Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 918
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
Parasit Vectors ; 17(1): 194, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664829

RESUMO

BACKGROUND: Sarcoptic mange is a serious animal welfare concern in bare-nosed wombats (Vombatus ursinus). Fluralaner (Bravecto®) is a novel acaricide that has recently been utilised for treating mange in wombats. The topical 'spot-on' formulation of fluralaner can limit treatment delivery options in situ, but dilution to a volume for 'pour-on' delivery is one practicable solution. This study investigated the in vitro acaricidal activity of Bravecto, a proposed essential oil-based diluent (Orange Power®), and two of its active constituents, limonene and citral, against Sarcoptes scabiei. METHODS: Sarcoptes scabiei were sourced from experimentally infested pigs. In vitro assays were performed to determine the lethal concentration (LC50) and survival time of the mites when exposed to varying concentrations of the test solutions. RESULTS: All compounds were highly effective at killing mites in vitro. The LC50 values of Bravecto, Orange Power, limonene and citral at 1 h were 14.61 mg/ml, 4.50%, 26.53% and 0.76%, respectively. The median survival times of mites exposed to undiluted Bravecto, Orange Power and their combination were 15, 5 and 10 min, respectively. A pilot survival assay of mites collected from a mange-affected wombat showed survival times of < 10 min when exposed to Bravecto and Orange Power and 20 min when exposed to moxidectin. CONCLUSIONS: These results confirm the acaricidal properties of Bravecto, demonstrate acaricidal properties of Orange Power and support the potential suitability of Orange Power and its active constituents as a diluent for Bravecto. As well as killing mites via direct exposure, Orange Power could potentially enhance the topical delivery of Bravecto to wombats by increasing drug penetration in hyperkeratotic crusts. Further research evaluating the physiochemical properties and modes of action of Orange Power and its constituents as a formulation vehicle would be of value.


Assuntos
Acaricidas , Isoxazóis , Óleos de Plantas , Sarcoptes scabiei , Escabiose , Animais , Sarcoptes scabiei/efeitos dos fármacos , Acaricidas/farmacologia , Isoxazóis/farmacologia , Escabiose/tratamento farmacológico , Escabiose/parasitologia , Óleos de Plantas/farmacologia , Óleos de Plantas/química , Monoterpenos Acíclicos/farmacologia , Suínos , Limoneno/farmacologia , Limoneno/química , Terpenos/farmacologia , Terpenos/química , Cicloexenos/farmacologia , Cicloexenos/química , Dose Letal Mediana
2.
Metabolites ; 14(4)2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38668334

RESUMO

Phytophthora parasitica is an oomycete pathogen that infects a broad range of crops of worldwide economic interest; among them are citrus species. In general, some Citrus and the rootstocks of related genera offer considerable resistance against P. parasitica; therefore, understanding the mechanisms involved in the virulence of this pathogen is crucial. In this work, P. parasitica secondary metabolite production was studied using matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) and ultrahigh-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry (UHPLC/ESI-Q-TOF-MS) combined with chemometric tools, and its metabolic profile was evaluated under the influence of Citrus sunki (a highly susceptible host) and Poncirus trifoliata (a resistant genotype) extracts. The root extracts of Citrus sunki had an influence on the growth and hyphae morphology, and the root extracts of P. trifoliata had an influence on the zoospore behavior. In parallel, the spatial distribution of several metabolites was revealed in P. parasitica colonies using MALDI-MSI, and the metabolite ion of m/z 246 was identified as the protonated molecule of Arg-Ala. The MALDI-MSI showed variations in the surface metabolite profile of P. parasitica under the influence of the P. trifoliata extract. The P. parasitica metabolome analysis using UHPLC-ESI-Q-TOF-MS resulted in the detection of Arg-Gln (m/z 303.1775), as well as L-arginine (m/z 175.1191) and other unidentified metabolites. Significant variations in this metabolome were detected under the influence of the plant extracts when evaluated using UHPLC-ESI-Q-TOF-MS. Both techniques proved to be complementary, offering valuable insights at the molecular level when used to assess the impact of the plant extracts on microbial physiology in vitro. The metabolites identified in this study may play significant roles in the interaction or virulence of P. parasitica, but their functional characterization remains to be analyzed. Overall, these data confirm our initial hypotheses, demonstrating that P. parasitica has the capabilities of (i) recognizing host signals and altering its reproductive programing and (ii) distinguishing between hosts with varying responses in terms of reproduction and the production of secondary metabolites.

3.
Phytother Res ; 38(6): 2847-2859, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38561995

RESUMO

The present systematic review and dose-response meta-analysis was conducted to synthesize existing data from randomized clinical trials (RCTs) concerning the impact of citrus flavonoids supplementation (CFS) on endothelial function. Relevant RCTs were identified through comprehensive searches of the PubMed, ISI Web of Science, and Scopus databases up to May 30, 2023. Weighted mean differences and their corresponding 95% confidence intervals (CI) were pooled utilizing a random-effects model. A total of eight eligible RCTs, comprising 596 participants, were included in the analysis. The pooled data demonstrated a statistically significant augmentation in flow-mediated vasodilation (FMD) (2.75%; 95% CI: 1.29, 4.20; I2 = 87.3%; p < 0.001) associated with CFS compared to the placebo group. Furthermore, the linear dose-response analysis indicated that each increment of 200 mg/d in CFS led to an increase of 1.09% in FMD (95% CI: 0.70, 1.48; I2 = 94.5%; p < 0.001). The findings from the nonlinear dose-response analysis also revealed a linear relationship between CFS and FMD (Pnon-linearity = 0.903, Pdose-response <0.001). Our findings suggest that CFS enhances endothelial function. However, more extensive RTCs encompassing longer intervention durations and different populations are warranted to establish more precise conclusions.


Assuntos
Citrus , Suplementos Nutricionais , Endotélio Vascular , Flavonoides , Ensaios Clínicos Controlados Aleatórios como Assunto , Vasodilatação , Humanos , Citrus/química , Flavonoides/farmacologia , Vasodilatação/efeitos dos fármacos , Endotélio Vascular/efeitos dos fármacos , Relação Dose-Resposta a Droga
4.
Polymers (Basel) ; 16(7)2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38611142

RESUMO

Penicillium digitatum is the causal agent of green mold, a primary postharvest disease of citrus fruits. This study evaluated the efficacy of a novel photoactive chitosan-riboflavin bioconjugate (CH-RF) to control green mold in vitro and in lemon fruit. The results showed total inhibition of P. digitatum growth on APDA supplemented with CH-RF at 0.5% (w/v) and a significant reduction of 84.8% at 0.25% (w/v). Lemons treated with CH-RF and kept under controlled conditions (20 °C and 90-95% relative humidity) exhibited a noteworthy reduction in green mold incidence four days post-inoculation. Notably, these effects persisted, with all treatments remaining significantly distinct from the control group until day 14. Furthermore, CH-RF showed high control of green mold in lemons after 20 days of cold storage (5 ± 1 °C). The disease incidence five days after cold storage indicated significant differences from the values observed in the control. Most CH-RF treatments showed enhanced control of green mold when riboflavin was activated by white-light exposure. These findings suggest that this novel fungicide could be a viable alternative to conventional synthetic fungicides, allowing more sustainable management of lemon fruit diseases.

5.
Huan Jing Ke Xue ; 45(5): 2881-2890, 2024 May 08.
Artigo em Chinês | MEDLINE | ID: mdl-38629550

RESUMO

Soil microbes are key drivers in regulating the phosphorus cycle. Elucidating the microbial mineralization process of soil phosphorus-solubilizing bacteria is of great significance for improving nutrient uptake and yield of crops. This study investigated the mechanism by which citrus cultivation affects the soil microbial acquisition strategy for phosphorus by measuring the abundance of the phoD gene, microbial community diversity and structure, and soil phosphorus fractions in the soils of citrus orchards and adjacent natural forests. The results showed that citrus cultivation could lead to a decrease in soil pH and an accumulation of available phosphorus in the soil, with a content as high as 112 mg·kg-1, which was significantly higher than that of natural forests (3.7 mg·kg-1). Citrus cultivation also affected the soil phosphorus fractions, with citrus soil having higher levels of soluble phosphorus (CaCl2-P), citrate-extractable phosphorus (Citrate-P), and mineral-bound phosphorus (HCl-P). The phosphorus fractions of natural forest soils were significantly lower than those of citrus soils, whereas the phoD gene abundance and alkaline phosphatase activity were significantly higher in natural forest soils than in citrus soils. High-throughput sequencing results showed that the Shannon diversity index of phosphate-solubilizing bacteria in citrus soils was 4.61, which was significantly lower than that of natural forests (5.35). The microbial community structure in natural forests was also different from that of citrus soils. In addition, the microbial community composition of phosphate-solubilizing bacteria in citrus soils was also different from that of natural forests, with the relative abundance of Proteobacteria being lower in natural forest soils than in citrus soils. Therefore, citrus cultivation led to a shift of soil microbial acquisition strategy for phosphorus, with external phosphorus addition being the main strategy in citrus soils, whereas microbial mineralization of organic phosphorus was the main strategy in natural forest soils to meet their growth requirements.


Assuntos
Fósforo , Solo , Solo/química , Microbiologia do Solo , Bactérias/genética , Florestas , Fosfatos , Citratos
6.
J Texture Stud ; 55(2): e12828, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38486415

RESUMO

Rheological analysis of citrus pectin at pH 3 and 7 elucidates its structural dynamics, revealing distinct behaviors influenced by pH. At pH 3, pectin exhibits shear-thinning, with solvent-independent unified rheological profiles identifying three concentration regimes: 0.5%-1.5%, 2%-3%, and 3.5%-4%. These regimes, alongside Cox-Merz superpositions, outline the semi-dilute (c*) and concentrated (c**) transitions at 1.5%-2% and 3%-3.5%, respectively. Moreover, a Morris equation exponent of 0.65 indicates flexible, mobility-restricted macromolecules. Conversely, at pH 7, increased viscosities and Morris plot linearity for p = .1 suggest rigid chain behavior due to electrostatic repulsion among ionized acidic groups. This rigidity leads to concentration-dependent self-assembly structures that diverge from expected unified rheological profiles, a deviation amplified by heating-cooling cycles. This study clarifies the impact of pH on citrus pectin's rheology and emphasizes the intricate relationship between polymeric chain rigidity, self-assembly, and viscosity. By providing a refined understanding of these mechanisms, our findings contribute to the broader field of polysaccharide research, offering insights critical for developing and optimizing pectin-based applications in various industries.


Assuntos
Citrus , Pectinas , Temperatura Baixa , Reologia
7.
Fitoterapia ; 175: 105899, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38471575

RESUMO

Limonin is a natural tetracyclic triterpenoid compound in citrus seeds that presents hepatoprotective effects but is often discarded as agricultural waste because of its low content and low solubility. Herein, limonin with high purity (98.11%) from citrus seeds was obtained via purification by high-speed counter-current chromatography (HSCCC) and recrystallization. Limonin-loaded liposomes (Lip-LM) prepared by thin film hydration and high pressure homogenization method to enhance its solubility and hepatoprotective effect on APAP-induced liver injury (AILI). Lip-LM appeared as lipid nanoparticles under a transmission electron microscope, and showed well dispersed nano-scale size (69.04 ± 0.42 nm), high encapsulation efficiency (93.67% ± 2.51%), sustained release, fine stability. Lip-LM also exhibited significantly better hepatoprotective activity on AILI than free limonin in vivo. In summary, Lip-LM might be used as a potential hepatoprotective agent in the form of dietary supplement and provide an effective strategy to improve the potential value of citrus seeds.


Assuntos
Acetaminofen , Doença Hepática Induzida por Substâncias e Drogas , Citrus , Limoninas , Lipossomos , Substâncias Protetoras , Sementes , Limoninas/isolamento & purificação , Limoninas/farmacologia , Citrus/química , Sementes/química , Animais , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Camundongos , Substâncias Protetoras/farmacologia , Substâncias Protetoras/isolamento & purificação , Masculino , Compostos Fitoquímicos/isolamento & purificação , Compostos Fitoquímicos/farmacologia
8.
Food Chem ; 448: 139125, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38537547

RESUMO

In this study, the ultrasonic-microwave pretreatment was defined as a processing technology in the production of tribute citrus powder, and it could increase the flavonoid compounds in the processing fruit powder. A total of 183 upregulated metabolites and 280 downregulated metabolites were obtained by non-targeted metabolomics, and the differential metabolites was mainly involved in the pathways of flavonoid biosynthesis, flavone and flavonol biosynthesis. A total of 8 flavonoid differential metabolites were obtained including 5 upregulated metabolites (6"-O-acetylglycitin, scutellarin, isosakuranin, rutin, and robinin), and 3 downregulated metabolites (astragalin, luteolin, and (-)-catechin gallate) by flavonoids-targeted metabolomics. The 8 flavonoid differential metabolites participated in the flavonoid biosynthesis pathways, flavone and flavonol biosynthesis pathways, and isoflavonoid biosynthesis pathways. The results provide a reference for further understanding the relationship between food processing and food components, and also lay a basis for the development of food targeted-processing technologies.


Assuntos
Citrus , Flavonoides , Frutas , Metabolômica , Citrus/metabolismo , Citrus/química , Flavonoides/metabolismo , Flavonoides/química , Frutas/química , Frutas/metabolismo , Pós/química , Pós/metabolismo , Extratos Vegetais/química , Extratos Vegetais/metabolismo , Manipulação de Alimentos
9.
Food Chem ; 447: 138989, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38492297

RESUMO

Limonin is an intensely bitter and highly oxidized tetracyclic triterpenoid secondary metabolite, which is abundant in the Rutaceae and Meliaceae, especially in Citrus. In order to detect limonin content in complex substrates such as citrus and traditional Chinese medicine, monoclonal antibodies specifically recognizing limonin were prepared and an indirect competitive enzyme-linked immunosorbent assay (icELISA) was established. The median inhibition concentration (IC50) was 5.40 ng/mL and the linear range was 1.25-23.84 ng/mL. The average recoveries from citrus peel and pulp samples were 95.9%-118.8% and 77.5%-113.1%, respectively. Moreover, the contents of limonin in 6 citrus samples and 4 herbal samples were analyzed by icELISA and UPLC-MS, and the results of the two methods were consistent. This validation is sufficient to demonstrate that the developed immunoassay is applicable for the detection of limonin in citrus and herbal samples and has the advantage of high efficiency, sensitivity, and convenience.


Assuntos
Citrus , Limoninas , Anticorpos Monoclonais , Limoninas/análise , Ensaio de Imunoadsorção Enzimática/métodos , Citrus/química , Cromatografia Líquida , Espectrometria de Massas em Tandem
10.
Int Immunopharmacol ; 131: 111912, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38522140

RESUMO

Water-soluble rhamnogalacturonan-I enriched citrus pectin (WRP) has promising effect on antimicrobial defense. We aim to determine whether the modified acidic (A) or neutral (B) WRP solutions can improve intestinal microbial dysbiosis in burn-injured mice. Male Balb/c mice were gavaged with WRPs at 80, 160, 320 mg/kg. Body weight daily for 21 days before exposed to thermal injury of 15 % total body surface area and mortality was monitored. Mice with 80 mg/kg WRPs were also subjected to fecal DNAs and T cell metabonomics analysis, intestinal and plasma glucagon-like peptide 1 (GLP-1) detection, plasma defensin, immunoglobin and intestinal barrier examinations at 1 and 3d postburn (p.b.). Burn-induced mortality was only improved by low dose WRP-A (P = 0.039). Both WRPs could prevent the dysbiosis of gut microbiota in burn injury by reducing the expansion of inflammation-promoting bacteria. Both WRPs suppressed ileum GLP-1 production at 1d p.b. (P = 0.002) and plasma GLP-1 levels at 3d p.b. (P = 0.013). Plasma GLP-1 level correlated closely with ileum GLP-1 production (P = 0.019) but negatively with microbiota diversity at 1d p.b. (P = 0.003). Intestinal T cell number was increased by both WRPs in jejunum at 3d p.b. However, the exaggerated splenic T cell metabolism in burn injury was reversed by both WRPs at 1d p.b. The burn-increased plasma defensin ß1 level was only reduced by WRP-B. Similarly, the intestinal barrier permeability was only rescued by WRP-B at 1d p.b. WRP-A rather than WRP-B could reduce burn-induced mortality in mice by suppressing intestinal GLP-1 secretion, restoring gut microbiota dysbiosis and improving adaptive immune response.


Assuntos
Queimaduras , Microbioma Gastrointestinal , Pectinas , Camundongos , Masculino , Animais , Peptídeo 1 Semelhante ao Glucagon , Disbiose/tratamento farmacológico , Imunidade , Queimaduras/tratamento farmacológico , Queimaduras/metabolismo , Defensinas
11.
Int J Biol Macromol ; 264(Pt 1): 130476, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38428761

RESUMO

A whole-cell biocatalyst was developed by genetically engineering pectinase PG5 onto the cell surface of Pichia pastoris using Gcw12 as the anchoring protein. Whole-cell PG5 eliminated the need for enzyme extraction and purification, while also exhibiting enhanced thermal stability, pH stability, and resistance to proteases in vitro compared to free PG5. Magnetic resonance mass spectrometry analysis revealed that whole-cell PG5 efficiently degraded citrus pectin, resulting in the production of a mixture of pectin oligosaccharides. The primary components of the mixture were trigalacturonic acid, followed by digalacturonic acid and tetragalacturonic acid. Supplementation of citrus pectin with whole-cell PG5 resulted in a more pronounced protective effect compared to free PG5 in alleviating colitis symptoms and promoting the integrity of the colonic epithelial barrier in a mouse model of dextran sulfate sodium-induced colitis. Hence, this study demonstrates the potential of utilizing whole-cell pectinase as an effective biocatalyst to promote intestinal homeostasis in vivo.


Assuntos
Colite , Poligalacturonase , Saccharomycetales , Animais , Camundongos , Poligalacturonase/genética , Poligalacturonase/metabolismo , Função da Barreira Intestinal , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Pectinas/farmacologia , Pectinas/metabolismo , Suplementos Nutricionais
12.
Phytomedicine ; 128: 155506, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38522319

RESUMO

BACKGROUND: Nobiletin is a natural polymethoxylated flavonoid widely present in citrus fruit peels. It has been demonstrated to exert the effects of anti-tumor, anti-inflammation, anti-oxidative, anti-apoptotic and improve cardiovascular function. Increasing evidences suggest that nobiletin plays an important role in respiratory diseases (RDs) treatment. OBJECTIVE: This review aimed to investigate the therapeutic potential of nobiletin against RDs, such as lung cancer, COPD, pulmonary fibrosis, asthma, pulmonary infection, acute lung injury, coronavirus disease 2019, and pulmonary arterial hypertension. METHODS: We retrieved extensive literature of relevant literatures in English until June 26, 2023 from the database of PubMed, Web of Science, and Scopus databases. The keywords of "nobiletin and lung", "nobiletin and respiratory disease", "nobiletin and chronic respiratory diseases", "nobiletin and metabolites", "nobiletin and pharmacokinetics", "nobiletin and toxicity" were searched in pairs. A total of 298 literatures were retrieved from the above database. After excluding the duplicates and reviews, 53 were included in the current review. RESULTS: We found that the therapeutic mechanisms are based on different signaling pathways. Firstly, nobiletin inhibited the proliferation and suppressed the invasion and migration of cancer cells by regulating the related pathway or key target, like Bcl-2, PD-L1, PARP, and Akt/GSK3ß/ß-catenin in lung cancer treatment. Secondly, nobiletin treats COPD and ALI by targeting classical signaling pathway mediating inflammation. Besides, the available findings show that nobiletin exerts the effect of PF treatment via regulating mTOR pathway. CONCLUSIONS: With the wide range of pharmacological activities, high efficiency and low toxicity, nobiletin can be used as a potential agent for preventing and treating RDs. These findings will contribute to further research on the molecular mechanisms of nobiletin and facilitate in-depth studies on nobiletin at both preclinical and clinical levels for the treatment of RDs.


Assuntos
Flavonas , Flavonas/farmacologia , Humanos , Animais , Tratamento Farmacológico da COVID-19 , COVID-19 , Doenças Respiratórias/tratamento farmacológico , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico
13.
Gene ; 911: 148366, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38485035

RESUMO

Traditional remedies have long utilized Anthemis hyaline, Nigella sativa, and Citrus sinensis peel extracts as treatments for microbial infections. This study aimed to investigate the influence of Anthemis hyaline, Nigella sativa, and Citrus sinensis extracts on coronavirus replication and apoptosis-related pathways. HeLa-CEACAM1a cells were exposed to mouse hepatitis virus-A59. After viral inoculation, the mRNA levels of 36 genes were quantified using a Fluidigm Dynamic Array nanofluidic chip. IL-8 level and intracellular Ca2+ concentration was measured, and viral titer was assessed by the TCID50/ml assay to detect the extent of infection. Treatment with Nigella sativa extract surged the inflammatory cytokine IL-8 level at both 24 and 48-hour. Changes in gene expression were notable for RHOA, VAV3, ROCK2, CFL1, RASA1, and MPRIP genes following treatment with any of the extracts. The addition of Anthemis hyaline, Nigella sativa, or Citrus sinensis extracts to coronavirus-infected cells reduced viral presence, with Anthemis hyaline extract leading to a virtually undetectable viral load at 6- and 8-hours after infection. While all treatments influenced IL-8 production and viral levels, Anthemis hyaline extract displayed the most pronounced reduction in viral load. Consequently, Anthemis hyaline extract emerges as the most promising agent, harboring potential therapeutic compounds.


Assuntos
Anthemis , COVID-19 , Citrus sinensis , Nigella sativa , Camundongos , Animais , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , SARS-CoV-2 , Interleucina-8 , Hialina , Sistema de Sinalização das MAP Quinases
14.
J Med Food ; 27(4): 369-378, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38489599

RESUMO

Lipid accumulation in adipocytes occurs through multifactorial effects such as overnutrition due to unbalanced eating habits, reduced physical activity, and genetic factors. In addition, obesity can be intensified by the dis-regulation of various metabolic systems such as differentiation, lipogenesis, lipolysis, and energy metabolism of adipocytes. In this study, the Jeju roasted peel extract from Citrus unshiu S.Markov. (JRC), which is discarded as opposed to the pulp of C. unshiu S.Markov., is commonly consumed to ameliorate obesity. To investigate the anti-obesity effect of JRC, these studies were conducted on differentiated 3T3-L1 cells and in high-fat diet-induced mice, and related methods were used to confirm whether it decreased lipid accumulation in adipocytes. The mechanism of inhibiting obesity by JRC was confirmed through mRNA expression studies. JRC suppressed lipid accumulation in adipocytes and adipose tissue, and significantly improved enzymes such as alanine aminotransferase, aspartate aminotransferase, and gamma-glutamyl transferase and serum lipid profiles. In addition, it effectively modulated the expression of genes related to lipid and energy metabolism in adipose tissue. As a result, these findings suggest that JRC could be a therapeutic regulator of body fat accumulation by significantly alleviating the dis-regulation of intracellular lipid metabolism in adipocytes and by enhancement of energy metabolism (Approval No. CNU IACUC-YB-2023-98).


Assuntos
Fármacos Antiobesidade , Citrus , Camundongos , Animais , Metabolismo dos Lipídeos , Células 3T3-L1 , Camundongos Obesos , Dieta Hiperlipídica/efeitos adversos , Adipogenia , Fármacos Antiobesidade/farmacologia , Extratos Vegetais/uso terapêutico , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Adipócitos , Lipídeos , Camundongos Endogâmicos C57BL
15.
J Hazard Mater ; 467: 133738, 2024 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-38350317

RESUMO

Little information is available on how boron (B) supplementation affects plant cell wall (CW) remodeling under copper (Cu) excess. 'Xuegan' (Citrus sinensis) seedlings were submitted to 0.5 or 350 µM Cu × 2.5 or 25 µM B for 24 weeks. Thereafter, we determined the concentrations of CW materials (CWMs) and CW components (CWCs), the degree of pectin methylation (DPM), and the pectin methylesterase (PME) activities and PME gene expression levels in leaves and roots, as well as the Cu concentrations in leaves and roots and their CWMs (CWCs). Additionally, we analyzed the Fourier transform infrared (FTIR) and X-ray diffraction (XRD) spectra of leaf and root CWMs. Our findings suggested that adding B reduced the impairment of Cu excess to CWs by reducing the Cu concentrations in leaves and roots and their CWMs and maintaining the stability of CWs, thereby improving leaf and root growth. Cu excess increased the Cu fractions in leaf and root pectin by decreasing DPM due to increased PME activities, thereby contributing to citrus Cu tolerance. FTIR and XRD indicated that the functional groups of the CW pectin, hemicellulose, cellulose, and lignin could bind and immobilize Cu, thereby reducing Cu cytotoxicity in leaves and roots.


Assuntos
Citrus sinensis , Boro/toxicidade , Cobre/toxicidade , Plântula , Parede Celular , Folhas de Planta , Pectinas/farmacologia
16.
Nutrients ; 16(4)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38398818

RESUMO

A Crataegus Extract Mixture (CEM) is a combination of extracts from Crataegus pinnatifida leaves and Citrus unshiu peels, well-known herbs used for treating obesity and dyslipidemia. We aimed to investigate the efficacy and safety of a CEM on the body fat and lipid profiles in overweight adults. A 12-week, randomized, double-blind, placebo-controlled, parallel-group trial was conducted on 105 subjects aged 20-60 years with body mass indexes between 25 and 30 kg/m2. Eligible subjects were randomly assigned in a 1:1:1 ratio to receive either a high dose of the CEM (400 mg tid), a low dose of the CEM (280 mg tid), or a placebo. Body fat was evaluated using dual-energy X-ray absorptiometry (DXA), bioelectrical impedance analysis (BIA), and anthropometric measurements. The blood lipid and adipokine profiles were measured before and after the administration. After 12 weeks, the reductions in the fat percentages measured by DXA and BIA were significantly greater in the CEM groups than in the placebo group. The CEM also significantly decreased the body weights, body mass indexes, and blood leptin levels. An additional per-protocol analysis revealed that the high dose of the CEM also lowered the blood levels of triglycerides and very low-density lipoprotein cholesterol. No adverse events occurred after the CEM treatment. Our results suggest that CEMs are safe and effective for reducing the body fat and body weight and regulating the blood lipid and leptin levels in overweight or mildly obese individuals.


Assuntos
Crataegus , Sobrepeso , Extratos Vegetais , Adulto , Humanos , Sobrepeso/tratamento farmacológico , Leptina/farmacologia , Peso Corporal , Obesidade/tratamento farmacológico , Tecido Adiposo , Índice de Massa Corporal , Lipídeos , Método Duplo-Cego
17.
Tissue Cell ; 87: 102321, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38350206

RESUMO

The prevalent use of abamectin (ABM) has latterly raised safety attention as it has different toxicities to non-target living organisms. Citrus fruits are widely renowned for their nutritional and health-promoting qualities, and their peels are full of phenolic constituents. The purpose of the current study was to evaluate the modulatory effectiveness of Citrus reticulata peel extract (CPE) against abamectin-induced hepatotoxicity and oxidative injury. Rats were distributed into 4 groups as follows: control, CPE (400 mg/kg bw orally for 14 days), ABM (2 mg/kg bw for 5 days), and CPE + ABM at the doses mentioned above. Results revealed that GC-MS analysis of CPE has 19 identified components with significant total phenolic and flavonoid contents. Treatment with ABM in rats displayed significant variations in enzymatic and non-enzymatic antioxidants, oxidative stress markers (MDA, H2O2, PCC), liver and kidney function biomarkers, hematological parameters, lipids, and protein profile as well as histopathological abnormalities, inflammation and apoptosis (TNF-α, Caspase-3, NF-κB, and Bcl-2 genes) in rats' liver. Supplementation of CPE solo dramatically improved the antioxidant state and reduced oxidative stress. C. reticulata peel extract pretreatment alleviated ABM toxicity by modulating most of the tested parameters compared to the ABM group. Conclusively, CPE had potent antioxidant activity and could be used in the modulation of ABM hepatotoxicity presumably due to its antioxidant, anti-inflammatory, and gene-regulating capabilities.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Citrus , Ivermectina/análogos & derivados , Ratos , Animais , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Peróxido de Hidrogênio/metabolismo , Estresse Oxidativo , Fígado/patologia , Citrus/metabolismo , Extratos Vegetais/farmacologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo
18.
J Food Sci ; 89(3): 1739-1754, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38349052

RESUMO

The aim of this study was to evaluate the effect of Citrus sinensis essential oil (EO) on the proximate composition of yogurt over a 28-day shelf life and to investigate the therapeutic and prophylactic effects of functional yogurt on ibuprofen-induced gastric ulcers in a rat model. It was observed that the yogurt group containing C. sinensis EO had higher acidity, total solids, and ash values. Histologic evaluation of the stomachs of rats with gastric ulcers revealed that rats fed with functional yogurt had fewer lesions compared to the control group. The treatment group had fewer lesions than the positive control (p > 0.05). Lesions in the glandular mucosa of the prophylactic group were significantly lower than those in the positive control group (p < 0.05). Yogurt with C. sinensis EO may be beneficial in reducing the severity of ulcers and improving overall health.


Assuntos
Citrus sinensis , Óleos Voláteis , Úlcera Gástrica , Humanos , Ratos , Animais , Idoso , Úlcera Gástrica/induzido quimicamente , Úlcera Gástrica/tratamento farmacológico , Úlcera Gástrica/prevenção & controle , Ibuprofeno/efeitos adversos , Iogurte , Óleos Voláteis/farmacologia , Mucosa Gástrica
19.
Int J Mol Sci ; 25(3)2024 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-38339154

RESUMO

Increasingly globally prevalent obesity and related metabolic disorders have underscored the demand for safe and natural therapeutic approaches, given the limitations of weight loss drugs and surgeries. This study compared the phytochemical composition and antioxidant activity of five different varieties of citrus physiological premature fruit drop (CPFD). Untargeted metabolomics was employed to identify variations in metabolites among different CPFDs, and their antilipidemic effects in vitro were assessed. The results showed that Citrus aurantium L. 'Daidai' physiological premature fruit drop (DDPD) and Citrus aurantium 'Changshan-huyou' physiological premature fruit drop (HYPD) exhibited higher levels of phytochemicals and stronger antioxidant activity. There were 97 differential metabolites identified in DDPD and HYPD, including phenylpropanoids, flavonoids, alkaloids, organic acids, terpenes, and lipids. Additionally, DDPD and HYPD demonstrated potential antilipidemic effects against oleic acid (OA)-induced steatosis in HepG2 hepatocytes and 3T3-L1 adipocytes. In conclusion, our findings reveal the outstanding antioxidant activity and antilipidemic effects of CPFD, indicating its potential use as a natural antioxidant and health supplement and promoting the high-value utilization of this resource.


Assuntos
Antioxidantes , Citrus , Fenilenodiaminas , Antioxidantes/metabolismo , Citrus/metabolismo , Frutas/química , Flavonoides/farmacologia , Extratos Vegetais/química
20.
BMC Complement Med Ther ; 24(1): 73, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38308284

RESUMO

Citrus fruit essential oil is considered one of the widely studied essential oils while its leaves attract less attention although being rich in nearly the same composition as the peel and flowers. The leaves of bitter orange or sour orange (Citrus aurantium L.) were extracted using three different techniques namely; hydrodistillation (HD), steam distillation (SD), and microwave-assisted distillation (MV) to compare their chemical composition. The three essential oil samples were analyzed through GC/FID and GC/MS analyses. The samples were tested in vitro using different antioxidant techniques (DPPH, ABTS, CUPRAC, FRAP, PBD, and MCA), neuroprotective enzyme inhibitory activities (acetylcholine and butyl choline enzymes), and antidiabetic activities (α-amylase and α-glucosidase). The results showed that thirty-five volatile ingredients were detected and quantified. Monoterpenes represented the most abundant class in the three essential oils followed by sesquiterpenes. C. aurantium essential oil carried potential antioxidant activity where SD exhibited the highest antioxidant activity, with values arranged in the following order: FRAP (200.43 mg TE/g), CUPRAC (138.69 mg TE/g), ABTS (129.49 mg TE/g), and DPPH (51.67 mg TE/g). SD essential oil also presented the most potent α-amylase (0.32) inhibition while the MV essential oil showed the highest α-glucosidase inhibition (2.73 mmol ACAE/g), followed by HD (2.53 mmol ACAE/g), and SD (2.46 mmol ACAE/g). The SD essential oil exhibited the highest BChE and AChE inhibitory activities (3.73 and 2.06 mg GALAE/g), respectively). Thus, bitter orange essential oil can act as a potential source of potent antioxidant, antidiabetic, and neuroprotective activities for future drug leads.


Assuntos
Doença de Alzheimer , Benzotiazóis , Citrus , Fármacos Neuroprotetores , Óleos Voláteis , Ácidos Sulfônicos , Antioxidantes/química , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Citrus/química , Destilação , Doença de Alzheimer/tratamento farmacológico , alfa-Glucosidases , Extratos Vegetais/farmacologia , Extratos Vegetais/química , alfa-Amilases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA