Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 175
Filtrar
Mais filtros

Medicinas Complementares
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(24): e202405092, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38591230

RESUMO

Zeolite synthesis under acidic conditions has always presented a challenge. In this study, we successfully prepared series of ZSM-5 zeolite nanosheets (Z-5-SCA-X) over a broad pH range (4 to 13) without the need for additional supplements. This achievement was realized through aggregation crystallization of ZSM-5 zeolite subcrystal (Z-5-SC) with highly short-range ordering and ultrasmall size extracted from the synthetic system of ZSM-5 zeolite. Furthermore, the crystallization behavior of Z-5-SC was investigated, revealing its non-classical crystallization process under mildly alkaline and acidic conditions (pH<10), and the combination of classical and non-classical processes under strongly alkaline conditions (pH≥10). What's particularly intriguing is that, the silanol nest content in the resultant Z-5-SCA-X samples appears to be dependent on the pH values during the Z-5-SC crystallization process rather than its crystallinity. Finally, the results of the furfuryl alcohol etherification reaction demonstrate that reducing the concentration of silanol nests significantly enhances the catalytic performance of the Z-5-SCA-X zeolite. The ability to synthesize zeolite in neutral and acidic environments without the additional mineralizing agents not only broadens the current view of traditional zeolite synthesis but also provides a new approach to control the silanol nest content of zeolite catalysts.

2.
Environ Sci Pollut Res Int ; 31(16): 24360-24374, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38443536

RESUMO

Domestic wastewater source-separated treatment has attracted wide attention due to the efficiency improvement of sewage treatment systems, energy saving, resource reuse, and the construction and operation cost saving of pipeline networks. Nonetheless, the excess source-separated urine still demands further harmless treatment. Sequencing batch biofilm reactor (SBBR), a new type of composite biofilm reactor developed by filling different fillers into the sequential batch reactor (SBR) reactor, has higher pollutant removal performance and simpler operation and maintenance. However, the phosphorus removal ability of the SBBR filling with conventional fillers is still limited and needs further improvement. In this study, we developed two new fillers, the self-fabricated filler A and B (SFA/SFB), and compared their source-separated urine treatment performance. Long-term treatment experimental results demonstrated that the SBBR systems with different fillers had good removal performance on the COD and TN in the influent, and the removal rate increased with the increasing HRT. However, only the SBBR system with the SFA showed excellent PO43--P and TP removal performance, with the removal rates being 83.7 ± 11.9% and 77.3 ± 13.7% when the HRT was 1 d. Microbial community analysis results indicated that no special bacteria with strong phosphorus removal ability were present on the surface of the SFA. Adsorption experimental results suggested that the SFA had better adsorption performance for phosphorus than the SFB, but it could not always have stronger phosphorus adsorption and removal performance during long-term operation due to the adsorption saturation. Through a series of characterizations such as SEM, XRD, and BET, it was found that the SFA had a looser structure due to the use of different binder and production processes, and the magnesium in the SFA gradually released and reacted with PO43- and NH4+ in the source-separated urine to form dittmarite and struvite, thus achieving efficient phosphorus removal. This study provides a feasible manner for the efficient treatment of source-separated urine using the SBBR system with self-fabricated fillers.


Assuntos
Magnésio , Eliminação de Resíduos Líquidos , Eliminação de Resíduos Líquidos/métodos , Fósforo , Reatores Biológicos , Nitrogênio , Excipientes , Biofilmes , Esgotos/química
3.
Environ Sci Pollut Res Int ; 31(11): 17481-17493, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38342832

RESUMO

Excessive phosphorus will lead to eutrophication in aquatic environment; the efficient removal of phosphorus is crucial for wastewater engineering and surface water management. This study aimed to fabricate a nanorod-like sepiolite-supported MgO (S-MgO) nanocomposite with high specific surface area for efficient phosphate removal using a facile microwave-assisted method and calcining processes. The impact of solution pH, adsorbent dosage, contact time, initial phosphate concentrations, Ca2+ addition, and N/P ratio on the phosphate removal was extensively examined by the batch experiments. The findings demonstrated that the S-MgO nanocomposite exhibited effective removal performance for low-level phosphate (0 ~ 2.0 mM) within the pH range of 3.0 ~ 10.0. Additionally, the nanocomposite can synchronously remove phosphate and ammonium in high-level nutrient conditions (> 2.0 mM), with the maximum removal capacities of 188.49 mg P/g and 89.78 mg N/g. Quantitative and qualitative analyses confirmed the successful harvesting of struvite in effluent with high-phosphate concentrations, with the mechanisms involved attributed to a synergistic combination of sorption and struvite crystallization. Due to its proficient phosphate removal efficiency, cost-effectiveness, and substantial removal capacity, the developed S-MgO nanocomposite exhibits promising potential for application in phosphorus removal from aquatic environments.


Assuntos
Silicatos de Magnésio , Nanocompostos , Poluentes Químicos da Água , Fósforo/química , Estruvita/química , Óxido de Magnésio , Nitrogênio , Fosfatos/química
4.
Protein Expr Purif ; 216: 106430, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38184160

RESUMO

Pq3-O-UGT2, derived from Panax quinquefolius, functions as a ginsenoside glucosyltransferase, utilizing UDP-glucose (UDPG) as the sugar donor to catalyze the glycosylation of Rh2 and F2. An essential step in comprehending its catalytic mechanism involves structural analysis. In preparation for structural analysis, we expressed Pq3-O-UGT2 in the Escherichia coli (E. coli) strain Rosetta (DE3). The recombinant Pq3-O-UGT2 was purified through Ni-NTA affinity purification, a two-step ion exchange chromatography, and subsequently size-exclusion chromatography (SEC). Notably, the purified Pq3-O-UGT2 showed substantial activity toward Rh2 and F2, catalyzing the formation of Rg3 and Rd, respectively. This activity was discernible within a pH range of 4.0-9.0 and temperature range of 30-55 °C, with optimal conditions observed at pH 7.0-8.0 and 37 °C. The catalytic efficiency of Pq3-O-UGT2 toward Rh2 and F2 was 31.43 s-1 mΜ-1 and 169.31 s-1 mΜ-1, respectively. We further crystalized Pq3-O-UGT2 in both its apo form and co-crystalized forms with UDPG, Rh2 and F2, respectively. High-quality crystals were obtained and X-ray diffraction data was collected for all co-crystalized samples. Analysis of the diffraction data revealed that the crystal of Pq3-O-UGT2 co-crystalized with UDP-Glc belonged to space group P1, while the other two crystals belonged to space group P212121. Together, this study has laid a robust foundation for subsequent structural analysis of Pq3-O-UGT2.


Assuntos
Ginsenosídeos , Panax , Ginsenosídeos/metabolismo , Glicosiltransferases , Uridina Difosfato Glucose , Panax/genética , Panax/química , Panax/metabolismo , Cristalização , Escherichia coli/genética , Escherichia coli/metabolismo
5.
J Environ Manage ; 348: 119223, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37827085

RESUMO

The recovery of phosphorus (P) through vivianite crystallization offers a promising approach for resource utilization in wastewater treatment plants. However, this process encounters challenges in terms of small product size and low purity. The study aimed to assess the feasibility of using quartz sand as a seed material to enhance P recovery and vivianite crystal characteristics from anaerobic fermentation supernatant. Various factors, including seed dosage, seed size, Fe/P ratio, and pH, were systematically tested in batch experiments to assess their influence. Results demonstrated that the effect of seed enhancement on vivianite crystallization was more pronounced under higher seed dosages, smaller seed sizes, and lower pH or Fe/P ratio. The addition of seeds increased P recovery by 4.43% in the actual anaerobic fermentation supernatant and also augmented the average particle size of the recovered product from 19.57 to 39.28 µm. Moreover, introducing quartz sand as a seed material effectively reduced co-precipitation, leading to a notable 12.5% increase in the purity of the recovered vivianite compared to the non-seeded process. The formation of an ion adsorption layer on the surface of quartz sand facilitated crystal attachment and growth, significantly accelerating the vivianite crystallization rate and enhancing P recovery. The economic analysis focused on chemical costs further affirmed the economic viability of using quartz sand as a seed material for P recovery through vivianite crystallization, which provides valuable insights for future research and engineering applications.


Assuntos
Fósforo , Quartzo , Fermentação , Areia , Anaerobiose , Cristalização , Esgotos , Eliminação de Resíduos Líquidos , Fosfatos/química , Compostos Ferrosos/química
6.
Int J Mol Sci ; 24(19)2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37834381

RESUMO

Three-phase crystallization (TPC) was introduced in this study to purify L-menthol from menthol enantiomer mixtures in consideration of the formation of solid solutions. TPC is a new separation technology, which combines melt crystallization and vaporization to result in the desired crystalline product from a liquid mixture along with the unwanted components vaporized via the three-phase transformation by reducing temperature and pressure. The three-phase transformation conditions for the liquid menthol enantiomer mixtures were determined based on the thermodynamic calculations to direct the TPC experiments. A new model was proposed based on the mass and energy balances in consideration of the formation of the solid solutions to predict the yield and purity of the final L-menthol product during TPC. The yield and purity obtained from the TPC experiments were compared with those predicted by the model.


Assuntos
Anestésicos , Mentol , Cristalização , Mentol/química , Terpenos , Temperatura , Termodinâmica , Extratos Vegetais
7.
Environ Res ; 235: 116639, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37453510

RESUMO

Livestock wastewater can contain high levels of phosphates and trace amounts of various ionic species harming the environment and human health. These ions can be successfully removed from livestock effluent and recovered in a non-toxic crystal form via crystallization. The fluidized bed homogeneous crystallization (FBHC) technology is a cutting-edge pretreatment method that removes phosphate and ammonium by crystallizing struvite. The findings demonstrated a 37% removal for ammonium solutions alone, 38% with copper, 35% with zinc, and 33% when copper and zinc were present, while the crystallization efficiency was achieved at 35%, 33% with copper, 28% with zinc, and 26% with copper and zinc. For phosphate-containing solutions, 95% was removed, 81% with copper, 96% with zinc, and 88% with copper and zinc. Similarly, crystallization efficiency was attained at 87%, 60% with copper, 94% with zinc, and 81% when copper and zinc were combined with phosphates. For ammonium solutions, copper and zinc reduced the removal and crystallization efficiency at constant pH and increased at increasing pH. For phosphate solutions, the removal and crystallization efficiencies increased at increasing pH. However, zinc ions resulted in the highest removal, and crystallization efficiency for phosphate solutions was attained. Based on SEM, EDS, XRD, and XPS analyses, the peaks revealed the presence of struvite in the form of magnesium ammonium phosphate.


Assuntos
Compostos de Amônio , Águas Residuárias , Animais , Humanos , Estruvita , Esgotos , Gado , Compostos de Magnésio/química , Cristalização , Cobre , Fosfatos/química , Digestão , Fósforo , Eliminação de Resíduos Líquidos/métodos
8.
Molecules ; 28(12)2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37375319

RESUMO

Poniol (Flacourtia jangomas) has beneficial health effects due to its high polyphenolic and good antioxidant activity content. This study aimed to encapsulate the Poniol fruit ethanolic extract to the sucrose matrix using the co-crystallization process and analyze the physicochemical properties of the co-crystalized product. The physicochemical property characterization of the sucrose co-crystallized with the Poniol extract (CC-PE) and the recrystallized sucrose (RC) samples was carried out through analyzing the total phenolic content (TPC), antioxidant activity, loading capacity, entrapment yield, bulk and traped densities, hygroscopicity, solubilization time, flowability, DSC, XRD, FTIR, and SEM. The result revealed that the CC-PE product had a good entrapment yield (76.38%) and could retain the TPC (29.25 mg GAE/100 g) and antioxidant properties (65.10%) even after the co-crystallization process. Compared to the RC sample, the results also showed that the CC-PE had relatively higher flowability and bulk density, lower hygroscopicity, and solubilization time, which are desirable properties for a powder product. The SEM analysis showed that the CC-PE sample has cavities or pores in the sucrose cubic crystals, which proposed that the entrapment was better. The XRD, DSC, and FTIR analyses also showed no changes in the sucrose crystal structure, thermal properties, and functional group bonding structure, respectively. From the results, we can conclude that co-crystallization increased sucrose's functional properties, and the co-crystallized product can be used as a carrier for phytochemical compounds. The CC-PE product with improved properties can also be utilized to develop nutraceuticals, functional foods, and pharmaceuticals.


Assuntos
Antioxidantes , Frutas , Cristalização/métodos , Fenóis , Sacarose , Extratos Vegetais/química
9.
Waste Manag ; 168: 301-310, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37331265

RESUMO

The work studies the recovery of nutrients (phosphorus and nitrogen) from the process water of acid-assisted hydrothermal carbonization (HTC) of cow manure. Three organic acids (formic acid, oxalic acid, and citric acid) and sulfuric acid were evaluated as additives in HTC. Using 0.3 M sulfuric acid, more than 99% of phosphorus and 15.6% of nitrogen from manure are extracted and dissolved during HTC at 170 °C with 10 min reaction time in a batch reactor. Nutrients (mainly phosphorus) were recovered through precipitation from process water by raising the ionic strength of the solution by addition of salts of magnesium and ammonia, and by raising the pH to 9.5. Subsequently, phosphorus-rich solids were recovered containing almost all (greater than 95%) of the dissolved phosphorus in the sulfuric and formic acid assisted runs. Morphology and qualitative chemical analysis of the precipitates were determined. It is shown by XRD that the precipitate formed from process water generated by HTC with oxalic acid is crystalline, although the diffraction pattern could not be matched with any expected substance.


Assuntos
Esterco , Fósforo , Animais , Feminino , Bovinos , Fósforo/química , Esterco/análise , Água , Nitrogênio/análise , Ácidos Sulfúricos/química , Carbono/química , Temperatura
10.
J Environ Manage ; 344: 118383, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37348306

RESUMO

Nutrient recovery from wastewater not only reduces the nutrient load on water resources but also alleviates the environmental problems in aquatic ecosystems, which is a solution to achieve a sustainable society. Besides, struvite crystallization technology is considered a potential nutrient recovery technology because the precipitate obtained can be reused as a slow-release fertilizer. This review presents the basic properties of struvite and the theory of the basic crystallization process. In addition, the possible influencing variables of the struvite crystallization process on the recovery efficiency and product purity are also examined in detail. Then, the advanced auxiliary technologies for facilitating the struvite crystallization process are systematically discussed. Moreover, the economic and environmental benefits of the struvite crystallization process for nutrient recovery are introduced. Finally, the shortcomings and inadequacies of struvite crystallization technology are presented, and future research prospects are provided. This work serves as the foundation for the future use of struvite crystallization technology to recover nutrients in response to the increasingly serious environmental problems and resource depletion.


Assuntos
Fosfatos , Águas Residuárias , Estruvita/química , Fósforo/química , Cristalização , Ecossistema , Nutrientes , Eliminação de Resíduos Líquidos
11.
Chemosphere ; 330: 138685, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37060960

RESUMO

Phosphorus (P) is one of the important elements for human, animal, and plant life. Due to the development of the circular economy in recent years, the recovery of P from wastewater has received more attention. Recovery of P from domestic, industrial, and agricultural wastewater in the form of calcium phosphate (CaP) by precipitation/crystallization process presents a low-cost and effective method. Recovered CaP could be used as P fertilizer and for other industrial applications. This review summarizes the effects of supersaturation, pH, seed materials, calcium (Ca) source, and wastewater composition, on the precipitation/crystallization process. The recovery efficiency and value proposition of recovered CaP were assessed. This in-depth analysis of the literature reports identified the process parameters that are worth further optimization. The review also provides perspectives on future research needs on expanding the application field of recovered CaP and finding other more economical and environmentally friendly Ca sources.


Assuntos
Fósforo , Águas Residuárias , Humanos , Fósforo/química , Fosfatos de Cálcio/química , Cálcio da Dieta , Fosfatos , Eliminação de Resíduos Líquidos/métodos
12.
Environ Res ; 228: 115848, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37024026

RESUMO

With the shortage of phosphorus resources, the concept of phosphorus recovery from wastewater is generally proposed. Recently, phosphorus recovery from wastewater in the form of vivianite has been widely reported, which could be used as a slow-release fertilizer as well as the production of lithium iron phosphate for Li-ion batteries. In this study, chemical precipitation thermodynamic modeling was applied to evaluate the effect of solution factors on vivianite crystallization with actual phosphorus containing industrial wastewater. The modeling results showed that the solution pH influences the concentration of diverse ions, and the initial Fe2+ concentration affects the formation area of vivianite. The saturation index (SI) of vivianite increased with the initial Fe2+ concentration and Fe:P molar ratio. pH 7.0, initial Fe2+ concentration 500 mg/L and Fe:P molar ratio 1.50 were the optimal conditions for phosphorus recovery. Mineral Liberation Analyzer (MLA) accurately determined the purity of vivianite was 24.13%, indicating the feasibility of recovering vivianite from industrial wastewater. In addition, the cost analysis showed that the cost of recovering phosphorus by the vivianite process was 0.925 USD/kg P, which can produce high-value vivianite products and realize "turn waste into treasure".


Assuntos
Fósforo , Águas Residuárias , Fosfatos/química , Compostos Ferrosos , Eliminação de Resíduos Líquidos , Esgotos
13.
Food Res Int ; 165: 112473, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36869486

RESUMO

We investigated the possibility to use rapeseed as a main oil in ice cream formulations by changing its functionality when using different kinds of lipases. Through a 24 h-emulsification and a centrifugation, the modified oils were further used as functional ingredients. All lipolysis was first assessed as a function of time by 13C NMR, where triglycerides consumption and the formation of low-molecular polar lipids (LMPL: monoacylglycerol and free fatty acids, FFAs) were selectively identified and compared. The more the FFAs, the sooner the crystallization (from -55 to -10 °C) and the later the melting temperatures (from -17 to 6 °C) measured by differential scanning calorimetry. These modifications were exploited in ice cream formulations with a significant impact on overall hardness (range of 60-216 N) and flowing during defrosting (from 1.29 to 0.35g/min). The global behavior of products can be controlled by the composition of LMPL within oil.


Assuntos
Brassica napus , Sorvetes , Óleo de Brassica napus , Cristalização , Lipase , Ácidos Graxos não Esterificados
14.
Environ Sci Pollut Res Int ; 30(16): 47699-47711, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36745345

RESUMO

This present study investigated the removal of COD and ammoniacal nitrogen (NH4+-N) from tannery deliming wastewater (TDLWW) through microbes immobilized carbon consisted a bioreactor (MICCR) and reactive struvite crystallization process. Initially, 90% of the organic content of TDLWW was removed using a MICCR reactor at 24 h retention time. Nanoporous carbon (NPC) was used as the carrier matrix for the MICCR reactor. SEM and AFM images of NPC used in the MICCR reactor identify different microorganisms on its surface. The microbial profile of NPC used in the MICCR was analyzed, and the relative abundance is phyla Firmicutes, 25.64%; Proteobacteria, 43.68%; Bacteroidetes, 6.58%; Cyanobacteria, 2.22%; Actinobacteria, 2.34% reason for organic removal. The removal of organics follows the pseudo-second-order rate kinetics with the rate constant of 1.75 × 10-3 L COD-1 h-1. For the reactive struvite crystallization, MgO and Na2HPO4.2H2O were taken as the precipitating agents. The optimum molar ratio for the maximum conversion of NH4+-N into struvite was obtained as 1:1.4:1.4 (NH4+-N:MgO:Na2HPO4.2H2O). The volume of struvite precipitate was 48.5 mL/L of TDLWW, and the dry weight was 8.89 g/L. More than 93% of NH4+-N was converted as the struvite fertilizer. The conversion of NH4+-N into struvite follows the pseudo-first-order rate kinetics with the rate constant of 1.67 × 10-2 min-1. Despite the conversion of NH4+-N into struvite, COD removal was observed, which confirms the conversion of organic nitrogen into struvite. The struvite was evaluated using SEM, XRD, TGA, DSC, and FT-IR spectroscopic analysis. Hence, the integrated MICCR and the reactive struvite crystallization process can be applied to manage tannery deliming wastewater.


Assuntos
Fosfatos , Águas Residuárias , Estruvita/química , Óxido de Magnésio , Carbono , Espectroscopia de Infravermelho com Transformada de Fourier , Nitrogênio , Eliminação de Resíduos Líquidos/métodos , Fósforo
15.
Environ Sci Technol ; 57(5): 2105-2117, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36688915

RESUMO

Vivianite (Fe3(PO4)2·8H2O) crystallization has attracted increasing attention as a promising approach for removing and recovering P from wastewaters. However, FeII is susceptible to oxygen with its oxidation inevitably influencing the crystallization of vivianite. In this study, the profile of vivianite crystallization in the presence of dissolved oxygen (DO) was investigated at pHs 5-7 in a continuous stirred-tank reactor. It is found that the influence of DO on vivianite crystallization was highly pH-related. At pH 5, the low rate of FeII oxidation at all of the investigated DO of 0-5 mg/L and the low degree of vivianite supersaturation resulted in slow crystallization with the product being highly crystalline vivianite, but the P removal efficiency was only 30-40%. The removal of P from the solution was substantially more effective (to >90%) in the DO-removed reactors at pH 6 and 7, whereas the efficiencies of P removal and especially recovery decreased by 10-20% when FeII oxidation became more severe at DO concentrations >2.5 mg/L (except at pH 6 with 2.5 mg/L DO). The elevated degree of vivianite supersaturation and enhanced rate and extent of FeII oxidation at the higher pHs led to decreases in the size and homogeneity of the products. At the same pH, amorphous ferric oxyhydroxide (AFO)─the product of FeII oxidation and FeIII hydrolysis─interferes with vivianite crystallization with the induction of aggregation of crystal fines by AFO, leading to increases in the size of the obtained solids.


Assuntos
Compostos Férricos , Fósforo , Compostos Férricos/química , Fósforo/química , Cristalização , Eliminação de Resíduos Líquidos/métodos , Esgotos , Fosfatos/química , Compostos Ferrosos/química
16.
Environ Sci Pollut Res Int ; 30(11): 28407-28421, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36680723

RESUMO

Two interrelated problems exist: the non-renewability of phosphate rock as a resource and the excess phosphate in the water system lead to eutrophication. Removal and recovery of phosphorus (P) from waste streams at wastewater treatment plants (WWTPs) is one of the promising solutions. This paper reviews strategies for P recovery from waste streams in WWTPs are reviewed, and the main P recovery processes were broken down into three parts: enrichment, extraction, and crystallization. On this basis, the present P recovery technology was summarized and compared. The choice of P recovery technology depends on the process of sewage treatment and sludge treatment. Most P recovery processes can meet the financial requirements since the recent surge in phosphate rock prices. The safety requirements of P recovery products add a high cost to toxic substance removal, so it is necessary to control the discharge of toxic substances such as heavy metals and persistent organic pollutants from the source.


Assuntos
Fósforo , Purificação da Água , Fósforo/química , Eliminação de Resíduos Líquidos/métodos , Cristalização , Esgotos/química , Fosfatos , Purificação da Água/métodos
17.
Chemosphere ; 315: 137768, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36621689

RESUMO

A pilot-scale anaerobic-anoxic/nitrifying/induced crystallization (A2N-IC) process was established for phosphorus (P) recovery and nutrient removal from municipal wastewater with a treatment capacity of 80 m3d-1. Results show that the A2N-IC process can operate stably on a pilot scale; the recovery efficiency of influent P reached 62.2%, and the total P removal efficiency of the IC section was 65.4%. The IC section had little effect on the removal of chemical oxygen demand (COD) and nitrogen (N), and the P removal efficiency was improved. Soluble non-reactive P (sNRP) was the key factor affecting P recovery efficiency. Although P recovery increases the construction and maintenance costs, the process can be profitable if a market for P recovery products is established. To improve the P recovery efficiency, attention should be paid to the effects of sNRP and dissolved organic matter (DOM) on P recovery, and P-rich sludge should be considered.


Assuntos
Fósforo , Eliminação de Resíduos Líquidos , Humanos , Anaerobiose , Eliminação de Resíduos Líquidos/métodos , Cristalização , Reatores Biológicos , Esgotos/química , Hipóxia , Nitrogênio/análise
18.
J Ethnopharmacol ; 306: 116157, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-36646157

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Citrus fruits are a very rich source of electrolytes and citric acid. They have been used traditionally for treating urinary ailments and renal stones. Citrus jambhiri is indigenously used as a diuretic. AIM OF THE STUDY: Present study aimed at establishing the antiurolithiatic potential of the juice of Citrus jambhiri fruits along with the elucidation of the mechanism involved in the urolithiasis disease defying activity. METHODS: The antiurolithiatic activity was established by means of nucleation, growth and aggregation assay in the in vitro settings and by means of ethylene glycol mediated calcium oxalate urolithiasis in the male Wistar rats. Docking studies were performed in an attempt to determine the mechanism of the antiurolithiatic action. RESULTS: Present study revealed the role of C. jambhiri fruit juice in reducing nucleation, growth and aggregation of calcium oxalate crystals by possible reduction in the urinary supersaturation relative to calcium oxalate and raising the zeta potential of the calcium oxalate crystals. C. jambhiri fruit juice treatment in experimental rats produced significant amelioration of hypercalciuria, hyperoxaluria, hyperphosphaturia, hyperproteinuria, hyperuricosuria, hypocitraturia and hypomagnesiuria and ion activity product of calcium oxalate. It exhibited nephroprotection against calcium oxalate crystals induced renal tubular dilation and renal tissue deterioration. Docking studies further revealed high binding potential of the phytoconstituents of C. jambhiri viz. narirutin, neohesperidin, hesperidin, rutin and citric acid with glycolate oxidase and matrix metalloproteinase-9. CONCLUSION: C. jambhiri fruit juice possesses excellent antiurolithiatic activity. The study reveals antiurolithiatic mechanism that involves restoration of equilibrium between the promoters and inhibitors of stone formation; and inhibition of matrix metalloproteinases and glycolate oxidase.


Assuntos
Citrus , Cálculos Renais , Urolitíase , Masculino , Ratos , Animais , Cristalização , Oxalato de Cálcio/química , Sucos de Frutas e Vegetais , Ratos Wistar , Urolitíase/tratamento farmacológico , Ácido Cítrico/uso terapêutico , Metaloproteinases da Matriz
19.
J Environ Manage ; 331: 117324, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36657201

RESUMO

Vivianite crystallization has been regarded as a suitable option for recovering phosphorus (P) from P-containing wastewater. However, the presence of humic substances (HS) would inevitably affect the formation of vivianite crystals. Therefore, the influences of HS on vivianite crystallization and the changes in the harvested vivianite crystals were investigated in this study. The results suggested the inhibition effect of 70 mg/L HS on vivianite crystallization reached 12.24%, while it could be attenuated by increasing the pH and Fe/P ratio of the solution. Meanwhile, the addition of HS altered the size, purity, and morphology of recovered vivianite crystals due to the blockage of the growth sites on the crystal surface. Additionally, the formation of phosphate ester group, hydrogen bonding, and COOH-Fe2+ complexes are the potential mechanisms of HS interaction with vivianite crystals. The results obtained herein will help to elucidate the underlying mechanism of HS on vivianite crystallization from P-containing wastewater.


Assuntos
Fósforo , Águas Residuárias , Fósforo/química , Substâncias Húmicas , Cristalização , Eliminação de Resíduos Líquidos , Fosfatos/química
20.
Environ Technol ; 44(2): 226-239, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34383628

RESUMO

Phosphogypsum (CaSO4) is produced as a waste by-product during phosphoric acid production in the fertilizer industry. Only 15% of worldwide phosphogypsum production is recycled, while 85% is stored in the vicinity of factories as huge piles resulting in environmental and health hazards. An extensively studied biotransformation of phosphogypsum to calcium carbonate or calcite (CaCO3) using sulfate reducing bacteria (SRBs) is a prolonged process and results in the formation of extremely hazardous H2S gas. Here we report for the first time a novel approach for biotransformation of phosphogypsum to CaCO3 using urease producing Lysinibacillus sphaericus strain GUMP2. The strain could effectively transform phosphogypsum to crystalline, bead-shaped CaCO3 precipitates. In a batch reactor with the PG loading rate of 60 g/L, 100% biotransformation was observed within seven days. After calcite recovery, the ammonium sulfate formed in the supernatant was recovered by precipitation. Urease-producing L. sphaericus strain GUMP2 could be used to remove the hazardous phosphogypsum from the environment by converting it to the industrially useful CaCO3 and ammonium sulfate, a valuable agricultural fertilizer. This novel and sustainable approach could be a promising solution for the hazardous phosphogypsum in the phosphoric acid industries.


Assuntos
Bacillus , Carbonato de Cálcio , Carbonato de Cálcio/química , Urease , Fertilizantes , Sulfato de Amônio , Fósforo/química , Sulfato de Cálcio/química , Biotransformação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA