Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
J Hazard Mater ; 468: 133837, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38401216

RESUMO

The sound disposal of the ensuing heavy metal-rich plants can address the aftermath of phytoremediation. In this study, the first attempt was made to obtain heavy metals-free and phosphorus-rich biochar from phytoremediation residue (PR) by pyrolysis, and the effects of chlorinating agent type, chlorine dosage, and pyrolysis residence time on heavy metal removal, phosphorus (P) transformation, and biochar properties were investigated. The results showed that as chlorine dosage and pyrolysis residence time increased, added polyvinyl chloride (PVC) reduced the concentration of Zn in biochar to one-tenth of that in PR by intensified chlorination, where both Zn concentration (2727.50 mg/kg) and its leaching concentration (29.13 mg/L) met the utilization requirements, in which the acid-base property of biochar plays a key role in heavy metal leaching. Meanwhile, more than 90% of P in PR remained in biochar and the bioavailability of P in biochar enhanced with the decomposition of organic P to inorganic P, where the concentration of plant-availability P (Pnac) expanded from 1878.40 mg/kg in PR to 8454.00 mg/kg in biochar. This study demonstrated that heavy metal hyperaccumulator can be converted into heavy metal-free and phosphorus-rich biochar with promising applications, which provides new perspectives for the treatment of such hazardous wastes.


Assuntos
Metais Pesados , Fósforo , Cloro , Pirólise , Metais Pesados/química , Carvão Vegetal/química
2.
Sci Total Environ ; 895: 165097, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37356766

RESUMO

Detection of SARS-CoV-2 RNA in wastewater poses people's concerns regarding the potential risk in water bodies receiving wastewater treatment effluent, despite the infectious risk of SARS-CoV-2 in wastewater being speculated to be low. Unlike well-studied nonenveloped viruses, SARS-CoV-2 in wastewater is present abundantly in both solid and liquid fractions of wastewater. Reduction of SARS-CoV-2 in past studies were likely underestimated, as SARS-CoV-2 in influent wastewater were quantified in either solid or liquid fraction only. The objectives of this study were (i) to clarify the reduction in SARS-CoV-2 RNA during biological nutrient removal and disinfection processes in full-scale WWTPs, considering the SARS-CoV-2 present in both solid and liquid fractions of wastewater, and (ii) to evaluate applicability of pepper mild mottle virus (PMMoV) as a performance indicator for reduction of SARS-CoV-2 in WWTPs. Accordingly, large amount of SARS-CoV-2 RNA were partitioned in the solid fraction of influent wastewater for composite sampling than grab sampling. When SARS-CoV-2 RNA in the both solid and liquid fractions were considered, log reduction values (LRVs) of SARS-CoV-2 during step-feed multistage biological nitrogen removal (SM-BNR) and enhanced biological phosphorus removal (EBPR) processes ranged between>2.1-4.4 log and did not differ significantly from those in conventional activated sludge (CAS). The LRVs of SARS-CoV-2 RNA in disinfection processes by ozonation and chlorination did not differ significantly. PMMoV is a promising performance indicator to secure reduction of SARS-CoV-2 in WWTPs, because of its higher persistence in wastewater treatment processes and abundance at a detectable concentration even in the final effluent after disinfection.


Assuntos
COVID-19 , Purificação da Água , Humanos , Águas Residuárias , SARS-CoV-2 , Desinfecção , RNA Viral , Esgotos , Nutrientes
3.
Food Chem ; 421: 136139, 2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37094398

RESUMO

A multiway data analysis model, namely parallel factor analysis (PARAFAC) was proposed to decompose a three-way array of second-order kinetic UV measurements, for the chlorination reaction of caffeine with NaOCl, into a set of the spectra, time, and concentration matrices. The multiway resolution provided the simultaneous estimation of spectral, kinetic, and quantitative analysis of caffeine. The ability of the PARAFAC tool was checked by analyzing the validation samples in the presence of interferences. The added recovery and relative standard deviations for caffeine in the spiked samples were calculated as 99.1%-99.5% and 0.52%-1.34% for Iced Coffee Black liquid coffee (ICB), 99.5%-103.0% and 0.42%-1.03% for Jacobs Monarch Gold 100% Instant Coffee (JMG) and 99.5%-101.4% and 0.11%-0.13% for Çaykur Black Filter (Süzen) Bag Tea (BTB). Caffeine in commercial drinks was analyzed using the concentration matrices of the PARAFAC application. The PARAFAC results were statistically compared to those obtained by the developed UPLC method.


Assuntos
Cafeína , Café , Cafeína/análise , Halogenação , Análise Fatorial
4.
Environ Sci Pollut Res Int ; 30(20): 57850-57861, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36971943

RESUMO

Methylparaben, chloro-methylparaben, and dichloro-methylparaben were evaluated in Allium cepa at 5, 10, 50, and 100 µg/L and in Eisenia fetida at 10 and 100 µg/L. In A. cepa roots, 100 µg/L methylparaben and 50 and 100 µg/L chlorinated methylparabens reduced cell proliferation, caused cellular changes, and reduced cell viability in meristems, which caused a reduction in root growth. Furthermore, they caused drastic inhibition of catalase, ascorbate peroxidase, and superoxide dismutase; activated guaiacol peroxidase and promoted lipid peroxidation in meristematic root cells. In earthworms, after 14 days exposure to the three compounds, there were no deaths, and catalase, ascorbate peroxidase, and superoxide dismutase were not inhibited. However, guaiacol peroxidase activity and lipid peroxidation were observed in animals exposed to dichloro-methylparaben. Soils with dichloro-methylparaben also caused the escape of earthworms. It is inferred that the recurrent contamination of soils with these methylparabens, with emphasis on chlorinated derivatives, can negatively impact different species that depend directly or indirectly on soil to survive.


Assuntos
Oligoquetos , Poluentes do Solo , Animais , Catalase/metabolismo , Cebolas/fisiologia , Oligoquetos/metabolismo , Ascorbato Peroxidases/metabolismo , Antioxidantes/metabolismo , Superóxido Dismutase/metabolismo , Solo , Poluentes do Solo/toxicidade , Poluentes do Solo/metabolismo , Estresse Oxidativo , Malondialdeído/metabolismo
5.
J Environ Manage ; 334: 117506, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36801679

RESUMO

The ever-growing contamination of surface water due to various catchment activities poses threats and stress to downstream water treatment entities. Specifically, the presence of ammonia, microbial contaminants, organic matter, and heavy metals has been an issue of paramount concern to water treatment entities since stringent regulatory frameworks require these pollutants to be removed prior to water consumption. Herein, a hybrid approach that integrates struvite crystallization (precipitation) and breakpoint chlorination (stripping) for the removal of ammonia from aqueous solution was evaluated. To fulfil the goals of this study, batch experimental studies were pursued through the adoption of the well-known one-factor-at-a-time (AFAAT) method, specifically the effects of time, concentration/dosage, and mixing speed. The fate of chemical species was underpinned using the state-of-the-art analytical instruments and accredited standard methods. Cryptocrystalline magnesium oxide nanoparticles (MgO-NPs) were used as the magnesium source while the high-test hypochlorite (HTH) was used as the source of chlorine. From the experimental results, the optimum conditions were observed to be, i.e., Stage 1 - struvite synthesis, 110 mg/L of Mg and P dosage (concentration), 150 rpm of mixing speed, 60 min of contact time, and lastly, 120 min of sedimentation while optimum condition for the breakpoint chlorination (Stage 2) were 30 min of mixing and 8:1 Cl2:NH3 weight ratio. Specifically, in Stage 1, i.e., MgO-NPs, the pH increased from 6.7 to ≥9.6, while the turbidity was reduced from 9.1 to ≤1.3 NTU. Mn removal efficacy attained ≥97.70% (reduced from 174 µg/L to 4 µg/L) and Fe attained ≥96.64% (reduced from 11 mg/L to 0.37 mg/L). Elevated pH also led to the deactivation of bacteria. In Stage 2, i.e. breakpoint chlorination, the product water was further polished by eliminating residual ammonia and TPC at 8:1 Cl2-NH3 weight ratio. Interestingly, ammonia was reduced from 6.51 to 2.1 mg/L in Stage 1 (67.74% removal) and then from 2.1 to 0.002 mg/L post breakpoint chlorination (99.96% removal), i.e., stage 2. Overall, synergistic and complementary effects of integrating struvite synthesis and breakpoint chlorination hold great promise for the removal of ammonia from aqueous solutions thus confirming that this technology could potentially be used to curtail the effects of ammonia in the receiving environments and drinking water.


Assuntos
Amônia , Poluentes Químicos da Água , Estruvita/química , Amônia/química , Halogenação , Óxido de Magnésio , Magnésio/química , Fosfatos/química , Poluentes Químicos da Água/química
6.
Environ Technol ; 44(28): 4272-4283, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35696294

RESUMO

Soil aquifer treatment (SAT) has been widely applied for wastewater reclamation, which cooperates secondary treatment (i.e. A2O process) and disinfection treatment (chlorination) in wastewater treatment plants (WWTPs), to remove organic matter. This study compared dissolved organic carbon (DOC) characteristics, substrate utilisation patterns, and microbial communities between pre-chlorination SAT and SAT columns, and effective removals of DOC were observed in the pre-chlorination SAT and SAT columns. However, the composition of HiA in SAT columns without chlorination was less than in pre-chlorination SAT columns for DOC fraction. In comparison to A2O effluent, different metabolic patterns and the composition of the microbial community were demonstrated by the top layer of SAT column and pre-chlorination SAT column. Furthermore, deeper layers showed similarities in the metabolic pattern and composition of the microbial community. Overall, pre-chlorination minimised the change of the microbial communities from A2O effluent in the top layer of SAT except for deeper layers, and DOC concentrations decreased in pre-chlorination SAT column. Thus, the cooperation of SAT and wastewater treatments could be suitable for wastewater reclamation.


Assuntos
Água Subterrânea , Microbiota , Poluentes Químicos da Água , Purificação da Água , Águas Residuárias , Solo/química , Halogenação , Matéria Orgânica Dissolvida , Água Subterrânea/química , Poluentes Químicos da Água/química
7.
Front Microbiol ; 13: 991856, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36212890

RESUMO

Water contamination is a global health problem, and the need for safe water is ever-growing due to the public health implications of unsafe water. Contaminated water could contain pathogenic bacteria, protozoa, and viruses that are implicated in several debilitating human diseases. The prevalence and survival of waterborne viruses differ from bacteria and other waterborne microorganisms. In addition, viruses are responsible for more severe waterborne diseases such as gastroenteritis, myocarditis, and encephalitis among others, hence the need for dedicated attention to viral inactivation. Disinfection is vital to water treatment because it removes pathogens, including viruses. The commonly used methods and techniques of disinfection for viral inactivation in water comprise physical disinfection such as membrane filtration, ultraviolet (UV) irradiation, and conventional chemical processes such as chlorine, monochloramine, chlorine dioxide, and ozone among others. However, the production of disinfection by-products (DBPs) that accompanies chemical methods of disinfection is an issue of great concern due to the increase in the risks of harm to humans, for example, the development of cancer of the bladder and adverse reproductive outcomes. Therefore, this review examines the conventional disinfection approaches alongside emerging disinfection technologies, such as photocatalytic disinfection, cavitation, and electrochemical disinfection. Moreover, the merits, limitations, and log reduction values (LRVs) of the different disinfection methods discussed were compared concerning virus removal efficiency. Future research needs to merge single disinfection techniques into one to achieve improved viral disinfection, and the development of medicinal plant-based materials as disinfectants due to their antimicrobial and safety benefits to avoid toxicity is also highlighted.

8.
J Microbiol Methods ; 192: 106364, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34774876

RESUMO

Resuscitation and detection of stressed total coliforms in chlorinated water samples is needed to assess and prevent health effects from adverse exposure. In this study, we report that the addition of a growth enhancer mix consisting of trehalose, sodium pyruvate, magnesium chloride, and 1× trace mineral supplement improved growth of microorganisms from chlorinated secondary effluent in the base medium with Colilert-18. Improving growth of chlorine stressed microorganisms from secondary effluent is crucial to decreased detection time from 18 to 8 h.


Assuntos
Carga Bacteriana/métodos , Cloro/toxicidade , Meios de Cultura/química , Monitoramento Ambiental/métodos , Escherichia coli/crescimento & desenvolvimento , Esgotos/microbiologia , Fluoretação , Cloreto de Magnésio/metabolismo , Piruvatos/metabolismo , Trealose/metabolismo , Microbiologia da Água
9.
Sci Total Environ ; 804: 150015, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34509843

RESUMO

Our previous studies showed hydrophobic organic compounds (HOCs) in the sediments of drinking water reservoirs caused DNA damage in human cells (Caco-2) after chlorination. However, the main mechanisms remained unclear. This study compared oxidative damage and EROD activity in Caco-2 cells upon exposure to chlorinated HOCs, and the role of antioxidants (catalase, vitamin C and epigallocatechin gallate (EGCG)) in reducing the toxicities was examined. The result showed that chlorinated HOCs induced a 4-fold increase in production of reactive oxygen species (ROS) compared with HOCs. Antioxidants supplement significantly reduced ROS yields and DNA peroxidation. HOCs with relatively higher TEQbio were greatly reduced (about 98%) after chlorination, indicating dioxin-like toxicity is not the main factor inducing oxidative damage by chlorinated HOCs. Yet, ROS and the associated oxidative damage seem to be more responsible for causing DNA damage in the cells. Antioxidants including catalase, Vitamin C and EGCG showed protective effect against chlorination.


Assuntos
Água Potável , Antioxidantes , Células CACO-2 , Citocromo P-450 CYP1A1 , Humanos , Estresse Oxidativo , Espécies Reativas de Oxigênio
10.
Materials (Basel) ; 13(18)2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-32967371

RESUMO

During the treatment of copper anode slime (CAS) under an air atmosphere, several aspects of the interactions of its main components (CuAgSe, Cu2-xSeyS1-y, Ag3AuSe2) with oxygen were described in Part I. As a comparative and complementary study, this work deals with the thermal behavior of CAS under air in the presence of polyvinyl chloride (PVC) between 195 and 770 °C. The preliminary thermal treatment of an e-waste sample containing brominated substances was also performed. The reaction products were systematically analyzed by scanning electron microscopy through energy-dispersive spectroscopy (SEM-EDS) and X-ray diffraction (XRD) to investigate the thermal behaviors of the studied samples in a halogenated medium. At low temperatures, the copper, silver and selenium compounds of the CAS reacted with the HCl, issued from PVC degradation, leading to the formation of their respective chlorides. Bromides of valuable metals (Cu, Pb, Sn…) were synthesized during the e-waste treatment at 500 °C and they were distributed between the solid residue and gaseous phase. The data obtained give an insight into the reactivity of several metals towards halogenated substances, which may be valuable information for conducting the extraction and recycling of targeted elements from industrial by-products and end-of-life materials by a thermochemical route.

11.
J Hazard Mater ; 382: 121110, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31518771

RESUMO

Increasing attention has been paid on the application of sewage sludge-derived biochar as soil amendments, but is always limited by heavy metals. This study conducted experiments on heavy metal removal by adding chlorinating agents (PVC, NaCl, MgCl2, CaCl2) during sludge pyrolysis. The chlorides addition can largely remove heavy metals by achieving the highest removal efficiency with dosage of 80 g(Cl)/kg(dry sludge) at 700 °C. The most effective removal effect was observed for Zn, Mn, Cu and Pb, with removal efficiency from 37.44% to 99.45%, 5.24% to 93.64%, 9.11% to 86.15% and 16.57% to 90.75%, respectively for the sludge before and after chlorination. Furthermore, the P-solubility in neutral ammonium citrate (Pnac) was enhanced after chlorination and the maximum P-solubility can be obtained at 700 °C for each series. After 700 °C pyrolysis, the P-solubility was significantly increased from 40.08% of the sludge biochar to 72.07%, 74.05%, 74.00% and 76.57% of the biochar obtained after adding PVC, NaCl, CaCl2, and MgCl2, respectively. The highest P-solubility was observed in samples with MgCl2 due to the formation of Mg3(PO4)2. This study proposed a novel method to use the sludge biochar as potential P-fertilizer with effective heavy metal removal, finally achieving a "waste-to-resource" strategy for integrated management of sewage sludge.


Assuntos
Carvão Vegetal/química , Cloro/química , Metais Pesados/química , Fósforo/química , Poluentes Químicos da Água/química , Fertilizantes , Halogenação , Pirólise , Esgotos
12.
Molecules ; 23(10)2018 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-30322037

RESUMO

Due to the emergence of multidrug-resistant pathogenic microorganisms, the search for new antimicrobial compounds plays an important role in current medicinal chemistry research. Inspired by lichen antimicrobial xanthones, a series of novel chlorinated xanthones was prepared using five chlorination methods (Methods A⁻E) to obtain different patterns of substitution in the xanthone scaffold. All the synthesized compounds were evaluated for their antimicrobial activity. Among them, 3-chloro-4,6-dimethoxy-1-methyl-9H-xanthen-9-one 15 showed promising antibacterial activity against E. faecalis (ATCC 29212 and 29213) and S. aureus ATCC 29213. 2,7-Dichloro-3,4,6-trimethoxy-1-methyl-9H-xanthen-9-one 18 revealed a potent fungistatic and fungicidal activity against dermatophytes clinical strains (T. rubrum, M. canis, and E. floccosum (MIC = 4⁻8 µg/mL)). Moreover, when evaluated for its synergistic effect for T. rubrum, compound 18 exhibited synergy with fluconazole (ΣFIC = 0.289). These results disclosed new hit xanthones for both antibacterial and antifungal activity.


Assuntos
Anti-Infecciosos/síntese química , Anti-Infecciosos/farmacologia , Líquens/química , Xantonas/síntese química , Xantonas/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Antibacterianos/farmacologia , Anti-Infecciosos/química , Antifúngicos/síntese química , Antifúngicos/química , Antifúngicos/farmacologia , Enterococcus faecalis/efeitos dos fármacos , Epidermophyton/efeitos dos fármacos , Halogenação , Testes de Sensibilidade Microbiana , Microsporum/efeitos dos fármacos , Estrutura Molecular , Extratos Vegetais/química , Staphylococcus aureus/efeitos dos fármacos , Trichophyton/efeitos dos fármacos , Xantonas/química
13.
Int J Hyg Environ Health ; 220(3): 583-590, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28196675

RESUMO

An undesirable consequence of disinfection is the formation of chemical contaminants known as disinfection byproducts (DBPs). Chronic exposure to DBPs has been linked to adverse health effects. The occurrence of DBPs in chlorinated pools filled with seawater (such as thalassotherapy pools and pools in spas) has received little attention so far. The present study evaluated the speciation and levels of disinfection byproducts in indoor swimming pools filled with seawater and treated with chlorine. Water and air samples were collected from three indoor swimming pools located in Southern France. Several classes of DBPs including trihalomethanes, haloacetic acids, haloacetonitriles, and trihaloacetaldehydes were analyzed in water. Halogenated volatile organic compounds were analyzed in air. Extractable organic halides (EOX) contents were determined using combustion/micro-coulometry system. The speciation of DBPs identified in the three pools was predominantly brominated. The mean (arithmetic) concentration of bromoform, dibromoacetic acid, tribromoacetic acid, dibromoacetonitrile and bromal hydrate in the three pools was 79.2, 72.9, 59.9, 26.9 and 10.0µg/L, respectively. By weight, HAAs represented the most abundant chemical class followed by THMs. In air, bromoform was the most abundant THM occurring at a mean concentration of 133.2µg/m3 in the three pools. The mean EOX level was 706µgCl-/L for the three pools. In average, the quantified DBPs accounted for only 14% of EOX, thus 86% of EOX remained unknown. Further research is warranted to identify the unknown DBPs.


Assuntos
Poluentes Atmosféricos/análise , Desinfecção , Halogenação , Piscinas , Poluentes Químicos da Água/análise , Acetatos/análise , Acetonitrilas/análise , Cloro , Desinfetantes , Monitoramento Ambiental , Hidrocarbonetos Halogenados/análise
14.
J Agric Food Chem ; 64(14): 2865-74, 2016 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-26947920

RESUMO

This study presents a comparative evaluation of chlorination of betanin, betanidin, and neobetanin exposed to sodium hypochlorite and myeloperoxidase (MPO)/H2O2/Cl(-) systems. For betanin/betanidin, the chlorination takes place at the aglycone unit, but for neobetanin, no chlorinated products in the reaction mixtures can be detected. In the RP-HPLC system, monochloro-betanin/-betanidin were eluted earlier than their corresponding nonchlorinated substrates. An influence of Cl(-) concentration on betanin/betanidin chlorination efficiency in sodium hypochlorite and MPO systems was investigated. At pH 3-5, the yields of formed monochloro-betanin/-betanidin decrease dramatically at higher Cl(-) concentrations, indicating that generated Cl2 is not the chlorinating agent in the presence of sodium hypochlorite. The intriguing low activity of Cl2 in betanin/betanidin chlorination compared to HOCl and/or Cl2O can be explained by a special position of the attack by molecules of HOCl and/or Cl2O. In the MPO/H2O2/Cl(-) system, the highest efficiency of monochloro-betanin/-betanidin generation is observed at pH 5.


Assuntos
Betacianinas/química , Ácido Hipocloroso/química , Beta vulgaris/química , Cloro/química , Halogenação , Concentração de Íons de Hidrogênio , Estrutura Molecular
15.
Chemosphere ; 95: 156-65, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24074880

RESUMO

The levels of 14 micropollutants including nine pharmaceuticals, two pesticides, and three endocrine disruptors were measured in a water treatment plant (WTP) in Seoul, Korea. Among the measured micropollutants, 12 (excluding atrazine and triclocarban) were found in the influent and effluent from the WTP, at levels ranging from 2 to 482 ng L(-1). The removal efficiencies of the detected micropollutants in the WTP ranged from 6% to 100%. Among them diclofenac, acetaminophen, caffeine, carbamazepine, and 2,4-D were effectively removed (>80%). Metoprolol was unlikely to be removed (6%) in the WTP process. Concentrations of acetaminophen, metoprolol, ibuprofen, and naproxen were higher in winter, while levels of herbicides of 2,4-dichloro-phenoxyacetic acid (2,4-D) were higher in summer. Metoprolol was hardly removed in the water treatment process. Laboratory experiments showed that compounds with logKow>2.5 (especially bisphenol-A, 2,4-D, carbamazepine, triclocarban and 4-nonylphenol) were effectively removed by coagulation process, and adsorption effect increased in proportion with hydrophobicity of micropollutants and the turbidity of water. Sunlight photodegradation also effectively removed sulfamethoxazole, sulfamethazine, caffeine, diclofenac, ibuprofen, and acetaminophen, which are photosensitizes. Chlorination was relatively not effective for the removal of micropollutants due to the lower chlorine dosage (2 mg L(-1)), lower contact time (1h), and already lower levels of micropollutants at the chlorination stage at WTP. Our results imply that micropollutants during coagulation stage at WTP can be removed not only by coagulation itself, but also by adsorption to clay particle especially for high turbidity water, and by sunlight photodegradation in the areas open to the atmosphere.


Assuntos
Eliminação de Resíduos Líquidos , Poluentes Químicos da Água/análise , Ácido 2,4-Diclorofenoxiacético/análise , Adsorção , Compostos Benzidrílicos/análise , Carbamazepina/análise , Cloro/química , Disruptores Endócrinos/análise , Monitoramento Ambiental , Halogenação , Ibuprofeno/análise , Naproxeno/análise , Fenóis/análise , República da Coreia , Purificação da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA