Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Zhongguo Zhong Yao Za Zhi ; 48(18): 5014-5023, 2023 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-37802843

RESUMO

The chemical constituents from the stems and leaves of Cratoxylum cochinchinense were isolated and purified using silica gel, ODS gel, and Sephadex LH-20 gel column chromatography, as well as preparative HPLC. The chemical structures of all isolated compounds were identified on the basis of their physicochemical properties, spectroscopic analyses, and the comparison of their physicochemical and spectroscopic data with the reported data in literature. As a result, 21 compounds were isolated from the 90% ethanol extract of the stems and leaves of C. cochinchinense, which were identified as cratocochine(1), 1-hydroxy-3,7-dimethoxyxanthone(2), 1-hydroxy-5,6,7-trimethoxyxanthone(3), ferrxanthone(4), 3,6-dihydroxy-1,5-dimethoxyxanthone(5), 3,6-dihydroxy-1,7-dimethoxyxanthone(6), 1,2,5-trihydroxy-6,8-dimethoxyxanthone(7), securixanthone G(8), gentisein(9), 3,7-dihydroxy-1-methoxyxanthone(10), pancixanthone B(11), garcimangosxanthone A(12), pruniflorone L(13), 9-hydroxy alabaxanthone(14), cochinchinone A(15), luteolin(16), 3,5'-dimethoxy-4',7-epoxy-8,3'-neolignane-5,9,9'-triol(17), N-benzyl-9-oxo-10E,12E-octadecadienamide(18), 15-hydroxy-7,13E-labdadiene(19), stigmasta-4,22-dien-3-one(20), and stigmast-5-en-3ß-ol(21). Among these isolates, compound 1 was a new xanthone, compounds 2-5, 7, 8, 12, and 16-21 were isolated from the Cratoxylum plant for the first time, and compounds 11 and 13 were obtained from C. cochinchinense for the first time. Furthermore, all isolated compounds 1-21 were appraised for their anti-rheumatoid arthritis activities by MTS method through measuring their anti-proliferative effect on synoviocytes in vitro. As a result, xanthones 1-15 displayed notable anti-rheumatoid arthritis activities, which showed inhibitory effects on the proliferation of MH7A synoviocytes with the IC_(50) values ranging from(8.98±0.12) to(228.68±0.32) µmol·L~(-1).


Assuntos
Artrite , Clusiaceae , Sinoviócitos , Xantonas , Clusiaceae/química , Xantonas/farmacologia , Xantonas/análise , Folhas de Planta/química , Proliferação de Células
2.
Front Chem ; 11: 1245071, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37621851

RESUMO

Introduction: The root of Cratoxylum cochinchinense has been widely used as Chinese folk medicine to cure fevers, burns, and abdominal complications because it contains various bioactive metabolites such as xanthones, triterpenes, and flavonoids. In this study, we estimated bacterial neuraminidase inhibition with a series of xanthones from C. cochinchinense. BNA has connected to various biological functions such as pathogenic bacteria infection inflammatory process after infection and biofilm formation. Methods: The identification of xanthones (1-6) bearing geranyl and prenyl groups was established by spectroscopic data using UV, IR, NMR, and HREIMS. BNA inhibitory modes of isolated xanthones were investigated by Double-reciprocal plots. Moreover, the competitive inhibitor was evaluated the additional kinetic modes determined by kinetic parameters (k 3, k 4, and K i app). The molecular docking (MD) and molecular dynamics simulations (MDS) studies also provided the critical information regarding the role of the geranyl and prenyl groups against BNA inhibition. Results: A series of xanthones (1-6) appended prenyl and geranyl groups on the A-ring were isolated, and compounds 1-3 were shown to be new xanthones. The analogues within this series were highly inhibited with excellent affinity against bacterial neuraminidase (BNA). A subtle change in the prenyl or geranyl motif affected the inhibitory potency and behavior significantly. For example, the inhibitory potency and binding affinity resulting from the geranyl group on C4: xanthone 1 (IC50 = 0.38 µM, KA = 2.4434 × 105 L·mol-1) were 100-fold different from those of xanthone 3 (IC50 = 35.8 µM, KA = 0.0002 × 105 L·mol-1). The most potent compound 1 was identified as a competitive inhibitor which interacted with BNA under reversible slow-binding inhibition: K i app = 0.1440 µM, k 3 = 0.1410 µM-1s-1, and k 4 = 0.0203 min-1. The inhibitory potencies (IC50) were doubly confirmed by the binding affinities (KA). Discussion: This study suggests the potential of xanthones derived from C. cochinchinense as promising candidates for developing novel BNA inhibitors. Further research and exploration of these xanthones may contribute to the development of effective treatments for bacterial infections and inflammatory processes associated with BNA activity.

3.
Fitoterapia ; 149: 104821, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33387643

RESUMO

A new dihydrochromene derivative, named lisofurvin (1) and a xanthone, named dihydrobrasixanthone B (2) together with twenty one known compounds (3-23) were isolated from propolis of the stingless bee Lisotrigona furva. Their chemical structures were determined by means of spectroscopic methods including 1D and 2D NMR, and MS. The chemical constituents are predominantly geranyl(oxy) xanthones and Cratoxylum cochinchinense was suggested as a resin source, besides two other plants Mangifera indica and dammar trees (Dipterocarpaceae). Compound 1 showed significant cytotoxic activity against KB, HepG-2, and Lu-1 cancer cell lines with IC50 values range from 12.63 to 15.17 µg/mL. Several isolated compounds were active against one to four tested cancer cell lines. In addition, among the isolated compounds, α-mangostin (15) displayed the strongest antimicrobial activity against three Gram (+) strains, P. aeruginosa, and C. albicans with MIC values ranging between 1 and 2 µg/mL. Compound 22 showed good activity against three Gram (+) strains and C. albicans.


Assuntos
Anti-Infecciosos/farmacologia , Antineoplásicos/farmacologia , Própole/química , Xantonas/farmacologia , Animais , Anti-Infecciosos/isolamento & purificação , Antineoplásicos/isolamento & purificação , Abelhas , Linhagem Celular Tumoral , Clusiaceae/química , Dipterocarpaceae/química , Humanos , Mangifera/química , Estrutura Molecular , Compostos Fitoquímicos/isolamento & purificação , Compostos Fitoquímicos/farmacologia , Vietnã , Xantonas/isolamento & purificação
4.
J Nat Med ; 74(2): 467-473, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31820330

RESUMO

Two new xanthones namely cratochinone A (1) and cratochinone B (2), along with 16 known xanthones, were isolated from the roots of Cratoxylum cochinchinense. Their structures were characterized by spectroscopic methods, especially 1D and 2D NMR as well as comparison with those reported in the literature for known xanthones. All isolated compounds were evaluated for their cytotoxicity against five human cancer cell lines (KB, HeLa S-3, HT-29, MCF-7 and Hep G2 cell lines). Compounds 2, 5, and 7 showed significant cytotoxic effects against all cell lines with IC50 values in the range of 0.91-9.93 µM, while 10 exhibited cytotoxicity against the KB, HeLa S-3, and HT-29 cells with IC50 values of 7.39, 6.07, and 8.11 µM, respectively. Compound 12 exhibited cytotoxicity against both KB and HeLa S-3 cells with IC50 values of 7.28 and 9.84 µM.

5.
J Asian Nat Prod Res ; 17(5): 519-31, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-26043754

RESUMO

Cochinchinones M-U (1-9), together with 12 known compounds (10-21), were isolated from the stems of Cratoxylum cochinchinense (Lour.) Blume. Their structures were determined on the basis of extensive spectroscopic data analyses. In addition, their retinoid X receptor-α transcriptional activities were evaluated using an in vitro assay.


Assuntos
Clusiaceae/química , Medicamentos de Ervas Chinesas/isolamento & purificação , Medicamentos de Ervas Chinesas/farmacologia , Receptor X Retinoide alfa/efeitos dos fármacos , Xantonas/isolamento & purificação , Xantonas/farmacologia , Medicamentos de Ervas Chinesas/química , Humanos , Luciferases de Vaga-Lume/metabolismo , Estrutura Molecular , Caules de Planta/química , Prenilação , Xantonas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA