Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Water Res ; 251: 121099, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38184914

RESUMO

The escalation of global eutrophication has significantly increased due to the impact of climate change, particularly the increased frequency of extreme rainfall events. Predicting and managing eutrophication requires understanding the consequences of precipitation events on algal dynamics. Here, we assessed the influence of precipitation events throughout the year on nutrient and phytoplankton dynamics in a drinking water reservoir from January 2020 to January 2022. Four distinct precipitation patterns, namely early spring flood rain (THX), Plum rain (MY), Typhoon rain (TF), and Dry season (DS), were identified based on rainfall intensity, duration time, and cumulative rainfall. The study findings indicate that rainfall is the primary driver of algal dynamics by altering nutrient levels and TN:TP ratios during wet seasons, while water temperature becomes more critical during the Dry season. Combining precipitation characteristics with the lag periods between algal proliferation and rainfall occurrence is essential for accurately assessing the impact of rainfall on algal blooms. The highest algae proliferation occurred approximately 20 and 30 days after the peak rainfall during the MY and DS periods, respectively. This was influenced by the intensity and cumulative precipitation. The reservoir exhibited two distinct TN/TP ratio stages, with average values of 52 and 19, respectively. These stages were determined by various forms of nitrogen and phosphorus in rainfall-driven inflows and were associated with shifts from Bacillariophyta-dominated to Cyanophyta-dominated blooms during the MY and DS seasons. Our findings underscore the interconnected effects of nutrients, temperature, and hydrological conditions driven by diverse rainfall patterns in shaping algal dynamics. This study provides valuable insights into forecasting algal bloom risks in the context of climate change and developing sustainable strategies for lake or reservoir restoration.


Assuntos
Cianobactérias , Água Potável , Fitoplâncton , Água Potável/análise , Eutrofização , Lagos/análise , Fósforo/análise , Nutrientes/análise , China , Monitoramento Ambiental , Estações do Ano , Nitrogênio/análise
2.
Environ Pollut ; 335: 122350, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37572845

RESUMO

Limited human activities in catchments make remote alpine lakes valuable sites for studying the evolution of lake environments in response to climate change and atmospheric deposition; however, this issue remains rarely studied owing to the scarcity of monitoring data. In this study, water quality evolution in Lake Jiren, a remote alpine lake on the southeastern margin of the Tibetan Plateau, over the past two centuries was reconstructed through geochemical analyses of aliphatic hydrocarbons, major and trace elements, and organic matter (OM) pyrolysis products in a dated sediment core, and the associated drivers were identified by temporally comparing the geochemical results with document records. All geochemical data demonstrated that the lake water remained relatively pure until 1947, after which the n-alkane and αß-hopane proxies indicated eutrophication and petroleum contamination. The OM pyrolysis proxy hydrocarbon index indicated more eutrophic conditions after 1957. Concurrently, hypolimnetic deoxygenation increased, as indicated by redox-sensitive proxies, such as the enrichment factors (EFs) of molybdenum (Mo). These proxies recorded further intensification of deoxygenation after 1976. The EFs for other trace elements indicated cadmium contamination after 1967. The greater anthropogenic emissions of reactive nitrogen, petroleum products, and heavy metals in East and South Asia since approximately 1950 and the subsequent atmospheric transport of these materials to the lake might be the basic driver of water quality deterioration. Eutrophication induced by nitrogen deposition was responsible for increased hypolimnetic deoxygenation by enhancing phytoplankton productivity and OM input. The further intensification of deoxygenation was attributed to climate warming since the 1970s, as prolonged water column stratification under this condition decreased oxygen input from the epilimnion to the lake bottom. These findings may be beneficial for understanding the natural and anthropogenic effects on the water quality of alpine lakes and help in the environmental management of Lake Jiren and other alpine lakes.


Assuntos
Petróleo , Oligoelementos , Poluentes Químicos da Água , Humanos , Qualidade da Água , Tibet , Oligoelementos/análise , Monitoramento Ambiental/métodos , Sedimentos Geológicos/análise , Hidrocarbonetos/análise , Petróleo/análise , Nitrogênio/análise , Poluentes Químicos da Água/análise , China
3.
Glob Chang Biol ; 27(22): 5818-5830, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34390614

RESUMO

Ecosystem carbon (C) dynamics after permafrost thaw depends on more than just climate change since soil nutrient status may also impact ecosystem C balance. It has been advocated that nitrogen (N) release upon permafrost thaw could promote plant growth and thus offset soil C loss. However, compared with the widely accepted C-N interactions, little is known about the potential role of soil phosphorus (P) availability. We combined 3-year field observations along a thaw sequence (constituted by four thaw stages, i.e., non-collapse and 5, 14, and 22 years since collapse) with an in-situ fertilization experiment (included N and P additions at the level of 10 g N m-2  year-1 and 10 g P m-2  year-1 ) to evaluate ecosystem C-nutrient interactions upon permafrost thaw. We found that changes in soil P availability rather than N availability played an important role in regulating gross primary productivity and net ecosystem productivity along the thaw sequence. The fertilization experiment confirmed that P addition had stronger effects on plant growth than N addition in this permafrost ecosystem. These two lines of evidence highlight the crucial role of soil P availability in altering the trajectory of permafrost C cycle under climate warming.


Assuntos
Pergelissolo , Carbono , Ecossistema , Nitrogênio , Fósforo
4.
Plant Biol (Stuttg) ; 23(1): 140-147, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32967048

RESUMO

The future impact of climate change and a warmer world is a matter of great concern. We therefore aimed to evaluate the effects of temperature on pollen viability and fruit set of Mediterranean orchids. The in vitro and controlled pollination experiments were performed to evaluate the ability of pollinia stored at lower and higher temperatures to germinate and produce fruits and seeds containing viable embryos. In all of the examined orchids, pollen stored at -20 °C remained fully viable for up to 3 years, reducing its percentage germination from year 4 onwards. Pollinia stored at higher temperatures had a drastic reduction in vitality after 2 days at 41-44 °C, while pollinia stored at 47-50 °C did not show any pollen tube growth. The different levels of pollen viability duration among the examined orchids can be related to their peculiar reproductive biology and pollination ecology. The germinability of pollinia stored at lower temperatures for long periods suggests that orchid pollinia can be conserved ex situ. In contrast, higher temperatures can have harmful effects on the vitality of pollen and consequently on reproductive success of the plants. To our knowledge, this is the first report demonstrating the effects of global change on orchid pollen, and on pollen ability to tolerate, or not, higher air temperatures. Although vegetative reproduction allows orchids to survive a few consecutive warm years, higher temperatures for several consecutive years can have dramatic effects on reproductive success of orchids.


Assuntos
Mudança Climática , Temperatura Baixa , Temperatura Alta , Orchidaceae/fisiologia , Pólen/fisiologia , Congelamento , Germinação , Polinização , Reprodução
5.
Sci Total Environ ; 693: 133414, 2019 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-31377351

RESUMO

Mixing regime and CO2 availability may control cyanobacterial blooms in polymictic lakes, but the underlying mechanisms still remain unclear. We integrated detailed results from a natural experiment comprising an average-wet year (2011) and one with heat waves (2012), a long-term meteorological dataset (1960-2010), historical phosphorus concentrations and sedimentary pigment records, to determine the mechanistic controls of cyanobacterial blooms in a eutrophic polymictic lake. Intense warming in 2012 was associated with: 1) increased stability of the water column with buoyancy frequencies exceeding 40 cph at the surface, 2) high phytoplankton biomass in spring (up to 125 mg WW L-1), 3) reduced downward transport of heat and 4) depleted epilimnetic CO2 concentrations. CO2 depletion was maintained by intense uptake by phytoplankton (influx up to 30 mmol m-2 d-1) in combination with reduced, internal and external, carbon inputs during dry, stratified periods. These synergistic effects triggered bloom of buoyant cyanobacteria (up to 300 mg WW L-1) in the hot year. Complementary evidence from polynomial regression modelling using historical data and pigment record revealed that warming explains 78% of the observed trends in cyanobacterial biomass, whereas historical phosphorus concentration only 10% thereof. Together the results from the natural experiment and the long-term record indicate that effects of hotter and drier climate are likely to increase water column stratification and decrease CO2 availability in eutrophic polymictic lakes. This combination will catalyze blooms of buoyant cyanobacteria.


Assuntos
Mudança Climática , Cianobactérias/fisiologia , Temperatura Alta/efeitos adversos , Lagos/análise , Fitoplâncton/fisiologia , Dióxido de Carbono/análise , Sedimentos Geológicos/química , Lagos/química , Lagos/microbiologia , Fósforo/análise , Quebeque , Estações do Ano
6.
mBio ; 10(1)2019 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-30808694

RESUMO

Tundra ecosystems are typically carbon (C) rich but nitrogen (N) limited. Since biological N2 fixation is the major source of biologically available N, the soil N2-fixing (i.e., diazotrophic) community serves as an essential N supplier to the tundra ecosystem. Recent climate warming has induced deeper permafrost thaw and adversely affected C sequestration, which is modulated by N availability. Therefore, it is crucial to examine the responses of diazotrophic communities to warming across the depths of tundra soils. Herein, we carried out one of the deepest sequencing efforts of nitrogenase gene (nifH) to investigate how 5 years of experimental winter warming affects Alaskan soil diazotrophic community composition and abundance spanning both the organic and mineral layers. Although soil depth had a stronger influence on diazotrophic community composition than warming, warming significantly (P < 0.05) enhanced diazotrophic abundance by 86.3% and aboveground plant biomass by 25.2%. Diazotrophic composition in the middle and lower organic layers, detected by nifH sequencing and a microarray-based tool (GeoChip), was markedly altered, with an increase of α-diversity. Changes in diazotrophic abundance and composition significantly correlated with soil moisture, soil thaw duration, and plant biomass, as shown by structural equation modeling analyses. Therefore, more abundant diazotrophic communities induced by warming may potentially serve as an important mechanism for supplementing biologically available N in this tundra ecosystem.IMPORTANCE With the likelihood that changes in global climate will adversely affect the soil C reservoir in the northern circumpolar permafrost zone, an understanding of the potential role of diazotrophic communities in enhancing biological N2 fixation, which constrains both plant production and microbial decomposition in tundra soils, is important in elucidating the responses of soil microbial communities to global climate change. A recent study showed that the composition of the diazotrophic community in a tundra soil exhibited no change under a short-term (1.5-year) winter warming experiment. However, it remains crucial to examine whether the lack of diazotrophic community responses to warming is persistent over a longer time period as a possibly important mechanism in stabilizing tundra soil C. Through a detailed characterization of the effects of winter warming on diazotrophic communities, we showed that a long-term (5-year) winter warming substantially enhanced diazotrophic abundance and altered community composition, though soil depth had a stronger influence on diazotrophic community composition than warming. These changes were best explained by changes in soil moisture, soil thaw duration, and plant biomass. These results provide crucial insights into the potential factors that may impact future C and N availability in tundra regions.


Assuntos
Biota , Aquecimento Global , Fixação de Nitrogênio , Microbiologia do Solo , Alaska , Metagenômica , Análise em Microsséries , Oxirredutases/genética , Desenvolvimento Vegetal , Tundra
7.
Water Res ; 144: 304-311, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30071399

RESUMO

Although it is well established that climate warming can reinforce eutrophication in shallow lakes by altering top-down and bottom-up processes in the food web and biogeochemical cycling, recent studies in temperate zones have also shown that adverse effects of rising temperature are diminished in fishless systems. Whereas the removal of zooplanktivorous fish may be useful in attempts to mitigate eutrophication in temperate shallow lakes, it is uncertain whether similar mitigation might be achieved in warmer climates. We compared the responses of zooplankton and phytoplankton communities to climate warming in the presence and absence of fish (Aristichthys nobilis) in a 4-month mesocosm experiment at subtropical temperatures. We hypothesized that 1) fish and phytoplankton would benefit from warming, while zooplankton would suffer in fish-present mesocosms and 2) warming would favor zooplankton growth but reduce phytoplankton biomass in fish-absent mesocosms. Our results showed significant interacting effects of warming and fish presence on both phytoplankton and zooplankton. In mesocosms with fish, biomasses of fish and phytoplankton increased in heated treatments, while biomasses of Daphnia and total zooplankton declined. Warming reduced the proportion of large Daphnia in total zooplankton biomass, and reduced the zooplankton to phytoplankton biomass ratio, but increased the ratio of chlorophyll a to total phosphorus, indicating a relaxation of zooplankton grazing pressure on phytoplankton. Meanwhile, warming resulted in a 3-fold increase in TP concentrations in the mesocosms with fish present. The results suggest that climate warming has the potential to boost eutrophication in shallow lakes via both top-down (loss of herbivores) and bottom-up (elevated nutrient) effects. However, in the mesocosms without fish, there was no decline in large Daphnia or in total zooplankton biomass, supporting the conclusion that fish predation is the major driver of low large Daphnia abundance in warm lakes. In the fishless mesocosms, phytoplankton biomass and nutrient levels were not affected by temperature. Our study suggests that removing fish to mitigate warming effects on eutrophication may be potentially beneficial in subtropical lakes, though the rapid recruitment of fish in such lakes may present a challenge to success in the long-term.


Assuntos
Daphnia/fisiologia , Ecossistema , Peixes/fisiologia , Plâncton/fisiologia , Animais , Biomassa , Clima , Cadeia Alimentar , Herbivoria , Lagos , Fósforo/metabolismo , Fitoplâncton/fisiologia , Comportamento Predatório , Temperatura , Zooplâncton/fisiologia
8.
Glob Chang Biol ; 24(11): 5044-5055, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30005138

RESUMO

Blooms of cyanobacteria are a current threat to global water security that is expected to increase in the future because of increasing nutrient enrichment, increasing temperature and extreme precipitation in combination with prolonged drought. However, the responses to multiple stressors, such as those above, are often complex and there is contradictory evidence as to how they may interact. Here we used broad scale data from 494 lakes in central and northern Europe, to assess how cyanobacteria respond to nutrients (phosphorus), temperature and water retention time in different types of lakes. Eight lake types were examined based on factorial combinations of major factors that determine phytoplankton composition and sensitivity to nutrients: alkalinity (low and medium-high), colour (clear and humic) and mixing intensity (polymictic and stratified). In line with expectations, cyanobacteria increased with temperature and retention time in five of the eight lake types. Temperature effects were greatest in lake types situated at higher latitudes, suggesting that lakes currently not at risk could be affected by warming in the future. However, the sensitivity of cyanobacteria to temperature, retention time and phosphorus varied among lake types highlighting the complex responses of lakes to multiple stressors. For example, in polymictic, medium-high alkalinity, humic lakes cyanobacteria biovolume was positively explained by retention time and a synergy between TP and temperature, while in polymictic, medium-high alkalinity, clear lakes only retention time was identified as an explanatory variable. These results show that, although climate change will need to be accounted for when managing the risk of cyanobacteria in lakes, a "one-size fits-all" approach is not appropriate. When forecasting the response of cyanobacteria to future environmental change, including changes caused by climate and local management, it will be important to take this differential sensitivity of lakes into account.


Assuntos
Cianobactérias , Lagos/microbiologia , Mudança Climática , Meio Ambiente , Europa (Continente) , Fósforo/análise , Fitoplâncton
9.
Oecologia ; 187(3): 701-706, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29536162

RESUMO

Botanical gardens represent artificial, but stable environments. With this premise, we analyzed the Munich Botanical Garden's bee fauna in 1997/1999 and again in 2015/2017. The garden covers 20 ha, uses no bee-relevant insecticides, has a protected layout, and on three sides abuts protected areas. Outdoors, it cultivates some 10,871 species/subspecies, many suitable as pollen and nectar sources for bees. The first survey found 79 species, the second 106, or 55% of the 192 species recorded for Munich since 1990. A Jackknife estimate for the second survey suggests 115 expected species. Classifying bees according to their thermal preferences (warm habitats, cool habitats, broad preferences, or unknown) revealed that 15 warm-loving species were gained (newly found), two lost (no longer found), and 12 retained, but only one cool-loving species was gained, three lost, and none retained, which multinomial models show to be significant differences. Of the 62 retained species, 27 changed in abundance, with 18 less frequent and nine more frequent by 2017 than they had been in 1997/1999. Retention, gain, or loss were unconnected to pollen specialization and Red List status of bee species. Between 1997 and 2017, average temperatures in Munich have increased by 0.5 °C, and climate warming over the past century is the most plausible explanation for the directional increase in warm-loving and the decrease in cool-adapted species. These results highlight the potential of botanic gardens with their artificially diverse and near-pesticide-free floras as systems in which to investigate climate change per se as a possible factor in shifting insect diversity.


Assuntos
Jardins , Néctar de Plantas , Animais , Abelhas , Ecossistema , Plantas , Pólen
10.
Water Res ; 125: 449-457, 2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-28898702

RESUMO

Climate warming and eutrophication are regarded as two important contributors to the occurrence of cyanobacteria blooms in aquatic ecosystems. However, the feedback of cyanobacteria blooms to climate warming and eutrophication is not fully clear. In this study, a microcosm system was established to simulate the decomposition processes of cyanobacteria blooms. It was observed that a large amount of nitrogen and phosphorus was released into the overlying water, and the concentrations of nitrogen and phosphorus were increased with the amount of added cyanobacteria bloom biomass addition. Subsequently, these released nutrients became available for primary production and intensified the eutrophic state of freshwater lakes. During the decomposition of cyanobacteria blooms, the microenvironment acquired low DO, low pH, and reductive conditions. Together with abundant organic matter in the water column and sediment, a large amount of CH4 and CO2 produced through organic matter mineralization, in which CH4 was the dominant fraction, occupied 50%-92% in mass of emitted carbon. Furthermore, a certain amount of N2O, probably underestimated, was produced with a strong greenhouse effect, even though its magnitude was small. These observations clarify that the feedbacks among cyanobacteria blooms formation and climate warming as well as the eutrophication of freshwater lakes are not unidirectional, but bidirectional. Given that climate warming enhanced the occurrence of cyanobacteria blooms, it was proposed that there are two vicious loops between cyanobacteria blooms, lake eutrophication and climate warming, which should be considered in the future management of aquatic ecosystems.


Assuntos
Cianobactérias/crescimento & desenvolvimento , Eutrofização , Água Doce/microbiologia , Nitrogênio/análise , Fósforo/análise , Biomassa , Mudança Climática , Ecossistema , Lagos/química
11.
Huan Jing Ke Xue ; 38(7): 3000-3009, 2017 Jul 08.
Artigo em Chinês | MEDLINE | ID: mdl-29964643

RESUMO

Microbial community and phosphorus forms in response to simulated climate warming were studied by high-throughput sequencing and 31P nuclear magnetic resonance(31P-NMR) respectively, which were from wetland soils in constructed microcosm columns. The results revealed that relative abundances of Firmicutes, Clostridia, Clostridiales, Clostridiaceae and Clostridium were significantly decreased by 65%-98%, 69%-87%, 67%-87%, 73%-97% and 74%-93% under warming condition respectively, suggesting warming had a significant inhibitory effect on the bacterial lineage from Firmicutes to Clostridium at different taxonomic level. Particularly, principal coordinate analysis and cluster analysis also demonstrated warming had a significant effect on microbial community structure with obvious separation of samples between control and warmed groups from each wetland column site. Phosphorus forms were dominated by phosphomonoester and orthophosphate in each wetland column soil, which were significantly increased and decreased by 275% and 20% in XX wetland column soil respectively. Similarly, phosphomonoester and polyphosphate were also found to be increased and decreased by 85% and 49% in JH wetland column soil respectively, indicating that phosphorus forms in response to warming had soil heterogeneity. Canonical correspondence analysis showed that obvious changes in microbial community composition had significant effects on phosphorus forms under warming condition.


Assuntos
Mudança Climática , Fósforo/análise , Microbiologia do Solo , Áreas Alagadas , Bactérias/classificação , Solo , Temperatura
12.
Ecol Appl ; 27(1): 105-117, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27898193

RESUMO

To investigate the underlying mechanisms that control long-term recovery of tundra carbon (C) and nutrients after fire, we employed the Multiple Element Limitation (MEL) model to simulate 200-yr post-fire changes in the biogeochemistry of three sites along a burn severity gradient in response to increases in air temperature, CO2 concentration, nitrogen (N) deposition, and phosphorus (P) weathering rates. The simulations were conducted for severely burned, moderately burned, and unburned arctic tundra. Our simulations indicated that recovery of C balance after fire was mainly determined by the internal redistribution of nutrients among ecosystem components (controlled by air temperature), rather than the supply of nutrients from external sources (e.g., nitrogen deposition and fixation, phosphorus weathering). Increases in air temperature and atmospheric CO2 concentration resulted in (1) a net transfer of nutrient from soil organic matter to vegetation and (2) higher C : nutrient ratios in vegetation and soil organic matter. These changes led to gains in vegetation biomass C but net losses in soil organic C stocks. Under a warming climate, nutrients lost in wildfire were difficult to recover because the warming-induced acceleration in nutrient cycles caused further net nutrient loss from the system through leaching. In both burned and unburned tundra, the warming-caused acceleration in nutrient cycles and increases in ecosystem C stocks were eventually constrained by increases in soil C : nutrient ratios, which increased microbial retention of plant-available nutrients in the soil. Accelerated nutrient turnover, loss of C, and increasing soil temperatures will likely result in vegetation changes, which further regulate the long-term biogeochemical succession. Our analysis should help in the assessment of tundra C budgets and of the recovery of biogeochemical function following fire, which is in turn necessary for the maintenance of wildlife habitat and tundra vegetation.


Assuntos
Ciclo do Carbono , Mudança Climática , Solo/química , Tundra , Incêndios Florestais , Alaska , Carbono/metabolismo , Dióxido de Carbono , Modelos Biológicos , Nitrogênio/análise , Nitrogênio/metabolismo , Nutrientes , Fósforo/análise , Fósforo/metabolismo , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA