC processes were investigated by immunoblotting and immunostaining methods. H& E, Nissl body, and TUNEL staining revealed that diabetes-induced neuronal apoptosis and degeneration. However, B12 supplementation ameliorated the diabetes-induced neuronal apoptosis. Further, B12 supplementation restored the markers of neurotrophic support (BDNF, NGF, and GDNF), and synaptic plasticity (SYP, and PSD-95) in diabetic rats. Interestingly, B12 supplementation also attenuated astrogliosis, ER stress, and ameliorated autophagy-related proteins in diabetic rats. Overall, these findings suggest that B12 acts as a neuroprotective agent by inhibiting the neuropathological changes in STZ-induced type 1 diabetes. Thus, B12 supplementation could produce beneficial outcomes including neuroprotective effects in diabetic patients.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Fármacos Neuroprotetores , Ratos , Humanos , Animais , Lactente , Vitamina B 12/farmacologia , Vitamina B 12/uso terapêutico , Ratos Sprague-Dawley , Estreptozocina/farmacologia , Diabetes Mellitus Experimental/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Diabetes Mellitus Tipo 1/induzido quimicamente , Diabetes Mellitus Tipo 1/tratamento farmacológico , Gliose , Apoptose
5.
Trends Neurosci ; 46(12): 1018-1024, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37778915

RESUMO

Planning and anticipating motor actions enables movements to be quickly and accurately executed. However, if anticipation is not properly controlled, it can lead to premature impulsive actions. Impulsive behavior is defined as actions that are poorly conceived and are often risky and inappropriate. Historically, impulsive behavior was thought to be primarily controlled by the frontal cortex and basal ganglia. More recently, two additional brain regions, the ventromedial (VM) thalamus and the anterior lateral motor cortex (ALM), have been shown to have an important role in mice. Here, we explore this newly discovered role of the thalamocortical pathway and suggest cellular mechanisms that may be involved in driving the cortical activity that contributes to impulsive behavior.


Assuntos
Córtex Motor , Tálamo , Camundongos , Animais , Gânglios da Base , Encéfalo , Comportamento Impulsivo , Vias Neurais
6.
ACS Chem Neurosci ; 14(22): 3986-3992, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37879091

RESUMO

Prohormone-derived neuropeptides act as cell-cell signaling molecules to mediate a wide variety of biological processes in the animal brain. Mass spectrometry-based peptidomic experiments are valuable approaches to gain insight into the dynamics of individual peptides under different physiological conditions or experimental treatments. However, the use of anesthetics during animal procedures may confound experimental peptide measurements, especially in the brain, where anesthetics act. Here, we investigated the effects of the commonly used anesthetics isoflurane and sodium pentobarbital on the peptide profile in the rodent hypothalamus and cerebral cortex, as assessed by label-free quantitative peptidomics. Our results showed that neither anesthetic dramatically alters peptide levels, although extended isoflurane exposure did cause changes in a small number of prohormone-derived peptides in the cerebral cortex. Overall, our results demonstrate that acute anesthetic administration can be utilized in peptidomic experiments of the hypothalamus and cerebral cortex without greatly affecting the measured peptide profiles.


Assuntos
Anestésicos , Isoflurano , Ratos , Animais , Anestésicos/farmacologia , Anestésicos/análise , Peptídeos/química , Hipotálamo/química , Córtex Cerebral
7.
Biomed Pharmacother ; 168: 115708, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37857255

RESUMO

High daily intake of saturated fats and refined carbohydrates, which often leads to obesity and overweight, has been associated with cognitive impairment, premature brain aging and the aggravation of neurodegenerative diseases. Although the molecular pathology of obesity-related brain damage is not fully understood, the increased levels of oxidative stress induced by the diet seem to be definitively involved. Being protein carbonylation determinant for protein activity and function and a main consequence of oxidative stress, this study aims to investigate the effect of the long-term high-fat and sucrose diet intake on carbonylated proteome of the cerebral cortex of Sprague-Dawley rats. To achieve this goal, the study identified and quantified the carbonylated proteins and lipid peroxidation products in the cortex, and correlated them with biometrical, biochemical and other redox status parameters. Results demonstrated that the obesogenic diet selectively increased oxidative damage of specific proteins that participate in fundamental pathways for brain function, i.e. energy production, glucose metabolism and neurotransmission. This study also evaluated the antioxidant properties of fish oil to counteract diet-induced brain oxidative damage. Fish oil supplementation demonstrated a stronger capacity to modulate carbonylated proteome in the brain cortex. Data indicated that fish oils did not just decrease carbonylation of proteins affected by the obesogenic diet, but also decreased the oxidative damage of other proteins participating in the same metabolic functions, reinforcing the beneficial effect of the supplement on those pathways. The results could help contribute to the development of successful nutritional-based interventions to prevent cognitive decline and promote brain health.


Assuntos
Óleos de Peixe , Proteoma , Ratos , Animais , Óleos de Peixe/farmacologia , Sacarose , Ratos Sprague-Dawley , Dieta , Suplementos Nutricionais , Estresse Oxidativo , Obesidade , Córtex Cerebral , Dieta Hiperlipídica/efeitos adversos
8.
Environ Pollut ; 336: 122474, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37652230

RESUMO

Copper (Cu) is an essential micronutrient element that commonly acted as a feed additive and antimicrobial in agricultural production. Tribasic copper chloride (TBCC) is a relatively new dietary Cu source, and its exposure directly or indirectly affects the safety of animals and ecological environment, thus posing a potential risk to human health. Cu overexposure would produce toxic reactive oxygen species (ROS) that may have toxic effects on the host, but the mechanism of neurotoxicity remains unclear. Herein, to explore the effects of long-term TBCC-induced neurotoxicity, 150 male Sprague-Dawley rats were randomly allocated and treated with different doses of TBCC, and the cortical and hippocampus tissues were harvested at 0, 6, and 12 weeks after treatment. Morris Water Maze (MWM) test showed that excessive intake of TBCC could induce cognitive dysfunction in rats. Moreover, after treatment with 160 mg/kg Cu (276 mg/kg TBCC) for 12 weeks, pathological changes were observed in the cortex and hippocampus, and the number of Nissl bodies decreased significantly in the hippocampus. Additionally, mitochondrial structure was significantly altered and neuronal mitochondrial fusion/fission equilibrium was disrupted in 80 mg/kg and 160 mg/kg Cu groups at 12 weeks. With an increase in TBCC dose and treatment time, the number of mitophagosomes and the expression of mitophagy-related genes were significantly decreased after initially increasing. Furthermore, metformin (Met) and 3-methyladenine (3-MA) were used to regulate the level of mitophagy to further explore the mechanism of Cu-induced nerve cell injury in vitro., and it found that mitophagy activator (Met) would increase mitochondrial fission, while mitophagy inhibitors (3-MA) would aggravate mitochondrial metabolic disorders by promoting mitochondrial fusion and inhibiting mitochondrial division. These results indicate that long-term oral TBCC could impede cognitive function and disrupts mitochondrial metabolism by inhibiting mitophagy, providing an insightful perspective on the neurotoxicity of dietary TBCC.


Assuntos
Sulfato de Cobre , Cobre , Humanos , Masculino , Animais , Ratos , Cobre/toxicidade , Cobre/metabolismo , Sulfato de Cobre/farmacologia , Suplementos Nutricionais , Mitofagia , Ratos Sprague-Dawley , Cognição
9.
Int J Mol Sci ; 24(13)2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37446155

RESUMO

Increasing evidence indicates that photobiomodulation, based on tissue irradiation with photons in the red to near-infrared spectrum, may be an effective therapeutic approach to central nervous system disorders. Although nervous system functionality has been shown to be affected by photons in animal models, as well as in preliminary evidence in healthy subjects or in patients with neuropsychiatric disorders, the mechanisms involved in the photobiomodulation effects have not yet been clarified. We previously observed that photobiomodulation could stimulate glutamate release. Here, we investigate mechanisms potentially involved in the glutamate-releasing effect of photons from adult mouse cerebrocortical nerve terminals. We report evidence of photon ability to induce an exocytotic vesicular release of glutamate from the terminals of glutamatergic neurons in a power-dependent way. It can be hypothesized that photobiomodulation, depending on the potency, can release glutamate in a potentially neurotoxic or physiological range.


Assuntos
Ácido Glutâmico , Fótons , Animais , Camundongos , Córtex Cerebral , Ácido Glutâmico/farmacologia , Terminações Nervosas , Neurônios , Sinaptossomos
10.
Neuroscience ; 512: 70-84, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36646412

RESUMO

In the present study, we examined adverse effects of metals and metalloids in the Cerebral cortex (CC) and Cerebellum (CE). Group 1 comprised from the controls while other four groups of male Wistar rats were treated with following pattern: Group II (Heavy Metal Mixture HMM only: PbCl2, 20 mg·kg-1; CdCl2, 1.61 mg·kg-1; HgCl2, 0.40 mg·kg-1, and NaAsO3,10 mg·kg-1), Groups III (HMM + ZnCl2); Group IV (HMM + Na2SeO3) and Group V (HMM + ZnCl2 + Na2SeO3) for 60 days per os. HMM promoted oxidative stress in the CC and CE of treated rats compared to controls; moreover, exposure to HMM led to increased activity of the AChE and pro-inflammatory cytokines; also, HMM promoted accumulation of caspase 3 and other transcriptional factors such as Nrf2 and decreased levels of Hmox-1. Essential metals reduced increased bioaccumulation of Pb, Cd, As and Hg in CC and CE caused by HMM exposure. Also, all mentioned adverse effects were diminished by essential metals treatment (Se and Zn). HMM exposed rats had considerably less escape dormancy than controls. Histopathological analysis revealed moderate cell loss at the intermediate (Purkinje cell) and granular layer. Zinc and selenium supplementations could reverse adverse effects of heavy metals at various cellular levels in neurons.


Assuntos
Metais Pesados , Oligoelementos , Masculino , Ratos , Animais , Oligoelementos/metabolismo , Regulação para Cima , Regulação para Baixo , Ratos Wistar , Metais Pesados/metabolismo , Córtex Cerebral/metabolismo , Cerebelo/metabolismo , Transdução de Sinais
11.
Nutrition ; 107: 111942, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36621260

RESUMO

OBJECTIVES: High-protein diets (HPDs) are widely accepted to enhance satiety and energy expenditure and thus have become a popular strategy to lose weight and facilitate muscle protein synthesis. However, long-term high-protein consumption could be linked with metabolic and clinical problems such as renal and liver dysfunctions. This study verified the effects of 8-wk high-protein ingestion on lipid peroxidation and sphingolipid metabolism in the plasma, cerebral cortex, and hypothalamus in rats. METHODS: Immunoenzymatic and spectrophotometric methods were applied to assess oxidation-reduction (redox) biomarkers and neutral sphingomyelinase activity, whereas gas-liquid chromatography and high-performance liquid chromatography were used to examine sphingolipid levels. RESULTS: The vast majority of HPD-related alterations was restricted to the hypothalamus. Specifically, an increased rate of lipid peroxidation (increased lipid hydroperoxides, 8-isoprostanes, and thiobarbituric acid reactive substances) associated with ceramide accumulation via the activation of de novo synthesis (decreased sphinganine), salvage pathway (decreased sphingosine), and sphingomyelin hydrolysis (decreased sphingomyelin and increased neutral sphingomyelinase activity) was noted. CONCLUSIONS: This study showed that HPD substantially affected hypothalamic metabolic pathways, which potentially alter cerebral output signals to the peripheral tissues.


Assuntos
Dieta Rica em Proteínas , Esfingolipídeos , Ratos , Animais , Esfingomielinas , Peroxidação de Lipídeos , Esfingomielina Fosfodiesterase/metabolismo , Córtex Cerebral/metabolismo , Hipotálamo/metabolismo
12.
J Photochem Photobiol B ; 239: 112643, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36610350

RESUMO

Low-level laser therapy, or photobiomodulation, utilizes red or near-infrared light for the treatment of pathological conditions due to the presence of intracellular photoacceptors, such as mitochondrial cytochrome c oxidase, that serve as intermediates for the therapeutic effects. We present an in-detail analysis of the effect of low-intensity LED red light irradiation on the respiratory chain of brain mitochondria. We tested whether low-level laser therapy at 650 nm could alleviate the brain mitochondrial dysfunction in the model of acute hypobaric hypoxia in mice. The irradiation of the mitochondrial fraction of the left cerebral cortex with low-intensity LED red light rescued Complex I-supported respiration during oxidative phosphorylation, normalized the initial polarization of the inner mitochondrial membrane, but has not shown any significant effect on the activity of Complex IV. In comparison, the postponed effect (in 24 h) of the similar transcranial irradiation following hypoxic exposure led to a less pronounced improvement of the mitochondrial functional state, but normalized respiration related to ATP production and membrane polarization. In contrast, the similar irradiation of the mitochondria isolated from control healthy animals exerted an inhibitory effect on CI-supported respiration. The obtained results provide significant insight that can be beneficial for the development of non-invasive phototherapy.


Assuntos
Encéfalo , Hipóxia , Terapia com Luz de Baixa Intensidade , Mitocôndrias , Animais , Camundongos , Encéfalo/metabolismo , Encéfalo/efeitos da radiação , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Hipóxia/complicações , Hipóxia/metabolismo , Hipóxia/radioterapia , Raios Infravermelhos/uso terapêutico , Mitocôndrias/metabolismo , Mitocôndrias/efeitos da radiação , Pressão/efeitos adversos , Respiração Celular/efeitos da radiação
13.
Cereb Cortex ; 33(5): 1693-1707, 2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-35512682

RESUMO

Establishing neuronal circuits requires interactions between pre- and postsynaptic neurons. While presynaptic neurons were shown to play instructive roles for the postsynaptic neurons, how postsynaptic neurons provide feedback to regulate the presynaptic neuronal development remains elusive. To elucidate the mechanisms for circuit formation, we study the development of barrel cortex (the primary sensory cortex, S1), whose development is instructed by presynaptic thalamocortical axons (TCAs). In the first postnatal weeks, TCA terminals arborize in layer (L) 4 to fill in the barrel center, but it is unclear how TCA development is regulated. Here, we reported that the deletion of Lhx2 specifically in the cortical neurons in the conditional knockout (cKO) leads to TCA arborization defects, which is accompanied with deficits in sensory-evoked and spontaneous cortical activities and impaired lesion-induced plasticity following early whisker follicle ablation. Reintroducing Lhx2 back in L4 neurons in cKO ameliorated TCA arborization and plasticity defects. By manipulating L4 neuronal activity, we further demonstrated that Lhx2 induces TCA arborization via an activity-dependent mechanism. Additionally, we identified the extracellular signaling protein Sema7a as an activity-dependent downstream target of Lhx2 in regulating TCA branching. Thus, we discovered a bottom-up feedback mechanism for the L4 neurons to regulate TCA development.


Assuntos
Neurônios , Tálamo , Retroalimentação , Tálamo/fisiologia , Neurônios/fisiologia , Axônios/fisiologia , Transdução de Sinais , Córtex Somatossensorial/fisiologia
14.
Neural Regen Res ; 18(1): 51-56, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35799508

RESUMO

Aging is a global phenomenon and a complex biological process of all living beings that introduces various changes. During this physiological process, the brain is the most affected organ due to changes in its structural and chemical functions, such as changes in plasticity and decrease in the number, diameter, length, and branching of dendrites and dendritic spines. Likewise, it presents a great reduction in volume resulting from the contraction of the gray matter. Consequently, aging can affect not only cognitive functions, including learning and memory, but also the quality of life of older people. As a result of the phenomena, various molecules with notable neuroprotective capacity have been proposed, which provide a therapeutic alternative for people under conditions of aging or some neurodegenerative diseases. It is important to indicate that in recent years the use of molecules with neurotrophic activity has shown interesting results when evaluated in in vivo models. This review aims to describe the neurotrophic potential of molecules such as resveratrol (3,5,4'-trihydroxystilbene), neurotrophins (brain-derived neurotrophic factor), and neurotrophic-type compounds such as the terminal carboxyl domain of the heavy chain of tetanus toxin, cerebrolysin, neuropeptide-12, and rapamycin. Most of these molecules have been evaluated by our research group. Studies suggest that these molecules exert an important therapeutic potential, restoring brain function in aging conditions or models of neurodegenerative diseases. Hence, our interest is in describing the current scientific evidence that supports the therapeutic potential of these molecules with active neurotrophic.

15.
Proc Nutr Soc ; 81(4): 306-316, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36345149

RESUMO

Most societies witness an ever increasing prevalence of both obesity and dementia, a scenario related to often underestimated individual and public health burden. Overnutrition and weight gain have been linked with abnormal functionality of homoeostasis brain networks and changes in higher cognitive functions such as reward evaluation, executive functions and learning and memory. In parallel, evidence has accumulated that modifiable factors such as obesity and diet impact the gut-brain axis and modulate brain health and cognition through various pathways. Using neuroimaging data from epidemiological studies and randomised clinical trials, we aim to shed light on the underlying mechanisms and to determine both determinants and consequences of obesity and diet at the level of human brain structure and function. We analysed multimodal 3T MRI of about 2600 randomly selected adults (47 % female, 18-80 years of age, BMI 18-47 kg/m2) of the LIFE-Adult study, a deeply phenotyped population-based cohort. In addition, brain MRI data of controlled intervention studies on weight loss and healthy diets acquired in lean, overweight and obese participants may help to understand the role of the gut-brain axis in food craving and cognitive ageing. We find that higher BMI and visceral fat accumulation correlate with accelerated brain age, microstructure of the hypothalamus, lower thickness and connectivity in default mode- and reward-related areas, as well as with subtle grey matter atrophy and white matter lesion load in non-demented individuals. Mediation analyses indicated that higher visceral fat affects brain tissue through systemic low-grade inflammation, and that obesity-related regional changes translate into cognitive disadvantages. Considering longitudinal studies, some, but not all data indicate beneficial effects of weight loss and healthy diets such as plant-based nutrients and dietary patterns on brain ageing and cognition. Confounding effects of concurrent changes in other lifestyle factors or false positives might help to explain these findings. Therefore a more holistic intervention approach, along with open science tools such as data and code sharing, in-depth pre-registration and pooling of data could help to overcome these limitations. In addition, as higher BMI relates to increased head micro-movements during MRI, and as head motion in turn systematically induces image artefacts, future studies need to rigorously control for head motion during MRI to enable valid neuroimaging results. In sum, our results support the view that overweight and obesity are intertwined with markers of brain health in the general population, and that weight loss and plant-based diets may help to promote brain plasticity. Meta-analyses and longitudinal cohort studies are underway to further differentiate causation from correlation in obesity- and nutrition-brain research.


Assuntos
Obesidade , Sobrepeso , Adulto , Humanos , Estudos Longitudinais , Dieta , Encéfalo/diagnóstico por imagem , Redução de Peso
16.
J Neurosci ; 42(41): 7757-7781, 2022 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-36096667

RESUMO

All pathways targeting the thalamus terminate directly onto the thalamic projection cells. As these cells lack local excitatory interconnections, their computations are fundamentally defined by the type and local convergence patterns of the extrinsic inputs. These two key variables, however, remain poorly defined for the "higher-order relay" (HO) nuclei that constitute most of the thalamus in large-brained mammals, including humans. Here, we systematically analyzed the input landscape of a representative HO nucleus of the mouse thalamus, the posterior nucleus (Po). We examined in adult male and female mice the neuropil distribution of terminals immunopositive for markers of excitatory or inhibitory neurotransmission, mapped input sources across the brain and spinal cord and compared the intranuclear distribution and varicosity size of axons originated from each input source. Our findings reveal a complex landscape of partly overlapping input-specific microdomains. Cortical layer (L)5 afferents from somatosensory and motor areas predominate in central and ventral Po but are relatively less abundant in dorsal and lateral portions of the nucleus. Excitatory inputs from the trigeminal complex, dorsal column nuclei (DCN), spinal cord and superior colliculus as well as inhibitory terminals from anterior pretectal nucleus and zona incerta (ZI) are each abundant in specific Po regions and absent from others. Cortical L6 and reticular thalamic nucleus terminals are evenly distributed across Po. Integration of specific input motifs by particular cell subpopulations may be commonplace within HO nuclei and favor the emergence of multiple, functionally diverse input-output subnetworks.SIGNIFICANCE STATEMENT Because thalamic projection neurons lack local interconnections, their output is essentially determined by the kind and convergence of the long-range inputs that they receive. Fragmentary evidence suggests that these parameters may vary within the "higher-order relay" (HO) nuclei that constitute much of the thalamus, but such variation has not been systematically analyzed. Here, we mapped the origin and local convergence of all the extrinsic inputs reaching the posterior nucleus (Po), a typical HO nucleus of the mouse thalamus by combining multiple neuropil labeling and axon tracing methods. We report a complex mosaic of partly overlapping input-specific domains within Po. Integration of different input motifs by specific cell subpopulations in HO nuclei may favor the emergence of multiple, computationally specialized thalamocortical subnetworks.


Assuntos
Núcleos Posteriores do Tálamo , Tálamo , Humanos , Masculino , Feminino , Camundongos , Animais , Vias Neurais/fisiologia , Tálamo/fisiologia , Núcleos Talâmicos/fisiologia , Colículos Superiores , Mamíferos
17.
Neurosci Lett ; 781: 136681, 2022 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-35569700

RESUMO

Transcranial photobiomodulation improves cerebral cortex metabolism. We hypothesized that chronic laser treatment may stimulate neuronal growth. To test this hypothesis, we investigated the morphology of neurons in the cerebral cortex of rats submitted to brief (2.5 min) daily sham or transcranial laser treatment (810 nm wavelength at 100 mW) for 58 consecutive days. Laser treatment increased the number of dendritic nodes and ends, and reduced the total dendritic length in neurons of the cerebral cortex. Taken together, our data indicate that chronic transcranial photobiomodulation induces morphological neuroplasticity in the cerebral cortex of rats.


Assuntos
Terapia com Luz de Baixa Intensidade , Animais , Córtex Cerebral , Neurônios , Ratos
18.
Int J Mol Sci ; 23(10)2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35628642

RESUMO

Mice feed with coffee polyphenols (CPP, chlorogenic acid) and milk fat globule membrane (MFGM) has increased survival rates and helps retain long-term memory. In the cerebral cortex of aged mice, CPP intake decreased the expression of the proinflammatory cytokine TNF-α, and lysosomal enzyme cathepsin B. The suppression of inflammation in the brain during aging was thought to result in the suppression of the repressor element 1-silencing transcription factor (REST) and prevention of brain aging. In contrast, CPP increased the expression of REST, cAMP-responsive element binding (CREB) and transforming growth factor ß1 (TGF-ß1) in the young hippocampus. The increased expression of these factors may contribute to the induction of neuronal differentiation and the suppression of memory decline with aging. Taken together, these results suggest that CPP increases CREB in the young hippocampus and suppresses inflammation in the old brain, resulting in a preventive effect on brain aging. The endotoxin levels were not elevated in the serum of aged mice. Although the mechanism of action of MFGM has not yet been elucidated, the increase in survival rate with both CPP and MFGM intake suggests that adding milk to coffee may improve not only the taste, but also the function.


Assuntos
Ácido Clorogênico , Polifenóis , Animais , Encéfalo , Ácido Clorogênico/farmacologia , Café , Glicolipídeos , Glicoproteínas , Inflamação , Gotículas Lipídicas , Camundongos , Polifenóis/farmacologia
19.
Neuroimage ; 255: 119175, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35390460

RESUMO

OBJECTIVE: Gamma synchrony is a fundamental functional property of the cerebral cortex, impaired in multiple neuropsychiatric conditions (i.e. schizophrenia, Alzheimer's disease, stroke etc.). Auditory stimulation in the gamma range allows to drive gamma synchrony of the entire cortical mantle and to estimate the efficiency of the mechanisms sustaining it. As gamma synchrony depends strongly on the interplay between parvalbumin-positive interneurons and pyramidal neurons, we hypothesize an association between cortical thickness and gamma synchrony. To test this hypothesis, we employed a combined magnetoencephalography (MEG) - Magnetic Resonance Imaging (MRI) study. METHODS: Cortical thickness was estimated from anatomical MRI scans. MEG measurements related to exposure of 40 Hz amplitude modulated tones were projected onto the cortical surface. Two measures of cortical synchrony were considered: (a) inter-trial phase consistency at 40 Hz, providing a vertex-wise estimation of gamma synchronization, and (b) phase-locking values between primary auditory cortices and whole cortical mantle, providing a measure of long-range cortical synchrony. A correlation between cortical thickness and synchronization measures was then calculated for 72 MRI-MEG scans. RESULTS: Both inter-trial phase consistency and phase locking values showed a significant positive correlation with cortical thickness. For inter-trial phase consistency, clusters of strong associations were found in the temporal and frontal lobes, especially in the bilateral auditory and pre-motor cortices. Higher phase-locking values corresponded to higher cortical thickness in the frontal, temporal, occipital and parietal lobes. DISCUSSION AND CONCLUSIONS: In healthy subjects, a thicker cortex corresponds to higher gamma synchrony and connectivity in the primary auditory cortex and beyond, likely reflecting underlying cell density involved in gamma circuitries. This result hints towards an involvement of gamma synchrony together with underlying brain structure in brain areas for higher order cognitive functions. This study contributes to the understanding of inherent cortical functional and structural brain properties, which might in turn constitute the basis for the definition of useful biomarkers in patients showing aberrant gamma synchronization.


Assuntos
Córtex Auditivo , Esquizofrenia , Estimulação Acústica/métodos , Córtex Auditivo/fisiologia , Córtex Cerebral/diagnóstico por imagem , Potenciais Evocados Auditivos/fisiologia , Humanos , Imageamento por Ressonância Magnética/métodos , Magnetoencefalografia/métodos
20.
J Neurosci ; 42(16): 3344-3364, 2022 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-35273083

RESUMO

The projection neurons of the striatum, the principal nucleus of the basal ganglia, belong to one of the following two major pathways: the striatopallidal (indirect) pathway or the striatonigral (direct) pathway. Striatonigral axons project long distances and encounter ascending tracts (thalamocortical) while coursing alongside descending tracts (corticofugal) as they extend through the internal capsule and cerebral peduncle. These observations suggest that striatal circuitry may help to guide their trajectories. To investigate the developmental contributions of striatonigral axons to internal capsule formation, we have made use of Sox8-EGFP (striatal direct pathway) and Fezf2-TdTomato (corticofugal pathway) BAC transgenic reporter mice in combination with immunohistochemical markers to trace these axonal pathways throughout development. We show that striatonigral axons pioneer the internal capsule and cerebral peduncle and are temporally and spatially well positioned to provide guidance for corticofugal and thalamocortical axons. Using Isl1 conditional knock-out (cKO) mice, which exhibit disrupted striatonigral axon outgrowth, we observe both corticofugal and thalamocortical axon defects with either ventral forebrain- or telencephalon-specific Isl1 inactivation, despite Isl1 not being expressed in either cortical or thalamic projection neurons. Striatonigral axon defects can thus disrupt internal capsule formation. Our genome-wide transcriptomic analysis in Isl1 cKOs reveals changes in gene expression relevant to cell adhesion, growth cone dynamics, and extracellular matrix composition, suggesting potential mechanisms by which the striatonigral pathway exerts this guidance role. Together, our data support a novel pioneering role for the striatal direct pathway in the correct assembly of the ascending and descending axon tracts within the internal capsule and cerebral peduncle.SIGNIFICANCE STATEMENT The basal ganglia are a group of subcortical nuclei with established roles in the coordination of voluntary motor programs, aspects of cognition, and the selection of appropriate social behaviors. Hence, disruptions in basal ganglia connectivity have been implicated in the motor, cognitive, and social dysfunction characterizing common neurodevelopmental disorders such as attention-deficit/hyperactivity disorder, autism spectrum disorder, obsessive-compulsive disorder, and tic disorder. Here, we identified a novel role for the striatonigral (direct) pathway in pioneering the internal capsule and cerebral peduncle, and in guiding axons extending to and from the cortex. Our findings suggest that the abnormal development of basal ganglia circuits can drive secondary internal capsule defects and thereby may contribute to the pathology of these disorders.


Assuntos
Transtorno do Espectro Autista , Pedúnculo Cerebral , Animais , Transtorno do Espectro Autista/metabolismo , Axônios/fisiologia , Córtex Cerebral/metabolismo , Cápsula Interna , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Vias Neurais/fisiologia , Tálamo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA