Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Plant Physiol Biochem ; 202: 107942, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37562204

RESUMO

Dendrobium catenatum, which belongs to the Orchidaceae family, has been used as a traditional medicine and healthy food in China for over 2000 years, and is of enormous economic value. Polysaccharides and flavonoids are two major functional ingredients in D. catenatum stems that contribute to its health benefits. D. catenatum lives in close association with endophytic fungi, but the literature regarding the further relations between them, especially the fungal-induced accumulation of metabolites in the host plant, is sparse. Our previous study showed that Pestalotiopsis sp. DO14 isolated from D. catenatum improved the host plant growth and metabolite accumulation. This study was performed to investigate dynamic variations of the growth traits, key metabolites (polysaccharides and flavonoids), and expression of key genes of D. catenatum under conditions of the DO14 colonization. Colonization with DO14 promoted D. catenatum growth as indicated by increased leaf area, mid-stem thickness, and plant height. The content of polysaccharides, mannose, and sucrose increased even without DO14 entering the host cells or forming a mature symbiotic relationship concurrent with improved photosynthesis rate. Furthermore, DO14 induced upregulation of genes involved in sugar and flavonoid metabolism, especially phosphoenolpyruvate carboxykinase (PCKA), chalcone synthase (CHS) and UDP-glycose flavonoid glycosyltransferase (UFGT). These observations suggested that endophytic fungi induce the accumulation of polysaccharides and flavonoids by plants, increasing the efficiency of carbon assimilation and carbon turnover. The findings of this study provide insight into the mechanisms underlying Orchidaceae-endophyte interactions, and suggest potential novel applications of endophytic fungi in D. catenatum breeding to improved plant quality.


Assuntos
Dendrobium , Flavonoides , Dendrobium/genética , Transcriptoma , Pestalotiopsis/genética , Melhoramento Vegetal , Polissacarídeos/análise , Metaboloma
2.
Int J Biol Macromol ; 236: 124010, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36918075

RESUMO

Dendrobium catenatum is a traditional Chinese medicine listing as rare and endangered due to environmental impacts. But little is known about its stress resistance mechanism. The CBL-CIPK signaling pathway played vital roles in various stress responses. In this study, we identified 9 calcineurin B-like (CBL) genes and 28 CBL-interacting protein kinase (CIPK) genes from D. catenatum. Phylogenetic analysis showed that DcCBL and DcCIPK families could be divided into four and six subgroups, respectively. Members in each subgroup had similar gene structures. Cis-acting element analyses showed that these genes were involved in stress responses and hormone signaling. Spatial expression profiles showed that they were tissue-specific, and expressed lower in vegetative organs than reproductive organs. Gene expression analyses revealed that these genes were involved in drought, heat, cold, and salt responses and depended on abscisic acid (ABA) and salicylic acid (SA) signaling pathways. Furthermore, we cloned 19 DcCIPK genes and 9 DcCBL genes and detected ten interacting CBL-CIPK combinations using yeast two-hybrid system. Finally, we constructed 20 CBL-CIPK signaling pathways based on their expression patterns and interaction relationships. These results established CBL-CIPK signaling pathway responding to abiotic stress and provided a molecular basis for improving D. catenatum stress resistance in the future.


Assuntos
Dendrobium , Proteínas Quinases , Humanos , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Dendrobium/genética , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transdução de Sinais , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas
3.
Nat Prod Res ; 37(16): 2697-2703, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36214541

RESUMO

Dendrobium catenatum Lindl. has been long used in China as a functional food and traditional Chinese medicine and polysaccharides from Dendrobium catenatum Lindl. (DOP) exhibited extensive bioactivities. However, studies on the structure-activity relationship of DOP are rarely reported. Here, two polysaccharides named DOP-1 and DOP-2 were obtained, which differed in the ratio of monosaccharide composition and molecular weight. Structural characteristics were elucidated by spectral and chemical analysis. The main structures of DOPs were the linkage of ß-(1→4)-D-Manp, with some attached 2-O- or 3-O-acetylated groups. Additionally, the DPPH, hydroxyl and superoxide radicals scavenging assays of DOP-1 and DOP-2 showed that DOP-2 exhibited the higher antioxidant activity, which might be related to its lower molecular weight, higher mannose proportion and lower degree of acetylation, and higher phenolic content. Our results provide a more accurate basis for the application of DOPs in the pharmaceutical and food industries.

4.
Front Plant Sci ; 13: 956210, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35982703

RESUMO

Dendrobium catenatum, belonging to the Orchidaceae, is a precious Chinese herbal medicine. Sclerotium delphinii (P1) is a broad-spectrum fungal disease, which causes widespread loss in the near-wild cultivation of D. catenatum. Thus, resistance breeding of D. catenatum has become the key to solve this problem. The basic helix-loop-helix (bHLH) gene family is closely related to plant resistance to external stresses, but the related research in D. catenatum is not deep enough yet. Phylogenetic analysis showed that 108 DcbHLH genes could be divided into 23 subgroups. Promoter cis-acting elements revealed that DcbHLHs contain a large number of stress-related cis-acting elements. Transcriptome analysis of MeJA and P1 treatment manifested that exogenous MeJA can change the expression pattern of most bHLH genes, especially the IIIe subgroup, including inhibiting the expression of DcbHLH026 (MYC2a) and promoting the expression of DcbHLH027 (MYC2b). Subcellular localization indicated that they were located in the nucleus. Furthermore, exogenous MeJA treatment significantly delayed disease time and reduced lesion size after infection with P1. DcMYC2b-overexpression Arabidopsis lines showed significantly smaller lesions after being infected with P1 than the wild type, indicating that DcMYC2b functions as an important positive regulator in D. catenatum defense against P1. Our findings shed more insights into the critical role of the DcbHLH family in plants and the resistance breeding of D. catenatum.

5.
BMC Genomics ; 23(1): 612, 2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-35999493

RESUMO

BACKGROUND: Dendrobium catenatum/D. officinale (here after D. catenatum), a well-known economically important traditional medicinal herb, produces a variety of bioactive metabolites including polysaccharides, alkaloids, and flavonoids with excellent pharmacological and clinical values. Although many genes associated with the biosynthesis of medicinal components have been cloned and characterized, the biosynthetic pathway, especially the downstream and regulatory pathway of major medicinal components in the herb, is far from clear. ß-glucosidases (BGLUs) comprise a diverse group of enzymes that widely exist in plants and play essential functions in cell wall modification, defense response, phytohormone signaling, secondary metabolism, herbivore resistance, and scent release by hydrolyzing ß-D-glycosidic bond from a carbohydrate moiety. The recent release of the chromosome-level reference genome of D. catenatum enables the characterization of gene families. Although the genome-wide analysis of the BGLU gene family has been successfully conducted in various plants, no systematic analysis is available for the D. catenatum. We previously isolated DcBGLU2 in the BGLU family as a key regulator for polysaccharide biosynthesis in D. catenatum. Yet, the exact number of DcBGLUs in the D. catenatum genome and their possible roles in bioactive compound production deserve more attention. RESULTS: To investigate the role of BGLUs in active metabolites production, 22 BGLUs (DcBGLU1-22) of the glycoside hydrolase family 1 (GH1) were identified from D. catenatum genome. Protein prediction showed that most of the DcBGLUs were acidic and phylogenetic analysis classified the family into four distinct clusters. The sequence alignments revealed several conserved motifs among the DcBGLU proteins and analyses of the putative signal peptides and N-glycosylation site revealed that the majority of DcBGLU members dually targeted to the vacuole and/or chloroplast. Organ-specific expression profiles and specific responses to MeJA and MF23 were also determined. Furthermore, four DcBGLUs were selected to test their involvement in metabolism regulation. Overexpression of DcBGLU2, 6, 8, and 13 significantly increased contents of flavonoid, reducing-polysaccharide, alkaloid and soluble-polysaccharide, respectively. CONCLUSION: The genome-wide systematic analysis identified candidate DcBGLU genes with possible roles in medicinal metabolites production and laid a theoretical foundation for further functional characterization and molecular breeding of D. catenatum.


Assuntos
Alcaloides , Celulases , Dendrobium , Plantas Medicinais , Alcaloides/metabolismo , Celulases/genética , Dendrobium/genética , Dendrobium/metabolismo , Flavonoides/metabolismo , Filogenia , Plantas Medicinais/química , Polissacarídeos/metabolismo
6.
Front Plant Sci ; 13: 935540, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35812932

RESUMO

Dendrobium catenatum, a traditional precious Chinese herbal medicine, belongs to epiphytic orchids. Its special life mode leads to the specialization of roots, but there is a lack of systematic research. The aerial root in D. catenatum displays diverse unique biological characteristics, and it initially originates from the opposite pole of the shoot meristem within the protocorm. The root development of D. catenatum is not only regulated by internal cues but also adjusts accordingly with the change in growth environments. D. catenatum root is highly tolerant to auxin, which may be closely related to its epiphytic life. Exogenous auxin treatment has dual effects on D. catenatum roots: relatively low concentration promotes root elongation, which is related to the induced expression of cell wall synthesis genes; excessive concentration inhibits the differentiation of velamen and exodermis and promotes the overproliferation of cortical cells, which is related to the significant upregulation of WOX11-WOX5 regeneration pathway genes and cell division regulatory genes. Overexpression of D. catenatum WOX12 (DcWOX12) in Arabidopsis inhibits cell and organ differentiation, but induces cell dedifferentiation and callus production. Therefore, DcWOX12 not only retains the characteristics of ancestors as stem cell regulators, but also obtains stronger cell fate transformation ability than homologous genes of other species. These findings suggest that the aerial root of D. catenatum evolves special structure and developmental characteristics to adapt to epiphytic life, providing insight into ideal root structure breeding of simulated natural cultivation in D. catenatum and a novel target gene for improving the efficiency of monocot plant transformation.

7.
PeerJ ; 10: e13222, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35402092

RESUMO

Background: Dendrobium catenatum is a valuable traditional medicinal herb with high commercial value. D. catenatum stems contain abundant polysaccharides which are one of the main bioactive components. However, although some genes related to the synthesis of the polysaccharides have been reported, more key genes need to be further elucidated. Results: In this study, the contents of polysaccharides and mannose in D. catenatum stems at four developmental stages were compared, and the stems' transcriptomes were analyzed to explore the synthesis mechanism of the polysaccharides. Many genes involved in starch and sucrose metabolisms were identified by KEGG pathway analysis. Further analysis found that sucrose synthase (SUS; EC 2.4.1.13) gene maybe participated in the polysaccharide synthesis. Hence, we further investigated the genomic characteristics and evolution relationships of the SUS family in plants. The result suggested that the SUS gene of D. catenatum (DcSUS) had undergone the expansion characterized by tandem duplication which might be related to the enrichment of the polysaccharides in D. catenatum stems. Moreover, expression analyses of the DcSUS displayed significant divergent patterns in different tissues and could be divided into two main groups in the stems with four developmental stages. Conclusion: In general, our results revealed that DcSUS is likely involved in the metabolic process of the stem polysaccharides, providing crucial clues for exploiting the key genes associated with the polysaccharide synthesis.


Assuntos
Dendrobium , Transcriptoma , Transcriptoma/genética , Dendrobium/genética , Perfilação da Expressão Gênica , Polissacarídeos
8.
Front Genet ; 13: 800019, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35186030

RESUMO

Dendrobium catenatum has become a rare and endangered medicinal plant due to habitat loss in China. As one of the most important and largest transcription factors, WRKY plays a critical role in response to abiotic stresses in plants. However, little is known regarding the functions of the WRKY family in D. catenatum. In this study, a total of 62 WRKY genes were identified from the D. catenatum genome. Phylogenetic analysis revealed that DcWRKY proteins could be divided into three groups, a division supported by the conserved motif compositions and intron/exon structures. DcWRKY gene expression and specific responses under drought, heat, cold and salt stresses were analyzed through RNA-seq data and RT-qPCR assay. The results showed that these genes had tissue-specificity and displayed different expression patterns in response to abiotic stresses. The expression levels of DcWRKY22, DcWRKY36 and DcWRKY45 were up-regulated by drought stress. Meanwhile, DcWRKY22 was highly induced by heat in roots, and DcWRKY45 was significantly induced by cold stress in leaves. Furthermore, DcWRKY27 in roots and DcWRKY58 in leaves were extremely induced under salt treatment. Finally, we found that all the five genes may function in ABA- and SA-dependent manners. This study identified candidate WRKY genes with possible roles in abiotic stress and these findings not only contribute to our understanding of WRKY family genes, but also provide valuable information for stress resistance development in D. catenatum.

9.
Int J Mol Sci ; 23(2)2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-35055168

RESUMO

Dendrobium catenatum Lindl is a valuable medicinal herb and gardening plant due to its ornamental value and special medical value. Low temperature is a major bottleneck restricting D. catenatum expansion towards the north, which influences the quality and yield of D. catenatum. In this study, we analysed the cold response of D. catenatum by RNA-Seq. A total of 4302 differentially expressed genes were detected under cold stress, which were mainly linked to protein kinase activity, membrane transport and the glycan biosynthesis and metabolism pathway. We also identified 4005 differential alternative events in 2319 genes significantly regulated by cold stress. Exon skipping and intron retention were the most common alternative splicing isoforms. Numerous genes were identified that differentially modulated under cold stress, including cold-induced transcription factors and splicing factors mediated by AS (alternative splicing). GO enrichment analysis found that differentially alternatively spliced genes without differential expression levels were related to RNA/mRNA processing and spliceosomes. DAS (differentially alternative splicing) genes with different expression levels were mainly enriched in protein kinase activity, plasma membrane and cellular response to stimulus. We further identified and cloned DcCBP20 in D. catenatum; we found that DcCBP20 promotes the generation of alternative splicing variants in cold-induced genes under cold stress via genetic experiments and RT-PCR. Taken together, our results identify the main cold-response pathways and alternative splicing events in D. catenatum responding to cold treatment and that DcCBP20 of D. catenatum get involved in regulating the AS and gene expression of cold-induced genes during this process. Our study will contribute to understanding the role of AS genes in regulating the cold stress response in D. catenatum.


Assuntos
Processamento Alternativo , Dendrobium/crescimento & desenvolvimento , Perfilação da Expressão Gênica/métodos , Proteínas de Plantas/genética , Resposta ao Choque Frio , Dendrobium/genética , Regulação da Expressão Gênica de Plantas , Ontologia Genética , RNA-Seq , Fatores de Transcrição/genética
10.
Front Genet ; 12: 714696, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34512725

RESUMO

Dendrobium catenatum is an important traditional Chinese medicine and naturally grows on tree trunks and cliffs, where it can encounter diverse environmental stimuli. MYB transcription factors are widely involved in response to abiotic stresses. However, the MYB gene family has not yet been systematically cataloged in D. catenatum. In this study, a total of 133 MYB proteins were identified in D. catenatum, including 32 MYB-related, 99 R2R3-MYB, 1 3R-MYB, and 1 4R-MYB proteins. Phylogenetic relationships, conserved motifs, gene structures, and expression profiles in response to abiotic stresses were then analyzed. Phylogenetic analysis revealed MYB proteins in D. catenatum could be divided into 14 subgroups, which was supported by the conserved motif compositions and gene structures. Differential DcMYB gene expression and specific responses were analyzed under drought, heat, cold, and salt stresses using RNA-seq and validated by qRT-PCR. Forty-two MYB genes were differentially screened following exposure to abiotic stresses. Five, 12, 11, and 14 genes were specifically expressed in response to drought, heat, cold, and salt stress, respectively. This study identified candidate MYB genes with possible roles in abiotic tolerance and established a theoretical foundation for molecular breeding of D. catenatum.

11.
BMC Plant Biol ; 21(1): 360, 2021 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-34362300

RESUMO

BACKGROUND: Dendrobium catenatum belongs to the Orchidaceae, and is a precious Chinese herbal medicine. In the past 20 years, D. catenatum industry has developed from an endangered medicinal plant to multi-billion dollar grade industry. The necrotrophic pathogen Sclerotium delphinii has a devastating effection on over 500 plant species, especially resulting in widespread infection and severe yield loss in the process of large-scale cultivation of D. catenatum. It has been widely reported that Jasmonate (JA) is involved in plant immunity to pathogens, but the mechanisms of JA-induced plant resistance to S. delphinii are unclear. RESULTS: In the present study, the role of JA in enhancing D. catenatum resistance to S. delphinii was investigated. We identified 2 COI1, 13 JAZ, and 12 MYC proteins in D. catenatum genome. Subsequently, systematic analyses containing phylogenetic relationship, gene structure, protein domain, and motif architecture of core JA pathway proteins were conducted in D. catenatum and the newly characterized homologs from its closely related orchid species Phalaenopsis equestris and Apostasia shenzhenica, along with the well-investigated homologs from Arabidopsis thaliana and Oryza sativa. Public RNA-seq data were investigated to analyze the expression patterns of D. catenatum core JA pathway genes in various tissues and organs. Transcriptome analysis of MeJA and S. delphinii treatment showed exogenous MeJA changed most of the expression of the above genes, and several key members, including DcJAZ1/2/5 and DcMYC2b, are involved in enhancing defense ability to S. delphinii in D. catenatum. CONCLUSIONS: The findings indicate exogenous MeJA treatment affects the expression level of DcJAZ1/2/5 and DcMYC2b, thereby enhancing D. catenatum resistance to S. delphinii. This research would be helpful for future functional identification of core JA pathway genes involved in breeding for disease resistance in D. catenatum.


Assuntos
Basidiomycota/patogenicidade , Ciclopentanos/metabolismo , Dendrobium/microbiologia , Oxilipinas/metabolismo , Imunidade Vegetal/fisiologia , Proteínas de Plantas/genética , Acetatos/farmacologia , Ciclopentanos/farmacologia , Dendrobium/efeitos dos fármacos , Dendrobium/imunologia , Dendrobium/metabolismo , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Família Multigênica , Oxilipinas/farmacologia , Filogenia , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Proteínas de Plantas/imunologia , Transdução de Sinais/genética
12.
Zhongguo Zhong Yao Za Zhi ; 45(22): 5459-5464, 2020 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-33350206

RESUMO

In order to screen the endophytic fungi that can enhance the host(Dendrobium catenatum) resistance to Sclerotium delphinii, the antagonism between each of the 43 endophytic fungi and the pathogen S. delphinii were tested. The results showed that 6 endophytic fungi(DCR2, DCR5, DCR21, DCR22, DCR42, DCR43) have strong activities against the pathogen, the inhibition rates were 49.2%, 49.2%, 47.2%, 56.2%, 53.2%, 48.0%, respectively. Then D. catenatum plantlets were inoculated with both S. delphinii and each of these six endophytic fungi. As a result, the incidence rates of leaves and stems of the D. catenatum plantlets inoculated with DCR2 and the pathogen were both significantly lower than those with other treatments, and the plantlet death rate was 0. It showed that DCR2 Trichoderma polysporum could effectively inhibit the southern blight disease of D. catenatum. Through the endophytic fungal re-isolation test, it was found that DCR2 can colonize in the roots, stems, and leaves of D. catenatum. The research will provide new ideas for the prevention and treatment of the southern blight disease of D. catenatum. It is also significant for reducing pesticide use, ensuring food safety, and promoting the sustainable development of D. catenatum industry. Furthermore, it will provide a basis for the disease control in other crops.


Assuntos
Dendrobium , Basidiomycota , Endófitos , Fungos , Hypocreales , Raízes de Plantas
13.
Zhongguo Zhong Yao Za Zhi ; 45(13): 3120-3127, 2020 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-32726020

RESUMO

Glucomannan is the key active ingredient of Dendrobium catenatum, and CSLA family is responsible for glucomannan biosynthesis. In order to systematically evaluate the CSLA family members of D. catenatum, the bioinformatics methods were performed for genome-wide identification of DcCSLA gene family members through the genomic data of D. catenatum downloaded from the NCBI database, and further analyses of their phylogenetic relationship, gene structure, protein conserved domains and motifs, promoter cis-elements and gene expression profiles in response to stresses. The results showed that D. catenatum contains 13 CSLA members, all of which contain 9-10 exons. In the evolutionary relationship, CSLA genes were clustered into 5 groups, DcCSLA genes were distributed in all branches. Among which the ancestral genes of groupI existed before the monocot-dicot divergence, and groupⅡ-Ⅴ only existed in the monocot plants, indicating that group Ⅰ represents the earliest origin group. CSLA proteins are characteristic of the signature CESA_CaSu_A2 domain. Their promoter regions contain cis elements related to stresses and hormones. Under different stress treatments, low temperature induces the expression of DcCSLA5 and inhibits the expression of DcCSLA3. Infection of Sclerotium delphinii inhibits DcCSLA3/4/6/8/9/10 expression. Under the treatment of jasmonic acid, DcCSLA11 expression was significantly up-regulated, and DcCSLA2/5/7/12/13 were significantly down-regulated. These results laid a foundation for further study on the function of DcCSLA genes in glucomannan biosynthesis and accumulation.


Assuntos
Basidiomycota , Dendrobium/genética , Temperatura Baixa , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Família Multigênica , Filogenia , Proteínas de Plantas/genética , Estresse Fisiológico , Transcriptoma
14.
Zhongguo Zhong Yao Za Zhi ; 45(4): 829-837, 2020 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-32237483

RESUMO

The flower color of Dendrobium catenatum(D. officinale) tends to fade during storage. In order to clarify the influence of storage conditions on the pigment components in flowers, two conditions were applied:temperature and illumination. The contents of pigments in the D. catenatum flower were determined by UV-Vis spectrophotometry and HPLC, and the changes of them during storage were analyzed. The results showed that illumination and temperature had an effect on the pigments of D. catenatum flower during sto-rage. Illumination significantly promoted the degradation of pigments. The contents of total chlorophyll, carotenoids and anthocyanins in the light samples were significantly lower than those in the dark. The total chlorophyll, carotenoids and anthocyanins in the light samples were decreased by 46.5%, 63.4%, and 69.2% respectively. Illumination had a greater effect on fat-soluble pigments than water-soluble pigments. Among the three temperature treatments, the contents of chlorophyll, carotenoid and anthocyanin were as follows:-20 ℃>4 ℃>room temperature, it is indicated that-20 ℃ was the best temperature to maintain the stability of pigment composition. The contents of chlorophyll a, chlorophyll b, ß-carotene, lutein and zeaxanthin in the light samples decreased by 34.8%, 69.0%, 72.5%, 61.6%, 36.1%, respectively. After storage for 5 months, the contents of chlorophyll, carotenoid and anthocyanin constituent at-20 ℃ was significantly higher than those at 4 ℃ and room temperature. The results show that light avoiding and low-temperature can effectively slow down the degradation of pigment components. Therefore, it is suggested that D. catenatum flower should be stored in light avoiding and low-temperature conditions in actual production and processing, which can prolong the usable time.


Assuntos
Dendrobium/química , Armazenamento de Medicamentos , Flores/química , Pigmentos Biológicos/análise , Antocianinas/análise , Carotenoides/análise , Clorofila/análise , Cromatografia Líquida de Alta Pressão , Luz , Plantas Medicinais/química , Espectrofotometria , Temperatura
15.
Zhongguo Zhong Yao Za Zhi ; 44(15): 3221-3225, 2019 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-31602875

RESUMO

The non-starch polysaccharides,mainly composed of glucomannans,are the major bioactive compounds in Dendrobium catenatum. In order to evaluate the quality of the medicinal materials and guide the production and processing,a quantification method of non-starch polysaccharides was established by stems of D. catenatum C15 strain collected from the pear epiphytic cultivation. The non-starch polysaccharides were obtained by " water extraction,α-amylase pretreatment,and alcohol precipitation once" method. The contents of starches,non-starch polysaccharides and monosaccharides were analyzed. In addition,the system suitability was tested. Compared with method of the Chinese Pharmacopoeia( 2015 edition),the contents of total polysaccharides,glucose,and mannose were decreased by 20. 9%,58. 8% and 1. 6% respectively. The method effectively digested starch and retained non-starch polysaccharides,and the analysis result was accurate and repeatable. Therefore,it is suitable for the content measurement of non-starch polysaccharides of D. catenatum. Furthermore,it could be an alternative method for quality control of D. catenatum and a reference in the determination of non-starch polysaccharides in other starch-containing medicinal materials.


Assuntos
Dendrobium/química , Polissacarídeos/análise , Monossacarídeos/análise , Compostos Fitoquímicos/análise , Amido/análise
16.
Zhongguo Zhong Yao Za Zhi ; 44(9): 1789-1792, 2019 May.
Artigo em Chinês | MEDLINE | ID: mdl-31342703

RESUMO

In order to scientifically prevent and control Dendrobium catenatum southern blight disease,the main factors related to this disease occurrence,the pathogen( Sclerotium delphinii),environmental factors( temperature and humidity) and D. catenatum germplasms,were investigated. The results showed that reaching 25-30 ℃ temperature and over 95% humidity simultaneously should be the main conditions for the occurrence and prevalence of D. catenatum southern blight disease. Moreover,the S. delphinii-infected plants and their contaminated substrates were the disease spreading sources. Therefore,removing the infected plants,dealing with the contaminated substrates,keeping air ventilation,and reducing air humidity are the effective ways to prevent and control the occurrence and prevalence of D. catenatum southern blight disease. The research also indicated that D. catenatum has different resistances to the southern blight disease depending on germplasm. The present study lays important foundations for the breeding of D. catenatum diseaseresistant varieties and the further analysis of the infection and resistance mechanisms underlying southern blight disease.


Assuntos
Basidiomycota/patogenicidade , Dendrobium/microbiologia , Doenças das Plantas/microbiologia , Umidade , Temperatura
17.
Food Res Int ; 123: 732-745, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31285023

RESUMO

Recently, the flowers of Dendrobium catenatum (D. officinale) have been approved as new food ingredient. This study aimed to investigate the herb-markers and their antioxidant activities in methanolic extracts of D. catenatum flowers, and to establish the quality evaluation methods for raw materials and their products of flower by HPLC. The methanolic extract of 11 strains of D. catenatum flowers were found to contain a high content of total phenol and flavonoids, and they possessed potential antioxidant capacities based on DPPH radical scavenging assay. A total of 21 phenolic herb-markers were selected according to the similarity and principal component analysis of the chromatographic fingerprinting profiles. Their structures were further elucidated by UV, HPLC-DAD-ESI-QTOF-MS/MS and NMR analyses. The identified compounds included 2 phenylpropanoids, 11C-glycosylflavones and 6 O-glycosylflavones, which could be employed as the indicators for quantitative evaluation of the quality and authenticity of the flowers. Based on the pre-column DPPH/ABTS+-HPLC analysis, the major compounds contributed to the antioxidative activity were identified as 1-O-caffeoyl-ß-D-glucoside, rutin and isoquercitrin, all of which, were also the most abundant constituents in the methanolic extract. The results suggest the potential of D. catenatum flowers as a new antioxidant resources for medicinal and food products.


Assuntos
Antioxidantes/análise , Dendrobium/química , Flores/química , Glicosídeos/análise , Fenóis/análise , Extratos Vegetais/química , Controle de Qualidade , Benzotiazóis/análise , Cromatografia Líquida de Alta Pressão , Bases de Dados Factuais , Estudos de Avaliação como Assunto , Flavonoides/análise , Análise de Alimentos , Limite de Detecção , Espectroscopia de Ressonância Magnética , Metanol/química , Reprodutibilidade dos Testes , Rutina/análise , Ácidos Sulfônicos/análise , Espectrometria de Massas em Tandem
18.
Zhongguo Zhong Yao Za Zhi ; 44(2): 293-297, 2019 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-30989948

RESUMO

DcCDPK8 involved in abiotic stress such as low temperature and signal transduction of hormones ABA and MeJA,but the transcriptional regulation is still unclear. In order to study the core promoter region of DcCDPK8 gene in Dendrobium catenatum and explore its transcriptional regulation mechanism,the DcCDPK8 gene promoter sequence was cloned by PCR from D. catenatum. Promoter sequence function was studied by fusion of 5 'terminal deletion and GUS gene. The results showed that the promoter sequence of DcCDPK8 gene has a low-temperature responsive element( LTR) between~(-1) 749 bp and-614 bp,two MeJA responsive elements between~(-1) 749 bp and-230 bp,and one ABA responsive elements between-614 bp and-230 bp. Three 5'-end different deletion fragments were constructed to fuse the eukaryotic expression vectors p BI121 with GUS,which were transformed into tobacco leaves. The GUS activity under cold stress treatment was DcCDPK8-p1>DcCDPK8-p2>DcCDPK8-p3. GUS activity under exogenous ABA induction was DcCDPK8-p1>DcCDPK8-p2>DcCDPK8-p3,and GUS activity under exogenous MeJA induction was DcCDPK8-p1>DcCDPK8-p2>DcCDPK8-p3. It is speculated that the ABA response element( ARE) in the promoter sequences of DcCDPK8 is positive regulatory role in response to exogenous ABA,the MeJA cis-acting element plays a negative role in response to exogenous MeJA.


Assuntos
Dendrobium/genética , Proteínas de Plantas/genética , Regiões Promotoras Genéticas , Elementos de Resposta , Estresse Fisiológico , Ácido Abscísico , Acetatos , Clonagem Molecular , Temperatura Baixa , Ciclopentanos , Regulação da Expressão Gênica de Plantas , Oxilipinas , Plantas Geneticamente Modificadas , Nicotiana
19.
Zhongguo Zhong Yao Za Zhi ; 43(8): 1588-1595, 2018 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-29751704

RESUMO

In order to investigate the effects of germplasm and host tree trunk on endophytic fungal communities in epiphytic Dendrobium catenatum, a total of 3 835 isolates were recovered from roots, stems and leaves of four D. catenatum germplasms attached to one kind of host tree trunk and one germplasm attached to four kinds of epiphyte-host tree trunks. A total of 152 taxa were identified and classified based on the fungal cultural characteristics and phylogenetic analyses of ITS sequences. The taxa were assigned to 60 genera, 35 families, 21 orders and 5 classes of 2 phyla. The results indicated that D. catenatum cultivated in stereo cultivation harbor variety of fungi. The dominant fungal groups were different between Lin'an and Yiwu. Moreover, several groups showed geographical specificity, such as Arthrinium, Coniochaeta, Fusarium, Neofusicoccum and Zopfiella only dominating in Panshan of Lin'an, while Alternaria, Bjerkandera, Cercophora, Nigrospora and Trichoderma only dominating in Shangxi of Yiwu. There was no significant difference in diversity or species richness of endophytic fungi neither among germplasm nor host tree trunk. However, the richness and diversity indices exhibited a strong dependence on tissue type (P<0.05). The germplasm and host tree trunk impact the distribution patterns of endophytic fungi less than tissue type. Nevertheless, the relative frequencies of the dominant fungal groups were different among germplasms or host tree trunk types. Furthermore, there were some fungal species specific to certain germplasm or host tree trunk. This might be due to the distinctions in growth traits and chemical compositions of D. catenatum owning to the differences in D. catenatumgenetic background and microenvironment of host tree. Most of fungal taxa exhibit tissue specificity or preference. These results provide the basis for the study on the relationship between endophytic fungi and D. catenatum in stereo cultivation mode.


Assuntos
Ascomicetos , Dendrobium , Micobioma , Biodiversidade , Endófitos , Filogenia , Especificidade da Espécie
20.
Zhongguo Zhong Yao Za Zhi ; 42(20): 3891-3894, 2017 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-29243423

RESUMO

In order to reveal the accumulation trend of polysaccharides in Dendrobium catenatum and determine the effect of sampling time on polysaccharides, D. Catenatum D21 clone was harvested from January to December after culturing for 2 to 5 months in the growth chamber with constant temperature. Polysaccharides were determined by phenol-sulfuric acid method and the monosaccharide compositions were analyzed by pre-column derivative-UPLC. The results showed that the content of polysaccharide and its key component mannose was positively correlated with the culture time, but the contents of polysaccharides in all kinds of culture peaked from 5 to 6 months, which were consistent with the trend of field planting. The results suggested that the trend of polysaccharide accumulation in the plant could be related to the life rhythm of the sensory seasons of D. catenatum, which was significantly affected by the harvesting season, even under the constant condition of the culture chamber.


Assuntos
Dendrobium/química , Polissacarídeos/química , Estações do Ano , Compostos Fitoquímicos/química , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA