Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Zhongguo Zhong Yao Za Zhi ; 49(6): 1474-1484, 2024 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-38621931

RESUMO

As a common medicinal and edible resource in China, Coicis Semen has a long history of cultivation and medicinal use. Traditional Chinese medicine(TCM) clinically believes that Coicis Semen has the effect of strengthening the spleen and tonifying the lungs, clearing heat and dampness, removing pus and paralysis, and stopping diarrhea. Therefore, it is used to treat edema, foot odor, spleen deficiency, diarrhea, and other symptoms. The above effects are closely related to the active ingredients of Coicis Semen, such as esters, fatty acids, polysaccharides, proteins, as well as phenolic acids, sterols, flavonoids, lactams, triterpenes, alkaloids, and adenosine. Modern research has found that Coicis Semen also has anti-cancer, anti-inflammatory, antioxidant, hypoglycemic, and hypotensive effects and other pharmacological activities, and it can improve immunity and regulate lipid metabolism. Coicis Semen is widely distributed in China, mainly produced in Guizhou, Yunnan, Fujian, Sichuan, and other places, and the quality of Coicis Semen from different origins varies. From ancient times to the present, Coicis Semen processing methods have experienced the process from simple to complex, and the types of auxiliary materials are more extensive, such as soil, bran, and river sand. These processing methods have been inherited from generation to generation. Nowadays, the commonly used methods are bran-fried, stir-fried, sand-fried, etc. In this paper, by reviewing the relevant literature in China and abroad in recent years, the main active ingredients and related pharmacological effects of Coicis Semen are sorted out, and the effects of different origins and processing methods on the chemical composition of Coicis Semen are summarized, with a view to providing references for the comprehensive development and utilization of Coicis Semen and the further study of its mechanism of action.


Assuntos
Coix , Medicamentos de Ervas Chinesas , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Areia , China , Medicina Tradicional Chinesa , Diarreia
2.
J Ethnopharmacol ; 325: 117840, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38316219

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Lysimachiae Herba (LH), called Jinqiancao in Chinese, is a commonly used traditional Chinese medicine in clinical practice. Doctors in the Qing Dynasty recorded that it tastes bitter, sour, and slightly cold, and it belongs to the liver, gallbladder, kidney, and bladder meridians. It has the effects of removing dampness and jaundice, eliminating gallstones, and reducing blood stasis. Because of its potent pharmacological effects, it is extensively utilized in the treatment of hepatobiliary and urinary system stones, jaundice, hepatitis, and cholecystitis. Although LH is included in "Sichuan authentic Chinese herbal medicine records", the quality of it from different origins still lacks reliable evaluation methods, which is difficult to reflect the high quality of LH from Sichuan. AIMS OF THE STUDY: This study aimed to establish a fingerprint-activity relationship model between the fingerprint of LH and its protective effect on cholestatic liver injury, and to evaluate the quality of LH from Sichuan and Guizhou by multivariate statistical analysis. MATERIALS AND METHODS: 20 batches of LH samples were collected from Sichuan and Guizhou. Characteristic fingerprints of samples were established by UHPLC-Triple TOF-MS/MS and the chemical pattern recognition analysis was carried out by HCA. Then, a rat model of cholestatic liver injury was established by intragastric administration of ANIT. Combined with the common peak information of fingerprint and pharmacodynamic index results, GCA and BCA were used to screen the efficacy markers. Finally, based on UHPLC-QTRAP-MS/MS, the content of efficacy markers was simultaneously determined, and the overall quality of LH from two origins was evaluated by PCA and TOPSIS. RESULTS: In the fingerprint of 20 batches of LH, 15 common peaks were identified in the negative ion mode, and the similarity was between 0.887 and 0.981. Pharmacological results showed that, compared with the control group, the content of AST, ALT, ALP, TBA, TBIL, and MDA in serum increased, and the content of GSH and SOD activity decreased after 48 h of ANIT administration. In addition, compared to the model group, different doses of LH from the two origins could decrease the serum levels of AST, ALT, ALP, TBA, TBIL, and MDA, raise the levels of GSH and SOD activity, reduce the infiltration range of inflammatory cells, and improve the cholestatic liver injury in rats. Among them, the pharmacodynamic indices of the SCHD group were significantly better. GCA and BCA showed that a total of 7 constituents related to the efficacy were screened, which were proanthocyanidin B1, ferulic acid, hyperoside, astragalin, nicotiflorin, afzelin, and kaempferol. Besides, the content of 7 active constituents in samples from Sichuan was higher than that from Guizhou, indicating that the quality of samples from Sichuan may be better, consistent with the result of the pharmacological experiment. CONCLUSION: The quality and efficacy of LH from different origins were stable, and all of them had protective effects on cholestatic liver injury in rats. The method established in this study is accurate and reliable, and it can be used to comprehensively evaluate the internal quality of LH.


Assuntos
Colestase , Medicamentos de Ervas Chinesas , Icterícia , Ratos , Animais , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Medicamentos de Ervas Chinesas/química , Espectrometria de Massas em Tandem , Fígado , Colestase/tratamento farmacológico , Icterícia/tratamento farmacológico , Superóxido Dismutase , Cromatografia Líquida de Alta Pressão
3.
J Pharm Biomed Anal ; 232: 115328, 2023 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-37149947

RESUMO

Gynostemma pentaphyllum (Thunb.) Makino is an herbaceous plant of Cucurbitaceae family, which has been widely used as an herbal tea and traditional Chinese medicine. Since its saponins are similar to ginsenosides and have a wide range of activities, it has attracted wide interest. However, there are still a large number of unknown saponins that have not been isolated, especially some trace gypenosides. In the present study, a HILIC × RP offline two-dimensional liquid separation combined with a multimode data acquisition was developed for the systematical characterization of gypenosides. On top of the negative mode information, considering that saponins are prone to in-source fragmentations in positive ion mode, a precursor ion list data acquisition method was used for the targeted acquisition of multistage positive data. Reference herbal drug was taken as a golden sample to probe the chemical composition of G. pentaphyllum. The mixed sample of commercially available samples were also analyzed in parallel. Furthermore, the chemical compositions of commercially available samples from different sources were compared. In total, 1108 saponins were characterized, among which 588 were accurately characterized, with 574 identified in the reference herbal drug and 700 in the mixed commercially available samples. The commercially available samples showed great composition variation. These findings clarified the material basis and provided clues for quality control of G. pentaphyllum.


Assuntos
Medicamentos de Ervas Chinesas , Saponinas , Gynostemma/química , Extratos Vegetais/química , Medicamentos de Ervas Chinesas/química , Saponinas/química
4.
Molecules ; 27(20)2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36296615

RESUMO

Dendrobium officinale, as a traditional Chinese medicine, has considerable commercial value and pharmacological activity. Environmental factors of different origins have a great influence on Dendrobium officinale metabolites, which affect its pharmacological activity. This study sought to identify the differential metabolites of wild-imitating cultivated D. officinale stems of different origins. Using the widely-targeted metabolomics approach, 442 metabolites were detected and characterized, including flavonoids, lipids, amino acids and derivatives, and alkaloids. We found that although the chemical constitution of D. officinale cultured in the three habitats was parallel, the contents were significantly different. Meanwhile, the KEGG pathway enrichment analysis revealed that the distinctive metabolites among the three groups were mainly involved in flavone and flavonol biosynthesis. To further explore the different contents of flavonoids, HPLC was performed on four main flavonoid contents, which can be used as one of the references to distinguish D. officinale from different growing origins. In conclusion, a comprehensive profile of the metabolic differences of D. officinale grown in different origins was provided, which contributed a scientific basis for further research on the quality evaluation of D. officinale.


Assuntos
Alcaloides , Dendrobium , Flavonas , Dendrobium/química , Metaboloma , Alcaloides/metabolismo , Flavonas/metabolismo , Flavonoides/metabolismo , Aminoácidos/metabolismo , Flavonóis/metabolismo , Lipídeos
5.
Chin J Nat Med ; 19(7): 551-560, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34247780

RESUMO

The quality control of Chinese herbal medicine is a current challenge for the internationalization of traditional Chinese medicine. Traditional quality evaluation methods lack quantitative analysis, while modern quality evaluation methods ignore the origins and appearance traits. Therefore, an integrated quality evaluation method is urgent in need. Raw Rehmanniae Radix (RRR) is commonly used in Chinese herbal medicine. At present, much attention has been drwan towards its quality control, which however is limited by the existing quality evaluation methods. The present study was designed to establish a comprehensive and practical method for the quality evaluation and control of RRR pieces based on its chemical constituents, appearance traits and origins. Thirty-three batches of RRR pieces were collected from six provinces, while high-performance liquid chromatography (HPLC) was applied to determine the following five constituents, including catalpol, rehmannioside A, rehmannioside D, leonuride and verbascoside in RRR pieces. Their appearance traits were quantitatively observed. Furthermore, correlation analysis, principal components analysis (PCA), cluster analysis and t-test were performed to evaluate the qualities of RRR pieces. These batches of RRR pieces were divided into three categories: samples from Henan province, samples from Shandong and Shanxi provinces, and those from other provinces. Furthermore, the chemical constituents and appearance traits of RRR pieces were significantly different from diverse origins. The combined method of chemical contituents, appearance traits and origins can distinguish RRR pieces with different qualities, which provides basic reference for the quality control of Chinese herbal medicine.


Assuntos
Medicamentos de Ervas Chinesas , Controle de Qualidade , Rehmannia/química , Cromatografia Líquida de Alta Pressão , Medicamentos de Ervas Chinesas/análise , Medicina Tradicional Chinesa , Raízes de Plantas/química , Análise de Componente Principal
6.
Artigo em Inglês | WPRIM | ID: wpr-888785

RESUMO

The quality control of Chinese herbal medicine is a current challenge for the internationalization of traditional Chinese medicine. Traditional quality evaluation methods lack quantitative analysis, while modern quality evaluation methods ignore the origins and appearance traits. Therefore, an integrated quality evaluation method is urgent in need. Raw Rehmanniae Radix (RRR) is commonly used in Chinese herbal medicine. At present, much attention has been drwan towards its quality control, which however is limited by the existing quality evaluation methods. The present study was designed to establish a comprehensive and practical method for the quality evaluation and control of RRR pieces based on its chemical constituents, appearance traits and origins. Thirty-three batches of RRR pieces were collected from six provinces, while high-performance liquid chromatography (HPLC) was applied to determine the following five constituents, including catalpol, rehmannioside A, rehmannioside D, leonuride and verbascoside in RRR pieces. Their appearance traits were quantitatively observed. Furthermore, correlation analysis, principal components analysis (PCA), cluster analysis and t-test were performed to evaluate the qualities of RRR pieces. These batches of RRR pieces were divided into three categories: samples from Henan province, samples from Shandong and Shanxi provinces, and those from other provinces. Furthermore, the chemical constituents and appearance traits of RRR pieces were significantly different from diverse origins. The combined method of chemical contituents, appearance traits and origins can distinguish RRR pieces with different qualities, which provides basic reference for the quality control of Chinese herbal medicine.


Assuntos
Cromatografia Líquida de Alta Pressão , Medicamentos de Ervas Chinesas/análise , Medicina Tradicional Chinesa , Raízes de Plantas/química , Análise de Componente Principal , Controle de Qualidade , Rehmannia/química
7.
Electrophoresis ; 41(18-19): 1606-1616, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32557720

RESUMO

Chuanxiong Rhizoma is a commonly used in traditional Chinese medicine. Chuanxiong Rhizoma is widely distributed in Sichuan province, China, including the cities of Dujiangyan, Pengzhou, Meishan, Qionglai, and Shifang. However, reports on the comparisons of quality of Chuanxiong Rhizoma of different production origins are limited. Therefore, an ultra-HPLC with triple quadrupole MS method was developed for the determination of 20 bioactive components (12 aromatic acids and eight phthalides) in 36 samples from different production origins and further assessed its quality. The contents of these 20 constituents of samples were analyzed by hierarchical cluster analysis and orthogonal partial least squares discrimination analysis; the result indicated that Chuanxiong Rhizoma of different production origins had some differences. Thirteen constituents of quality difference markers were acquired by variable importance for the project. Furthermore, the sum of the contents of these quality difference markers was different from various production origins of Chuanxiong Rhizoma. Meanwhile, Z-ligustilide and senkyunolide A as main constituents of quality difference markers, the rate of various production origins of Chuanxiong Rhizoma was different. This study provides a foundation for the quality assessment of Chuanxiong Rhizoma.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Medicamentos de Ervas Chinesas , 4-Butirolactona/análogos & derivados , 4-Butirolactona/análise , Benzofuranos/análise , China , Medicamentos de Ervas Chinesas/análise , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/classificação , Geografia , Limite de Detecção , Modelos Lineares , Análise Multivariada , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem/métodos
8.
Chem Cent J ; 12(1): 40, 2018 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-29651680

RESUMO

BACKGROUND: The quality of material medicine resources has had a considerable impact on the development of the health industry, which has created a bottleneck for traditional Chinese medicine (TCM). Dendrobium officinale, which has been widely used for health prevention in TCM, has become a high-nutritive health food that is strongly recommended by many white-collar workers and people who pay more attention to their health. The aim of this study was to develop a method to authenticate and evaluate D. officinale from different origins via simultaneous qualitative and quantitative analyses of flavonoid glycosides. Ultra-high-performance liquid chromatography-electrospray ionization/mass spectrometry was used for the structural elucidation of the compounds. RESULTS: 9 characteristic peaks, including those representing 7 flavonoid C-glycosides and 2 flavonoid O-glycosides, were identified. Additionally, the contents of 5 representative flavonoid glucosides in 25 batches of D. officinale from different sources were determined. To further investigate the different sources of the 25 batch samples, principal component analysis (PCA) and hierarchical cluster analysis (HCA) were carried out. A study on the methodology revealed that all results were reliable. CONCLUSIONS: This method is an efficient tool for the rapid identification of the different geographical origins of D. officinale and provides references for the quality evaluation of other natural products.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA