Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Mol Biol Rep ; 51(1): 543, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38642191

RESUMO

Heavy metal stress is a major problem in present scenario and the consequences are well known. The agroecosystems are heavily affected by the heavy metal stress and the question arises on the sustainability of the agricultural products. Heavy metals inhibit the process to influence the reactive oxygen species production. When abundantly present copper metal ion has toxic effects which is mitigated by the exogenous application of Si. The role of silicon is to enhance physical parameters as well as gas exchange parameters. Si is likely to increase antioxidant enzymes in response to copper stress which can relocate toxic metals at subcellular level and remove heavy metals from the cell. Silicon regulates phytohormones when excess copper is present. Rate of photosynthesis and mineral absorption is increased in response to metal stress. Silicon manages enzymatic and non-enzymatic activities to balance metal stress condition. Cu transport by the plasma membrane is controlled by a family of proteins called copper transporter present at cell surface. Plants maintain balance in absorption, use and storage for proper copper ion homeostasis. Copper chaperones play vital role in copper ion movement within cells. Prior to that metallochaperones control Cu levels. The genes responsible in copper stress mitigation are discovered in various plant species and their function are decoded. However, detailed molecular mechanism is yet to be studied. This review discusses about the crucial mechanisms of Si-mediated alleviation of copper stress, the role of copper binding proteins in copper homeostasis. Moreover, it also provides a brief information on the genes, their function and regulation of their expression in relevance to Cu abundance in different plant species which will be beneficial for further understanding of the role of silicon in stabilization of copper stress.


Assuntos
Cobre , Metais Pesados , Cobre/metabolismo , Silício/farmacologia , Silício/metabolismo , Metais Pesados/metabolismo , Antioxidantes/metabolismo , Plantas/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Suplementos Nutricionais
2.
J Plant Physiol ; 280: 153896, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36525837

RESUMO

Heavy metal stress affects the quality of medicinal plants, and rare earth elements can effectively alleviate heavy metal stress. In this paper, we investigated the effects of rare earth element cerium (0, 5, 10, 20, 40, 80, and 160 mg/L) on the physiological and medicinal components of Dendrobium nobile Lindl. under copper (200 mg/L) stress. The results revealed that cerium (Ce) had a good alleviating effect on copper (Cu) stress, low concentrations of Ce (10-20 mg/L) significantly improved the resistance and medicinal qualities of the plant such as polysaccharide, polyphenol and flavonoid, it also increased the content of photosynthetic pigment, proline, soluble sugar and soluble protein of D. nobile Lindl., effectively balance the osmotic pressure and the generation and removal of reactive oxygen species in the plant, thereby the toxic effect of copper on D. nobile Lindl. is alleviated. From the point of view of the treatment time when the optimal relieving concentration appeared, the optimal concentration for relieving antioxidant enzyme activity all appeared at the treatment time of 10 d, the optimum concentrations of other indicators all appeared at the treatment time of 15 d. Overall, this study suggests that the optimum level of Ce (10-20 mg/L) might be promising for alleviating the adverse impacts of copper stress and promoting the accumulation of medicinal components in D. nobile Lindl.


Assuntos
Cério , Dendrobium , Plantas Medicinais , Cobre/toxicidade , Cério/farmacologia , Extratos Vegetais/farmacologia , Antioxidantes
3.
Artigo em Inglês | WPRIM | ID: wpr-1017190

RESUMO

Aims@#Bacillus thuringiensis Y1 is a copper-tolerant bacterium that can serve as a model for the elucidation of the mechanism of energy metabolism under simulated copper stress. This study aimed to elucidate the effects of simulated copper stress on the genes associated with the biosynthesis of polyhydroxyalkanoates (PAH) and the metabolism of polyphosphates (PP).@*Methodology and results @#The gene expression study involved the growth of the bacterium in nutrient broth supplemented with two concentrations of copper sulphate (0.4 mM and 0.8 mM), followed by RNA extraction and quantification of four and 11 genes associated with the metabolism of polyphosphate (PP) and polyhydroxyalkanoates (PAHs) respectively, using reverse transcription quantitative polymerase chain reaction (RT-qPCR). Three genes associated with polyphosphate metabolism, which are polyphosphate kinase (ppk), exopolyphosphatase (ppx) and NAD kinase (ppnk), were all shown to be upregulated by both 0.4 mM and 0.8 mM copper, except for the 5’-nucleotidase (surE) gene that was downregulated under the second treatment. Among the 11 genes associated with the metabolism of polyhydroxyalkanoates, only the 3-ketoacyl-CoA-thiolase (phaA) gene was upregulated in both treatments and highly expressed in the second treatment; the majority were downregulated and repressed.@*Conclusion, significance and impact of study @#The study demonstrated that copper induces the metabolism of polyphosphates in B. thuringiensis Y1 that serve as an alternative source of energy under copper stress. This model can be extended to the study of other species of Bacillus under environmental stress.

4.
Environ Sci Pollut Res Int ; 29(32): 49029-49049, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35212900

RESUMO

This study aimed to test the efficiency of ethylene (Eth; 200 µL L-1 ethephon) in presence or absence of nitrogen (N; 80 mg N kg-1 soil) in protecting photosynthetic apparatus from copper (Cu; 100 mg Cu kg-1 soil) stress in mustard (Brassica juncea L.) and to elucidate the physio-biochemical modulation for Eth plus N-induced Cu tolerance. Elevated Cu-accrued reductions in photosynthesis and growth were accompanied by significantly higher Cu accumulation in leaves and oxidative stress with reduced assimilation of N and sulfur (S). Ethylene in coordination with N considerably reduced Cu accumulation, lowered lipid peroxidation, lignin accumulation, and contents of reactive oxygen species (hydrogen peroxide, H2O2, and superoxide anion, O2•-), and mitigated the negative effect of Cu on N and S assimilation, accumulation of non-protein thiols and phytochelatins, enzymatic, and non-enzymatic antioxidants (activity of ascorbate peroxidase, APX, and glutathione reductase, GR; content of reduced glutathione, GSH, and ascorbate, AsA), cell viability, photosynthesis, and growth. Overall, the effect of ethylene-nitrogen synergism was evident on prominently mitigating Cu stress and protecting photosynthesis. The approach of supplementing ethylene with N may be used as a potential tool to restrain Cu stress, and protect photosynthesis and growth of mustard plants.


Assuntos
Antioxidantes , Mostardeira , Antioxidantes/metabolismo , Cobre/metabolismo , Etilenos/metabolismo , Glutationa/metabolismo , Glutationa Redutase/metabolismo , Peróxido de Hidrogênio/metabolismo , Nitrogênio/metabolismo , Estresse Oxidativo , Fotossíntese , Solo
5.
Comput Struct Biotechnol J ; 20: 128-138, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34976317

RESUMO

Environmental structure describes physical structure that can determine heterogenous spatial distribution of biotic and abiotic (nutrients, stressors etc.) components of a microorganism's microenvironment. This study investigated the impact of micrometre-scale structure on microbial stress sensing, using yeast cells exposed to copper in microfluidic devices comprising either complex soil-like architectures or simplified environmental structures. In the soil micromodels, the responses of individual cells to inflowing medium supplemented with high copper (using cells expressing a copper-responsive pCUP1-reporter fusion) could be described neither by spatial metrics developed to quantify proximity to environmental structures and surrounding space, nor by computational modelling of fluid flow in the systems. In contrast, the proximities of cells to structures did correlate with their responses to elevated copper in microfluidic chambers that contained simplified environmental structure. Here, cells within more open spaces showed the stronger responses to the copper-supplemented inflow. These insights highlight not only the importance of structure for microbial responses to their chemical environment, but also how predictive modelling of these interactions can depend on complexity of the system, even when deploying controlled laboratory conditions and microfluidics.

6.
Front Microbiol ; 12: 713812, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34795645

RESUMO

Acinetobacter sp. IrC2 is a copper-resistant bacterium isolated from an industrial waste treatment center in Rungkut, Surabaya. Copper-resistant bacteria are known to accumulate copper inside the cells as a mechanism to adapt to a copper-contaminated environment. Periplasmic and membrane proteins CopA and CopB have been known to incorporate copper as a mechanism of copper resistance. In the present study, protein profile changes in Acinetobacter sp. IrC2 following exposure to copper stress were analyzed to elucidate the copper resistance mechanism. Bacteria were grown in a Luria Bertani agar medium with and without CuSO4 supplementation. Intracellular copper ion accumulation was quantified using atomic absorption spectrophotometry. Changes in protein profile were assessed using sodium dodecyl sulfate polyacrylamide gel electrophoresis. The results showed that 6 mM CuSO4 was toxic for Acinetobacter sp. IrC2, and as a response to this copper-stress condition, the lag phase was prolonged to 18 h. It was also found that the bacteria accumulated copper to a level of 508.01 mg/g of cells' dry weight, marked by a change in colony color to green. The protein profile under copper stress was altered as evidenced by the appearance of five specific protein bands with molecular weights of 68.0, 60.5, 38.5, 24.0, and 20.5 kDa, suggesting the presence of CopA, multicopper oxidase (MCO), CopB, universal stress protein (Usp), and superoxide dismutase (SOD) and/or DNA-binding protein from starved cells, respectively. We proposed that the mechanism of bacterial resistance to copper involves CopA and CopB membrane proteins in binding Cu ions in the periplasm and excreting excess Cu ions as well as involving enzymes that play a role in the detoxification process, namely, SOD, MCO, and Usp to avoid cell damage under copper stress.

7.
Apoptosis ; 26(11-12): 612-627, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34708319

RESUMO

Copper is an essential micronutrient involved in many redox reactions in human cells. However, a high concentration of copper, intake from the environment or abnormal accumulation within cells because of genetic mutation, leads to cell toxicity. This is attributable to oxidative damage, altered gene expression, and functional impairment of the mitochondria. Copper stress also alters the morphology of the nucleolus, but the process has not been fully elucidated. In this study, cells were treated with copper sulfate at 3-9 ppm and examined if a high dose of copper would block ribosome biogenesis. With the incorrect distribution of nucleolar proteins nucleophosmin and fibrillarin to the nucleoplasm, ribosomal RNA (rRNA) processing was impaired; 34S rRNA from an abnormal A2 cut increased, and downstream pre-rRNAs decreased. The under-accumulation of 60S subunits was detected using sucrose gradients. From transcriptome analysis, ribosome synthesis-related genes were misregulated. Blockage in ribosome synthesis under copper-treatment induced nucleolar stress and triggered p53-independent apoptosis pathways. Thus, nucleolar stress is one cause of cell death under copper exposure.


Assuntos
Cobre , Proteína Supressora de Tumor p53 , Apoptose , Linhagem Celular , Cobre/toxicidade , Humanos , Nucleofosmina , Proteína Supressora de Tumor p53/genética
8.
mBio ; 11(6)2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33262259

RESUMO

Copper (Cu) is an essential metal for bacterial physiology but in excess it is bacteriotoxic. To limit Cu levels in the cytoplasm, most bacteria possess a transcriptionally responsive system for Cu export. In the Gram-positive human pathogen Streptococcus pyogenes (group A Streptococcus [GAS]), this system is encoded by the copYAZ operon. This study demonstrates that although the site of GAS infection represents a Cu-rich environment, inactivation of the copA Cu efflux gene does not reduce virulence in a mouse model of invasive disease. In vitro, Cu treatment leads to multiple observable phenotypes, including defects in growth and viability, decreased fermentation, inhibition of glyceraldehyde-3-phosphate dehydrogenase (GapA) activity, and misregulation of metal homeostasis, likely as a consequence of mismetalation of noncognate metal-binding sites by Cu. Surprisingly, the onset of these effects is delayed by ∼4 h even though expression of copZ is upregulated immediately upon exposure to Cu. Further biochemical investigations show that the onset of all phenotypes coincides with depletion of intracellular glutathione (GSH). Supplementation with extracellular GSH replenishes the intracellular pool of this thiol and suppresses all the observable effects of Cu treatment. These results indicate that GSH buffers excess intracellular Cu when the transcriptionally responsive Cu export system is overwhelmed. Thus, while the copYAZ operon is responsible for Cu homeostasis, GSH has a role in Cu tolerance and allows bacteria to maintain metabolism even in the presence of an excess of this metal ion.IMPORTANCE The control of intracellular metal availability is fundamental to bacterial physiology. In the case of copper (Cu), it has been established that rising intracellular Cu levels eventually fill the metal-sensing site of the endogenous Cu-sensing transcriptional regulator, which in turn induces transcription of a copper export pump. This response caps intracellular Cu availability below a well-defined threshold and prevents Cu toxicity. Glutathione, abundant in many bacteria, is known to bind Cu and has long been assumed to contribute to bacterial Cu handling. However, there is some ambiguity since neither its biosynthesis nor uptake is Cu-regulated. Furthermore, there is little experimental support for this physiological role of glutathione beyond measuring growth of glutathione-deficient mutants in the presence of Cu. Our work with group A Streptococcus provides new evidence that glutathione increases the threshold of intracellular Cu availability that can be tolerated by bacteria and thus advances fundamental understanding of bacterial Cu handling.


Assuntos
Cobre/metabolismo , Glutationa/metabolismo , Infecções Estreptocócicas/microbiologia , Streptococcus pyogenes/fisiologia , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Transporte Biológico , Cobre/farmacologia , Citoplasma/metabolismo , Modelos Animais de Doenças , Metabolismo Energético , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Homeostase , Camundongos , Mutação , Streptococcus pyogenes/efeitos dos fármacos , Estresse Fisiológico , Virulência
9.
Biomolecules ; 10(4)2020 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-32290389

RESUMO

Soil and water contamination from heavy metals and metalloids is one of the most discussed and caused adverse effects on food safety and marketability, crop growth due to phytotoxicity, and environmental health of soil organisms. A hydroponic investigation was executed to evaluate the influence of citric acid (CA) on copper (Cu) phytoextraction potential of jute (Corchorus capsularis L.). Three-weeks-old seedlings of C. capsularis were exposed to different Cu concentrations (0, 50, and 100 µM) with or without the application of CA (2 mM) in a nutrient growth medium. The results revealed that exposure of various levels of Cu by 50 and 100 µM significantly (p < 0.05) reduced plant growth, biomass, chlorophyll contents, gaseous exchange attributes, and damaged ultra-structure of chloroplast in C. capsularis seedlings. Furthermore, Cu toxicity also enhanced the production of malondialdehyde (MDA) which indicated the Cu-induced oxidative damage in the leaves of C. capsularis seedlings. Increasing the level of Cu in the nutrient solution significantly increased Cu uptake by the roots and shoots of C. capsularis seedlings. The application of CA into the nutrient medium significantly alleviated Cu phytotoxicity effects on C. capsularis seedlings as seen by plant growth and biomass, chlorophyll contents, gaseous exchange attributes, and ultra-structure of chloroplast. Moreover, CA supplementation also alleviated Cu-induced oxidative stress by reducing the contents of MDA. In addition, application of CA is helpful in increasing phytoremediation potential of the plant by increasing Cu concentration in the roots and shoots of the plants which is manifested by increasing the values of bioaccumulation (BAF) and translocation factors (TF) also. These observations depicted that application of CA could be a useful approach to assist Cu phytoextraction and stress tolerance against Cu in C. capsularis seedlings grown in Cu contaminated sites.


Assuntos
Cloroplastos/ultraestrutura , Ácido Cítrico/farmacologia , Cobre/toxicidade , Corchorus/crescimento & desenvolvimento , Corchorus/fisiologia , Plântula/fisiologia , Estresse Fisiológico/efeitos dos fármacos , Antioxidantes/metabolismo , Biodegradação Ambiental/efeitos dos fármacos , Biomassa , Clorofila/metabolismo , Cloroplastos/efeitos dos fármacos , Cloroplastos/metabolismo , Corchorus/efeitos dos fármacos , Corchorus/ultraestrutura , Gases/metabolismo , Malondialdeído/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Análise de Componente Principal , Plântula/efeitos dos fármacos , Plântula/ultraestrutura
10.
Acta Biol Hung ; 69(3): 300-312, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30257584

RESUMO

Copper cause oxidative damage in plant cells, and plant extracts are the sources of free radical scavengers. We tested the hypothesis that whether Corchorus olitorius (jute) and Urtica pilulifera (Roman nettle) seed extract treatments of germinated seeds affect copper induced oxidative and genotoxic damage or antioxidant response in tomato. Seedlings were exposed to toxic copper concentration (30 ppm) for 7 days. In one experimental group (treatment 1), extract (100 µg mL-1) was added to media. In the other group (treatment 2), tomato seeds were pre-soaked by the extract (100 µg mL-1) prior to germination and copper application. Malondialdehyde and endogenous H2O2 levels in the groups treated with extract and copper were significantly lower than that of the untreated groups. Pre-soaking seeds with the nettle extract solution significantly enhanced catalase activity under unstressed condition. Jute treatment also enhanced catalase activity under copper stress. Ascorbate peroxidase activity remained at unstressed level in copper treated groups. Extract treatments significantly decreased copper induced DNA damage in root nuclei. Jute seed extract contained salicylic acid and quercetin which can be correlated with the evoked effects. We demonstrated protective effect of plant extract treatments against copper stress of tomato seedlings prior to germination or during seedling development.


Assuntos
Cobre/toxicidade , Corchorus/química , Extratos Vegetais/farmacologia , Solanum lycopersicum/efeitos dos fármacos , Urticaceae/química , Ensaio Cometa , Dano ao DNA/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/química
11.
J Hazard Mater ; 314: 140-154, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27131454

RESUMO

Despite numerous reports implicating nitric oxide (NO) in the environmental-stress responses of plants, the specific metabolic and ionic mechanisms of NO-mediated adaptation to metal stress remain unclear. Here, the impacts of copper (Cu) and NO donor (SNP, 50µM) alone or in combination on the well-known medicinal plant Catharanthus roseus L. were investigated. Our results showed that Cu markedly increased Cu(2+) accumulation, decreased NO production, and disrupted mineral equilibrium and proton pumps, thereby stimulating a burst of ROS; in addition, SNP ameliorates the negative toxicity of Cu, and cPTIO reverses this action. Furthermore, the accumulations of ROS and NO resulted in reciprocal changes. Interestingly, nearly all of the investigated amino acids and the total phenolic content in the roots were promoted by the SNP treatment but were depleted by the Cu+SNP treatment, which is consistent with the self-evident increases in phenylalanine ammonia-lyase activity and total soluble phenol content induced by SNP. Unexpectedly, leaf vincristine and vinblastine as well as the total alkaloid content (ca. 1.5-fold) were decreased by Cu but markedly increased by SNP (+38% and +49% of the control levels). This study provides the first evidence of the beneficial behavior of NO, rather than other compounds, in depleting Cu toxicity by regulating mineral absorption, reestablishing ATPase activities, and stimulating secondary metabolites.


Assuntos
Catharanthus/metabolismo , Cobre/farmacologia , Óxido Nítrico/metabolismo , Plantas Medicinais/metabolismo , Catharanthus/efeitos dos fármacos , Doadores de Óxido Nítrico/farmacologia , Raízes de Plantas/metabolismo , Plantas Medicinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA