Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Pharm ; 655: 124031, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38521375

RESUMO

Tuberculosis (TB) is a serious health issue that contributes to millions of deaths throughout the world and increases the threat of serious pulmonary infections in patients with respiratory illness. Delamanid is a novel drug approved in 2014 to deal with multi-drug resistant TB (MDR-TB). Despite its high efficiency in TB treatment, delamanid poses delivery challenges due to poor water solubility leading to inadequate absorption upon oral administration. This study involves the development of novel formulation-based pressurized metered dose inhalers (pMDIs) containing self-microemulsifying mixtures of delamanid for efficient delivery to the lungs. To identify the appropriate self-microemulsifying formulations, ternary diagrams were plotted using different combinations of surfactant to co-surfactant ratios (1:1, 2:1, and 3:1). The combinations used Cremophor RH40, Poly Ethylene Glycol 400 (PEG 400), and peppermint oil, and those that showed the maximum microemulsion region and rapid and stable emulsification were selected for further characterization. The diluted self-microemulsifying mixtures underwent evaluation of dose uniformity, droplet size, zeta potential, and transmission electron microscopy. The selected formulations exhibited uniform delivery of the dose throughout the canister life, along with droplet sizes and zeta potentials that ranged from 24.74 to 88.99 nm and - 19.27 to - 10.00 mV, respectively. The aerosol performance of each self-microemulsifying drug delivery system (SMEDDS)-pMDI was assessed using the Next Generation Impactor, which indicated their capability to deliver the drug to the deeper areas of the lungs. In vitro cytotoxicity testing on A549 and NCI-H358 cells revealed no significant signs of toxicity up to a concentration of 1.56 µg/mL. The antimycobacterial activity of the formulations was evaluated against Mycobacterium bovis using flow cytometry analysis, which showed complete inhibition by day 5 with a minimum bactericidal concentration of 0.313 µg/mL. Moreover, the cellular uptake studies showed efficient delivery of the formulations inside macrophage cells, which indicated the potential for intracellular antimycobacterial activity. These findings demonstrated the potential of the Delamanid-SMEDDS-pMDI for efficient pulmonary delivery of delamanid to improve its effectiveness in the treatment of multi-drug resistant pulmonary TB.


Assuntos
Nitroimidazóis , Oxazóis , Tuberculose Resistente a Múltiplos Medicamentos , Tuberculose Pulmonar , Humanos , Pulmão , Inaladores Dosimetrados , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tensoativos , Solubilidade , Sistemas de Liberação de Medicamentos , Emulsões , Disponibilidade Biológica
2.
Curr Top Med Chem ; 21(6): 547-570, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33319660

RESUMO

Human tuberculosis (TB) is primarily caused by Mycobacterium tuberculosis (Mtb) that inhabits inside and amidst immune cells of the host with adapted physiology to regulate interdependent cellular functions with intact pathogenic potential. The complexity of this disease is attributed to various factors such as the reactivation of latent TB form after prolonged persistence, disease progression specifically in immunocompromised patients, advent of multi- and extensivelydrug resistant (MDR and XDR) Mtb strains, adverse effects of tailor-made regimens, and drug-drug interactions among anti-TB drugs and anti-HIV therapies. Thus, there is a compelling demand for newer anti-TB drugs or regimens to overcome these obstacles. Considerable multifaceted transformations in the current TB methodologies and molecular interventions underpinning hostpathogen interactions and drug resistance mechanisms may assist to overcome the emerging drug resistance. Evidently, recent scientific and clinical advances have revolutionised the diagnosis, prevention, and treatment of all forms of the disease. This review sheds light on the current understanding of the pathogenesis of TB disease, molecular mechanisms of drug-resistance, progress on the development of novel or repurposed anti-TB drugs and regimens, host-directed therapies, with particular emphasis on underlying knowledge gaps and prospective for futuristic TB control programs.


Assuntos
Antituberculosos/farmacologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Tuberculose Extensivamente Resistente a Medicamentos/tratamento farmacológico , Mycobacterium tuberculosis/efeitos dos fármacos , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Antituberculosos/química , Tuberculose Extensivamente Resistente a Medicamentos/patologia , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Tuberculose Resistente a Múltiplos Medicamentos/patologia
3.
Respir Med ; 167: 105956, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32421540

RESUMO

PURPOSE: The Korea Centers for Disease Control & Prevention has implemented a review process for the approval of new drugs used to treat patients with multidrug-resistant tuberculosis (MDR-TB) since September 2016. Therefore, this study aimed to evaluate the efficacy and safety of these new drugs bedaquiline (Bdq) and delamanid (Dlm). METHODS: A total of 318 patients with MDR-TB were reviewed by the committee from September 2016 to February 2018; 282 (88.7%) of them were treated with the new drugs (Bdq, 107 patients; Dlm, 108 patients; and both concurrently or sequentially, 67 patients) and retrospectively evaluated. Culture conversion rates, interim treatment outcomes at 12 months, and predictors of unfavorable outcomes were analyzed. Treatment efficacy was also compared between Bdq and Dlm. RESULTS: The mean age of the patients was 49.3 years, and 197 (69.9%) were male. Three patients were HIV seropositive and 151 (53.5%) were quinolone resistant. The culture conversion rates at 2 and 6 months were 57.4% (81/141) and 89.4% (126/141), respectively. A favorable outcome at 12 months was achieved in 84.8% of patients (239/282). Differences in the culture conversion rate or interim treatment outcomes were not statistically significant among the drug susceptibility test patterns or new drugs used. Multivariable analysis showed that age >60 years and body mass index of <18.5 kg/m2 were significant risk factors for unfavorable outcomes at 12 months. CONCLUSIONS: The use of new drugs resulted in satisfactory interim treatment results, without significant differences between them.


Assuntos
Diarilquinolinas/uso terapêutico , Nitroimidazóis/uso terapêutico , Oxazóis/uso terapêutico , Tuberculose Pulmonar/tratamento farmacológico , Fatores Etários , Idoso , Índice de Massa Corporal , Diarilquinolinas/farmacologia , Farmacorresistência Bacteriana , Resistência a Múltiplos Medicamentos , Quimioterapia Combinada , Humanos , Masculino , Testes de Sensibilidade Microbiana , Pessoa de Meia-Idade , Nitroimidazóis/farmacologia , Oxazóis/farmacologia , República da Coreia , Estudos Retrospectivos , Fatores de Risco , Segurança , Fatores de Tempo , Resultado do Tratamento , Tuberculose Pulmonar/microbiologia
4.
Expert Opin Pharmacother ; 21(8): 969-981, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32200657

RESUMO

INTRODUCTION: Non-tuberculous Mycobacteria (NTM) are a group of organisms whose importance in medicine seems to be increasing in recent times. The increasing number of patients susceptible to these diseases make it necessary to expand our knowledge of therapeutic options and to explore future possibilities for the development of a therapeutic arsenal. AREAS COVERED: In this review, the authors provide a brief introduction about the present importance of NTM and describe the present recommendations of the available guidelines for their treatment. They include a description of the future options for the management of these patients, especially focusing on new antibiotics. The authors also look at possibilities for future therapeutic options, such as antibiofilm strategies. EXPERT OPINION: No actual changes have been made to the current recommendations for the management of most NTM infections (except perhaps the availability of nebulized amikacin). However, it is also true that we have increased the number of available antibiotic treatment options with good in vitro activity against NTM. The use of these drugs in selected cases could increase the therapeutic possibilities. However, some problems are still present, such as the knowledge of the actual meaning of a NTM isolate, and will probably be a key part of future research.


Assuntos
Amicacina/uso terapêutico , Antibacterianos/uso terapêutico , Infecções por Mycobacterium não Tuberculosas/tratamento farmacológico , Micobactérias não Tuberculosas/efeitos dos fármacos , Amicacina/administração & dosagem , Antibacterianos/administração & dosagem , Humanos , Testes de Sensibilidade Microbiana , Infecções por Mycobacterium não Tuberculosas/epidemiologia , Infecções por Mycobacterium não Tuberculosas/microbiologia , Micobactérias não Tuberculosas/isolamento & purificação , Micobactérias não Tuberculosas/patogenicidade , Guias de Prática Clínica como Assunto
5.
Med Res Rev ; 40(1): 263-292, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31254295

RESUMO

The causative agent of tuberculosis (TB), Mycobacterium tuberculosis and more recently totally drug-resistant strains of M. tuberculosis, display unique mechanisms to survive in the host. A four-drug treatment regimen was introduced 40 years ago but the emergence of multidrug-resistance and more recently TDR necessitates the identification of new targets and drugs for the cure of M. tuberculosis infection. The current efforts in the drug development process are insufficient to completely eradicate the TB epidemic. For almost five decades the TB drug development process remained stagnant. The last 10 years have made sudden progress giving some new and highly promising drugs including bedaquiline, delamanid, and pretomanid. Many of the candidates are repurposed compounds, which were developed to treat other infections but later, exhibited anti-TB properties also. Each class of drug has a specific target and a definite mode of action. These targets are either involved in cell wall biosynthesis, protein synthesis, DNA/RNA synthesis, or metabolism. This review discusses recent progress in the discovery of newly developed and Food and Drug Administration approved drugs as well as repurposed drugs, their targets, mode of action, drug-target interactions, and their structure-activity relationship.


Assuntos
Antituberculosos/farmacologia , Avaliação Pré-Clínica de Medicamentos , Terapia de Alvo Molecular , Animais , Antituberculosos/química , Ensaios Clínicos como Assunto , Aprovação de Drogas , Humanos , Relação Estrutura-Atividade
7.
Expert Opin Pharmacother ; 18(15): 1595-1606, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28847228

RESUMO

INTRODUCTION: Multidrug-resistant tuberculosis (MDR-TB) is a serious life threatening condition affecting children as well as adults worldwide. Timely diagnosis and effective treatment, both of which are complex in children, are the prerogatives for a favorable outcome. Areas covered: This review covers epidemiology, treatment regimen and duration, newer drugs and adverse events in children with MDR-TB. Special note has been made of epidemiology and principles of treatment followed in Indian children. Expert opinion: High index of suspicion is essential for diagnosing childhood MDR-TB. If there is high probability, a child can be diagnosed as presumptive MDR-TB and started on empiric treatment in consultation with experts. However, every effort should be made to confirm the diagnosis. Backbone of an effective MDR-TB regimen consists of four 2nd line anti-TB drugs plus pyrazinamide; duration being 18-24 months. The newer drugs delamanid and bedaquiline can be used in younger children if no other alternatives are available after consultation with experts. Wider availability of these drugs should be ensured for benefit to all concerned. More research is required for development of new and repurposed drugs to combat MDR-TB. Children need to be included in clinical trials for such life-saving drugs, so that nobody is denied the benefits.


Assuntos
Antituberculosos/uso terapêutico , Diarilquinolinas/uso terapêutico , Nitroimidazóis/uso terapêutico , Oxazóis/uso terapêutico , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Criança , Esquema de Medicação , Humanos , Índia , Testes de Sensibilidade Microbiana , Resultado do Tratamento , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA