Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 144
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Biophotonics ; 17(3): e202300370, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38185916

RESUMO

Axonal degeneration is a key component of neurodegenerative diseases such as Huntington's disease (HD), Alzheimer's disease, and amyotrophic lateral sclerosis. Nicotinamide, an NAD+ precursor, has long since been implicated in axonal protection and reduction of degeneration. However, studies on nicotinamide (NAm) supplementation in humans indicate that NAm has no protective effect. Sterile alpha and toll/interleukin receptor motif-containing protein 1 (SARM1) regulates several cell responses to axonal damage and has been implicated in promoting neuronal degeneration. SARM1 inhibition seems to result in protection from neuronal degeneration while hydrogen peroxide has been implicated in oxidative stress and axonal degeneration. The effects of laser-induced axonal damage in wild-type and HD dorsal root ganglion cells treated with NAm, hydrogen peroxide (H2O2), and SARM1 inhibitor DSRM-3716 were investigated and the cell body width, axon width, axonal strength, and axon shrinkage post laser-induced injury were measured.


Assuntos
Doença de Huntington , Peróxido de Hidrogênio , Animais , Camundongos , Humanos , Niacinamida , Camundongos Knockout , Neurônios/metabolismo , Proteínas do Citoesqueleto/metabolismo , Proteínas do Domínio Armadillo/genética , Proteínas do Domínio Armadillo/metabolismo
2.
Pain Pract ; 24(2): 321-340, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37726930

RESUMO

BACKGROUND: Chronic pelvic pain is a burdensome condition that involves multiple medical sub-specialties and is often difficult to treat. Sacral stimulation for functional bladder disease has been well established, but little large-scale evidence exists regarding utilization of other neuromodulation techniques to treat chronic pelvic pain. Emerging evidence does suggest that neuromodulation is a promising treatment, and we aim to characterize the use and efficacy of such techniques for treating chronic pelvic pain syndromes. MATERIALS AND METHODS: A systematic review of the literature demonstrating the treatment of chronic pelvic pain syndromes with neuromodulation. Abstracts were reviewed and selected for inclusion, including case series, prospective studies, and randomized controlled trials (RCTs). Case studies and publications in abstract only were not included. The reporting for this systematic review follows Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA). The literature search was performed using MEDLINE, Embase, Cochrane Library, PubMed, CINAHL, and Scopus. RESULTS: A total of 50 studies were included in this review, three of which were randomized controlled trials, and the remaining were prospective and retrospective case series. The range of pelvic pain conditions treated included interstitial cystitis, peripheral neuralgia, pudendal neuralgia, gastrointestinal pain, urogenital pain, sacroiliac joint pain, and visceral chronic pelvic pain. We reported on outcomes involving pain, functionality, psychosocial improvement, and medication reduction. CONCLUSIONS: Neuromodulation is a growing treatment for various chronic pain syndromes. Peripheral nerve stimulation was the least studied form of stimulation. Posterior tibial nerve stimulation appears to offer short-term benefit, but long-term results are challenging. Sacral nerve stimulation is established for use in functional bladder syndromes and appears to offer pain improvement in these patients as well. Dorsal root ganglion stimulation and spinal cord stimulation have been used for a variety of conditions with promising results. Further studies of homogeneous patient populations are necessary before strong recommendations can be made at this time, although pooled analysis may also be impactful.


Assuntos
Dor Crônica , Neuralgia , Estimulação da Medula Espinal , Estimulação Elétrica Nervosa Transcutânea , Humanos , Dor Pélvica/terapia , Dor Crônica/terapia , Neuralgia/terapia
3.
J Neurosci ; 44(1)2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37952941

RESUMO

Peripheral sensitization is one of the primary mechanisms underlying the pathogenesis of chronic pain. However, candidate molecules involved in peripheral sensitization remain incompletely understood. We have shown that store-operated calcium channels (SOCs) are expressed in the dorsal root ganglion (DRG) neurons. Whether SOCs contribute to peripheral sensitization associated with chronic inflammatory pain is elusive. Here we report that global or conditional deletion of Orai1 attenuates Complete Freund's adjuvant (CFA)-induced pain hypersensitivity in both male and female mice. To further establish the role of Orai1 in inflammatory pain, we performed calcium imaging and patch-clamp recordings in wild-type (WT) and Orai1 knockout (KO) DRG neurons. We found that SOC function was significantly enhanced in WT but not in Orai1 KO DRG neurons from CFA- and carrageenan-injected mice. Interestingly, the Orai1 protein level in L3/4 DRGs was not altered under inflammatory conditions. To understand how Orai1 is modulated under inflammatory pain conditions, prostaglandin E2 (PGE2) was used to sensitize DRG neurons. PGE2-induced increase in neuronal excitability and pain hypersensitivity was significantly reduced in Orai1 KO mice. PGE2-induced potentiation of SOC entry (SOCE) was observed in WT, but not in Orai1 KO DRG neurons. This effect was attenuated by a PGE2 receptor 1 (EP1) antagonist and mimicked by an EP1 agonist. Inhibition of Gq/11, PKC, or ERK abolished PGE2-induced SOCE increase, indicating PGE2-induced SOCE enhancement is mediated by EP1-mediated downstream cascade. These findings demonstrate that Orai1 plays an important role in peripheral sensitization. Our study also provides new insight into molecular mechanisms underlying PGE2-induced modulation of inflammatory pain.Significance Statement Store-operated calcium channel (SOC) Orai1 is expressed and functional in dorsal root ganglion (DRG) neurons. Whether Orai1 contributes to peripheral sensitization is unclear. The present study demonstrates that Orai1-mediated SOC function is enhanced in DRG neurons under inflammatory conditions. Global and conditional deletion of Orai1 attenuates complete Freund's adjuvant (CFA)-induced pain hypersensitivity. We also demonstrate that prostaglandin E2 (PGE2) potentiates SOC function in DRG neurons through EP1-mediated signaling pathway. Importantly, we have found that Orai1 deficiency diminishes PGE2-induced SOC function increase and reduces PGE2-induced increase in neuronal excitability and pain hypersensitivity. These findings suggest that Orai1 plays an important role in peripheral sensitization associated with inflammatory pain. Our study reveals a novel mechanism underlying PGE2/EP1-induced peripheral sensitization. Orai1 may serve as a potential target for pathological pain.


Assuntos
Cálcio , Dinoprostona , Animais , Feminino , Masculino , Camundongos , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Dinoprostona/farmacologia , Dinoprostona/metabolismo , Adjuvante de Freund/toxicidade , Adjuvante de Freund/metabolismo , Gânglios Espinais/metabolismo , Proteína ORAI1/genética , Proteína ORAI1/metabolismo , Dor
4.
Zhen Ci Yan Jiu ; 48(12): 1183-1192, 2023 Dec 25.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38146240

RESUMO

OBJECTIVES: To explore the neural mechanism of visceral pain and related somatic (acupoints) sensitization by using in vivo calcium imaging of dorsal root ganglia (DRG) neurons. METHODS: Eight BALB/c mice were randomly divided into control and model groups, with 4 mice in each group. The colitis model was induced by colorectal perfusion of 2, 4, 6-trinitrobenzene sulfonic acid (TNBS) once daily for 7 days. Mice of the control group received colorectal perfusion of normal saline once daily for 7 days. The location and area of the somatic neurogenic inflammation (cutaneous exudation of Evans blue ï¼»EBï¼½) of the 2 groups of mice were observed after intravenous injection of EB. For pain behavioral tests, sixteen C57BL/6J mice were randomly divided into control and model groups, with 8 mice in each group, and a Von Frey filament was used to stimulate the referred somatic reactive regions in colitis mice, and the number of avoidance and paw withdraw reaction within 10 tests was recorded. For in vivo DRG calcium imaging tests, 24 Pirt-GCaMP6s transgenic mice were randomly and equally divided into control group and colitis model group. The responses of the neurons in L6 or L4 DRG to colorectal distension (CRD), lower back brushing, or mechanical stimulation at the hindpaw were observed using confocal fluorescence microscope. RESULTS: Compared with the control group, the area of EB exudation spot in the hindpaw and lower back regions was increased in the colitis model group (P<0.05), and the avoidance or paw withdraw numbers induced by Von Frey stimulation at the lower back and hindpaw were increased (P<0.01, P<0.05), indicating that colitis induced regional skin (acupoints) sensitization in the lower back and hindpaw regions. Compared with the control group, the percentage of L6 DRG neurons activated by 60 mm Hg CRD in the colitis model mice were apparently increased (P<0.01), the activated neurons mainly involved the medium-sized DRG neurons (P<0.01). In Pirt-GCaMP6s transgenic mice, following brushing the skin of the receptive field (lower back) of L6 DRG neurons, the fluorescence intensity of the brushing-activated DRG neurons and small, medium and large-sized neurons were significantly higher in the colitis model group than those in the control group (P<0.001, P<0.01, P<0.05). After brushing and clamping the skin of the right hindpaw (receptive field of L4 DRG neurons), the percentages of the activated L4 DRG neurons were obviously higher in the colitis model group than those in the control group (P<0.01, P<0.05), while there were no significant changes in the proportion of small, medium and large-sized neurons between the control and colitis model groups. CONCLUSIONS: Colitis may lead to body surface sensitization at the same and adjacent neuro-segments as well as to an increase of the number and activity of the responsive lumbar DRG neurons, among which the L6 DRG neurons at the same neuro-segment as the rectum colon showed an increase in the number of responders and intensity of calcium fluorescence signal while L4 DRG neurons at the level adjacent to the rectum colon showed an increase in the number of responders, suggesting that there may be different mechanisms of peripheral neural sensitization.


Assuntos
Colite , Neoplasias Colorretais , Dor Visceral , Camundongos , Animais , Dor Visceral/genética , Cálcio , Pontos de Acupuntura , Camundongos Endogâmicos C57BL , Colite/induzido quimicamente , Colite/genética , Trinitrobenzenos , Camundongos Transgênicos
5.
Curr Pain Headache Rep ; 27(11): 719-728, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37728863

RESUMO

PURPOSE OF REVIEW: Neurostimulation treatment options have become more commonly used for chronic pain conditions refractory to these options. In this review, we characterize current neurostimulation therapies for chronic pain conditions and provide an analysis of their effectiveness and clinical adoption. This manuscript will inform clinicians of treatment options for chronic pain. RECENT FINDINGS: Non-invasive neurostimulation includes transcranial direct current stimulation and repetitive transcranial magnetic stimulation, while more invasive options include spinal cord stimulation (SCS), peripheral nerve stimulation (PNS), dorsal root ganglion stimulation, motor cortex stimulation, and deep brain stimulation. Developments in transcranial direct current stimulation, repetitive transcranial magnetic stimulation, spinal cord stimulation, and peripheral nerve stimulation render these modalities most promising for the alleviating chronic pain. Neurostimulation for chronic pain involves non-invasive and invasive modalities with varying efficacy. Well-designed randomized controlled trials are required to delineate the outcomes of neurostimulatory modalities more precisely.


Assuntos
Dor Crônica , Estimulação da Medula Espinal , Estimulação Transcraniana por Corrente Contínua , Estimulação Elétrica Nervosa Transcutânea , Humanos , Dor Crônica/terapia , Estimulação Magnética Transcraniana
6.
Drug Des Devel Ther ; 17: 2239-2257, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37533973

RESUMO

Purpose: The aim of this study was to investigate the effect of Zhiqiao Gancao decoction (ZQGCD) on hyperalgesia in lumbar disc herniation (LDH) and its mechanism. Methods: The potential mechanism of ZQGCD's therapeutic effect on LDH was investigated through network pharmacology, which involved screening the targets of eight components that were absorbed into the bloodstream. The effects of CCR2 inhibitors and ZQGCD-containing serum on the excitability of the CCL2/CCR2 signaling pathway and dorsal root ganglion neurons (DRGn) were investigated in vitro. The effects of CCR2 inhibitors and ZQGCD on the expression of the CCL2/CCR2 signaling pathway and ASIC3 in the rat intervertebral disc and dorsal root ganglion (DRG), the degree of disc degeneration, the threshold of foot retreat, and the latency of foot retreat in LDH rats were examined in vivo. The binding affinities and interaction modes between CCR2 and the components absorbed into the blood were analyzed using the AutodockVina 1.2.2 software. Results: Network pharmacology revealed that ZQGCD could treat LDH through a mechanism involving the chemokine signaling pathway. It was observed that the CCR2 inhibitor and ZQGCD-containing serum downregulated CCR2 and ASIC3 expression and decreased cell excitability in DRGn. The CCL2/CCR2 signaling pathway was activated in the degenerated intervertebral disc and DRG of LDH rats, increased the expression of ASIC3, and decreased the mechanical allodynia domain and thermal hyperalgesia domain. However, a CCR2 inhibitor or ZQGCD could ameliorate the above changes in LDH rats. The target proteins, CCL2 and CCR2, exhibited a robust affinity for the eight components that were absorbed into the bloodstream. Conclusion: The CCL2/CCR2 pathway was activated in the intervertebral disc and DRG of LDH rats. This was accompanied by upregulation of ASIC3 expression, increased excitability of DRGn, and the occurrence of hyperalgesia. ZQGCD improves hyperalgesia in LDH rats by inhibiting the CCL2/CCR2 pathway and downregulating ASIC3 expression.


Assuntos
Hiperalgesia , Deslocamento do Disco Intervertebral , Ratos , Animais , Hiperalgesia/tratamento farmacológico , Hiperalgesia/metabolismo , Deslocamento do Disco Intervertebral/tratamento farmacológico , Ratos Sprague-Dawley , Transdução de Sinais
7.
Mol Neurobiol ; 60(10): 6121-6132, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37421564

RESUMO

Neuropathic pain affects globally about 7-10% of the general population. Electroacupuncture (EA) effectively relieves neuropathic pain symptoms without causing any side effects; however, the underlying molecular mechanisms remain unclear. We established a chronic constriction injury (CCI)-induced rat model of neuropathic pain. RNA sequencing was used to screen for differentially expressed genes in the dorsal root ganglion after CCI and EA treatment. We identified gene markers of ferroptosis spermidine/spermine N1-acetyltransferase 1 (Sat1) and arachidonate 15-lipoxygenase (Alox15) to be dysregulated in the CCI-induced neuropathic pain model. Furthermore, EA relieved CCI-induced pain as well as ferroptosis-related symptoms in the dorsal root ganglion, including lipid peroxidation and iron overload. Finally, SAT1 knockdown also alleviated mechanical and thermal pain hypersensitivity and reversed ferroptosis damage. In conclusion, we showed that EA inhibited ferroptosis by regulating the SAT1/ALOX15 pathway to treat neuropathic pain. Our findings provide insight into the mechanisms of EA and suggest a novel therapeutic target for neuropathic pain.


Assuntos
Eletroacupuntura , Ferroptose , Neuralgia , Ratos , Humanos , Animais , Ratos Sprague-Dawley , Gânglios Espinais/metabolismo , Araquidonato 15-Lipoxigenase/metabolismo , Neuralgia/terapia , Neuralgia/metabolismo
8.
Neuroscience ; 527: 92-102, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37516437

RESUMO

Pain after spinal cord injury (SCI) can be difficult to treat. Drugs that target the opioid receptor (OR) outside the central nervous system (CNS) have gained increasing interest in pain control owing to their low risk of central side effects. Asimadoline and ICI-204448 are believed to be peripherally restricted KOR agonists withlimited access to the CNS. This study examined whether they can attenuate pain hypersensitivity in mice subjected to a contusive T10 SCI. Subcutaneous (s.c.) injection of asimadoline (5, 20 mg/kg) and ICI-204448 (1, 10 mg/kg) inhibited heat hypersensitivity at both doses, but only attenuated mechanical hypersensitivity at the high dose. However, the high-dose asimadoline adversely affected animals' exploratory performance in SCI mice and caused aversion, suggesting CNS drug penetration. In contrast, high-dose ICI-204448 did not impair exploration and remained effective in reducing both mechanical and heat hypersensitivities after SCI. Accordingly, we chose to examine the potential peripheral neuronal mechanism for ICI-204448-induced pain inhibition by conducting in vivo calcium imaging of dorsal root ganglion (DRG) in Pirt-GCaMP6s+/- mice. High-dose ICI-204448 (10 mg/kg, s.c.) attenuated the increased fluorescence intensity of lumbar DRG neurons activated by a noxious pinch (400 g) stimulation in SCI mice. In conclusion, systemic administration of ICI-204448 achieved SCI pain inhibition at doses that did not induce notable side effects and attenuated DRG neuronal excitability which may partly contribute to its pain inhibition. These findings suggest that peripherally restricted KOR agonists may be useful for treating SCI pain, but the therapeutic window must be carefully examined.


Assuntos
Traumatismos da Medula Espinal , Camundongos , Animais , Traumatismos da Medula Espinal/complicações , Traumatismos da Medula Espinal/tratamento farmacológico , Dor/tratamento farmacológico , Dor/etiologia , Pirrolidinas/farmacologia , Gânglios Espinais , Receptores Opioides , Medula Espinal
9.
Phytomedicine ; 115: 154791, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37094425

RESUMO

BACKGROUND: α-Mangostin is a xanthone isolated from the pericarps of mangosteen fruit with, and has analgesic properties. Although the effects suggest an interaction of α-mangostin with ion channels in the nociceptive neurons, electrophysiological investigation of the underlying mechanism has not been performed. HYPOTHESIS: We hypothesized that α-Mangostin exerts its analgesic effects by modulating the activity of various ion channels in dorsal root ganglion (DRG) neurons. METHODS: We performed a whole-cell patch clamp study using mouse DRG neurons, HEK293T cells overexpressing targeted ion channels, and ND7/23 cells. Molecular docking (MD) and in silico absorption, distribution, metabolism, and excretion (ADME) analyses were conducted to obtain further insights into the binding sites and pharmacokinetics, respectively. RESULTS: Application of α-mangostin (1-3 µM) hyperpolarized the resting membrane potential (RMP) of small-sized DRG neurons by increasing background K+ conductance and thereby inhibited action potential generation. At micromolar levels, α-mangostin activates TREK-1, TREK-2, or TRAAK, members of the two-pore domain K+ channel (K2P) family known to be involved in RMP formation in DRG neurons. Furthermore, capsaicin-induced TRPV1 currents were potently inhibited by α-mangostin (0.43 ± 0.27 µM), and partly suppressed tetrodotoxin-sensitive voltage-gated Na+ channel (NaV) currents. MD simulation revealed that multiple oxygen atoms in α-mangostin may form stable hydrogen bonds with TREKs, TRAAK, TRPV1, and NaV channels. In silico ADME tests suggested that α-mangostin may satisfy the drug-likeness properties without penetrating the blood-brain barrier. CONCLUSION: The analgesic properties of α-mangostin might be mediated by the multi-target modulation of ion channels, including TREK/TRAAK activation, TRPV1 inhibition, and reduction of the tetrodotoxin-sensitive NaV current. The findings suggest that the phytochemical can be a multi-ion channel-targeting drug and an alternative drug for effective pain management.


Assuntos
Gânglios Espinais , Neurônios , Camundongos , Humanos , Animais , Tetrodotoxina/metabolismo , Tetrodotoxina/farmacologia , Células HEK293 , Simulação de Acoplamento Molecular
10.
Front Pharmacol ; 14: 1106030, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36969850

RESUMO

Paclitaxel frequently induces peripheral neuropathy and myelosuppression during cancer treatment. According to the National Health Insurance Research Database of Taiwan, traditional Chinese medicine doctors widely use Xiang Sha Liu Jun Zi Tang (XSLJZT) to treat breast cancer patients who have received paclitaxel. We explored the combined therapeutic effects of XSLZJT with paclitaxel. XSLJZT did not exhibit significant cytotoxic effects on P388-D1 cells; however, the combination of XSLJZT (100 and 500 mg/kg) with paclitaxel prolonged the survival rate in P388-D1 tumor-bearing mice compared to paclitaxel-only. In addition, XSLJZT was found to enhance white blood cells (WBC) counts and promote leukocyte rebound in paclitaxel-induced leukopenia in mice. XSLJZT also reduced paclitaxel-induced mechanical pain and inhibited c-Fos protein expression in the L4-6 spinal cords of Wistar rats. Moreover, paclitaxel-induced shortening of the nerve fibers of dorsal root ganglion cells was ameliorated by pre-treatment with XSLJZT. Therefore, we suggest that XSLJZT could be used as an adjunct for cancer patients, as the formula could decrease paclitaxel-induced neuropathy and myelosuppression.

11.
Zhen Ci Yan Jiu ; 48(3): 217-25, 2023 Mar 25.
Artigo em Chinês | MEDLINE | ID: mdl-36951072

RESUMO

OBJECTIVE: To investigate the relationship between acupoint sensitization on the body surface and neuronal intrinsic excitability of the medium- and small-size dorsal root ganglion (DRG) neurons from the perspective of ion channel kinetics in mice with gastric ulcer. METHODS: Male C57BL/6J mice were randomly divided into control (n=32) and model groups (n=34). The gastric ulcer model was established by injection of 60% glacial acetic acid (0.2 mL/100 g) into the gastric wall muscle layer and submucosa near the pylorus in the minor curvature of the stomach. In contrast, the same dose of normal saline was injected in the same way in the control group. Six days after modeling, Evans blue (EB) solution was injected into the mouse's tail vein for observing the number and distribution of the exudation blue spots on the body surface. Histopathological changes of the gastric tissue were observed by H.E. staining. Then, whole-cell membrane currents and intrinsic excitability of medium- and small-size neurons in the spinal T9-T11 DRGs were measured by in vitro electrophysiology combining with biocytin-ABC method. RESULTS: In the control group, EB exudation blue spots were not obvious, while in the model group, the blue spots on the body surface were densely distributed in the area of spinal T9-T11 segments, the epigastric region, and the skin around "Zhongwan" (CV12) and "Huaroumen" (ST24) regions, and near the surgical incision region. Compared with the control group, the model group had a high level of eosinophilic infiltrates in the submucosa of gastric tissues, severe gastric fossa structure damage, gastric fundus gland dilation and other pathological manifestations. The number of exudation blue spots was proportional to the degree of inflammatory reaction in the stomach. In comparison with the control group, the spike discharges of type II of medium-size DRG neurons in T9-T11 segments were decreased, and the current of whole-cell membrane was increased, basic intensity was decreased (P<0.05), discharge frequency and discharge number were increased (P<0.01,P<0.000 1); while the discharges of type I small-size DRG neurons were decreased, those of type II neurons increased, the whole-cell membrane current was decreased, and discharge frequency and discharge number were decreased (P<0.01, P<0.000 1). CONCLUSION: Both the medium- and small-size DRG neurons from the spinal T9-T11 segments involve in gastric ulcer-induced acupoint sensitization via their different spike discharge activities. And intrinsic excitability of these DRG neurons can not only dynamically encode the plasticity of acupoint sensitization, but also can help us understand the neural mechanism of acupoint sensitization induced by visceral injury.


Assuntos
Gânglios Espinais , Úlcera Gástrica , Ratos , Camundongos , Masculino , Animais , Gânglios Espinais/fisiologia , Úlcera Gástrica/genética , Úlcera Gástrica/terapia , Ratos Sprague-Dawley , Pontos de Acupuntura , Camundongos Endogâmicos C57BL , Neurônios
12.
Pain Med ; 24(3): 300-305, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35976130

RESUMO

BACKGROUND: Trigeminal neuralgia is considered the worst pain a human being can experience. Initial treatment uses anticonvulsant sodium channel blockers, which relieve pain in approximately 70% of patients. In refractory cases, it is possible to perform ablative treatments, decompressive surgeries, and neuromodulatory techniques. METHODS: This report describes the treatment of a patient with refractory trigeminal neuralgia who continued to have a painful clinical presentation after four surgical procedures and three ablative procedures. The patient presented with severe pain (verbal numerical scale between 9 and 10), manifesting an evident suicidal ideation. A dorsal root ganglion (DRG) stimulation electrode was implanted in the trigeminal ganglion through intraoral puncture with maxillary fixation of the electrode, in order to minimize the chances of displacement. The test phase consisted of implanting a quadripolar electrode for DRG stimulation through puncture lateral to the buccal rim in a fluoroscopic coaxial view. The electrode was fixed to the skin and maintained for 5 days, during which the patient remained completely pain free. After the 5-day test period, the definitive stimulation electrode was implanted, this time with intraoral puncture and maxillary electrode fixation. RESULTS: The patient remains pain free in the 3-month follow-up, with no displacement of the electrode. CONCLUSIONS: The DRG electrode may be considered a therapeutic option in patients with severe trigeminal neuralgia. Controlled studies must be performed to determine the efficacy and safety of the method.


Assuntos
Terapia por Estimulação Elétrica , Neuralgia do Trigêmeo , Humanos , Gânglios Espinais , Dor , Terapia por Estimulação Elétrica/métodos , Gânglio Trigeminal/cirurgia , Eletrodos Implantados , Resultado do Tratamento
13.
Neural Regen Res ; 18(2): 456-462, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35900446

RESUMO

Previous studies have confirmed the relationship between iron-dependent ferroptosis and a peripheral nerve injury-induced neuropathic pain model. However, the role of ferroptosis in inflammatory pain remains inconclusive. Therefore, we aimed to explore whether ferroptosis in the spinal cord and dorsal root ganglion contributes to complete Freund's adjuvant (CFA)-induced painful behaviors in rats. Our results revealed that various biochemical and morphological changes were associated with ferroptosis in the spinal cord and dorsal root ganglion tissues of CFA rats. These changes included iron overload, enhanced lipid peroxidation, disorders of anti-acyl-coenzyme A synthetase long-chain family member 4 and glutathione peroxidase 4 levels, and abnormal morphological changes in mitochondria. Intrathecal treatment of liproxstatin-1 (a ferroptosis inhibitor) reversed these ferroptosis-related changes and alleviated mechanical and thermal hypersensitivities in CFA rats. Our study demonstrated the occurrence of ferroptosis in the spinal cord and dorsal root ganglion tissues in a rodent model of inflammatory pain and indicated that intrathecal administration of ferroptosis inhibitors, such as liproxstatin-1, is a potential therapeutic strategy for treating inflammatory pain.

14.
Metabolites ; 12(10)2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36295824

RESUMO

Lappaconitine (LA) is a C-18 diterpene alkaloid isolated from Aconitum sinomontanum Nakai that has been shown to relieve mild to moderate discomfort. Various researchers have tried to explain the underlying mechanism of LA's effects on chronic pain. This article uses metabolomics technology to investigate the metabolite alterations in the dorsal root ganglion (DRG) when lappaconitine hydrobromide (LAH) was injected in an inflammatory pain model, to explain the molecular mechanism of its analgesia from a metabolomics perspective. The pain model used in this study was a complete Freund's adjuvant (CFA)-induced inflammatory pain model in rats. There were two treatment groups receiving different dosages of LAH (4 mg/kg LAH and 8 mg/kg LAH). The analgesic mechanism of LAH was investigated with an analgesic behavioral test, tissue sections, and metabolomics. The results of the analgesic behavioral experiment showed that both 4 mg/kg LAH and 8 mg/kg LAH could significantly improve the paw withdrawal latency (PWL) of rats. The tissue section results showed that LAH could reduce the inflammatory response and enlargement of the paw and ankle of rats and that there was no significant difference in the tissue sections of the DRG. The metabolomics results showed that retinol metabolism and glycerophospholipid metabolism in the CFA-induced inflammatory pain model were significantly affected and may exacerbate the inflammatory reactions and initiate persistent pain; in addition, the linoleic acid metabolism, arachidonic acid metabolism, and alanine, aspartate, and glutamate metabolism were also slightly affected. Among them, the alpha-linolenic acid metabolism was up-regulated after LAH treatment, while the retinol metabolism was down-regulated. These results suggest that LAH could effectively reduce inflammatory pain and might achieve this by regulating the lipid metabolism in the rat DRG.

15.
Brain Res Bull ; 191: 30-39, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36240908

RESUMO

Low back and radicular pain syndromes, usually caused by local inflammation and irritation to the nerve root and dorsal root ganglion (DRG), are common throughout medical practice, but sufficient pain relief is scarce. In this study, we employed a chronic compression of DRG (CCD)-induced radicular pain model in rats to explore whether lysine-specific demethylase 1 (LSD1), a histone demethylase and transcriptional co-repressor, is involved in the pathological process of radicular pain. We found that LSD1 was expressed in various-sized DRG neurons by immunohistochemistry. CCD induced the upregulation of LSD1 in compressed L4-L5 DRGs. Moreover, either LSD1 small interfering RNAs or LSD1 inhibitor attenuated CCD-induced pain hypersensitivities. LSD1 was also upregulated in the injured lumbar 4 (L4) DRG in a spinal nerve ligation (SNL)-induced neuropathic pain mouse model. Nevertheless, LSD1 was not altered in L3-L5 DRGs in complete Freund's adjuvant-induced inflammatory pain mouse model, paclitaxel- or streptozotocin-induced neuropathic pain models. Furthermore, knockdown of LSD1 in the injured L4 DRG reversed SNL-induced pain hypersensitivities in mice. Therefore, we speculate that nerve injury induced the upregulation of LSD1 in the injured DRGs, which contributes to neuropathic pain hypersensitivities; thus, LSD1 may serve as a potential target for the treatment of radicular pain and neuropathic pain.


Assuntos
Hipersensibilidade , Neuralgia , Ratos , Camundongos , Animais , Gânglios Espinais/patologia , Lisina , Ratos Sprague-Dawley , Neuralgia/patologia , Nervos Espinhais/lesões , Modelos Animais de Doenças , Hipersensibilidade/complicações , Hipersensibilidade/patologia , Células Receptoras Sensoriais , Hiperalgesia/patologia
16.
Cells ; 11(18)2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-36139442

RESUMO

(1) Background: The medical practice of acupuncture involves the insertion of a specialized stainless needle into a specific body point, often called an acupoint, to initiate a perceived phenomenon of de-qi sensation. Therefore, the term "de-qi" describes bodily sensations experienced by the recipient during acupuncture, which may include feelings of soreness, heaviness, fullness, numbness, and migration. However, while acupuncture treatments reportedly result in acupoint activation and an increased release of neurotransmitters or cytokines, detecting these substances released into the acupoint microenvironment is often missed or delayed in clinical and basic practice. (2) Methods: To address this situation, we employed a paper-based enzyme-linked immunosorbent assay method to examine acupoint environmental changes using minute volumes of easily accessible acupoint fluids. (3) Results: Our results indicated that while levels of adenosine triphosphate (ATP), interleukin-1ß, interleukin-6, glutamate, substance P, and histamine were all increased in the experimental group following electroacupuncture (EA) treatment, contrary results were observed in the sham EA and transient receptor potential vanilloid 1 (Trpv1-/-) groups. Subsequently, TRPV1 and its associated molecules were augmented in mouse dorsal root ganglion, spinal cord, thalamus, and the somatosensory cortex, then examined by Western blotting and immunofluorescence techniques. Investigations revealed that these elevations were still unobserved in the sham EA or EA in the Trpv1-/- groups. Furthermore, results showed that while administering ATP could mimic EA function, it could be reversed by the ATP P2 receptor antagonist, suramin. (4) Conclusions: Our data provide novel information, indicating that changes in neurotransmitter and cytokine levels can offer insight into acupuncture mechanisms and clinical targeting.


Assuntos
Pontos de Acupuntura , Citocinas , Animais , Camundongos , Trifosfato de Adenosina , Ácido Glutâmico , Histamina , Interleucina-1beta , Interleucina-6 , Neurotransmissores , Substância P , Suramina
17.
Phytomedicine ; 107: 154434, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36122436

RESUMO

BACKGROUND: Diabetic peripheral neuropathy (DPN) is a common complication of diabetes lacking efficient treatment. Magnolol (MG), a peroxisome proliferator-activated receptor γ (PPARγ) agonist, is a natural product derived from Magnolia officinalis and widely used to treat a variety of diseases as a traditional Chinese medicine and Japanese Kampo medicine. PURPOSE: Here, we aimed to investigate the potential of MG in ameliorating DPN-like pathology in mice and decipher the mechanism of MG in treating DPN. MATERIALS AND METHODS: 12-week-old male streptozotocin (STZ)-induced type 1 diabetic (T1DM) mice and 15-week-old male BKS Cg-m+/+Lepr db/J (db/db) type 2 diabetic mice (T2DM) were used as DPN mice. MG was administrated (i.p) daily for 4 weeks. Peripheral nerve functions of mice were evaluated by measuring mechanical response latency, thermal response latency and motor nerve conduction velocity (MNCV). The mechanisms underlying the amelioration of MG on DPN-like pathology were examined by qRT-PCR, western blot and immunohistochemistry assays, and verified in the DPN mice with PPARγ-specific knockdown in dorsal root ganglia (DRG) neuron and sciatic nerve tissues by injecting adeno-associated virus (AAV)8-PPARγ-RNAi. RESULTS: MG promoted DRG neuronal neurite outgrowth and effectively ameliorated neurological dysfunctions in both T1DM and T2DM diabetic mice, including improvement of paw withdrawal threshold, thermal response latency and MNCV. Additionally, MG promoted neurite outgrowth of DRG neurons, protected sciatic nerve myelin sheath structure, and ameliorated foot skin intraepidermal nerve fiber (IENF) density in DPN mice by targeting PPARγ. Mechanism research results indicated that MG improved mitochondrial dysfunction involving PPARγ/MKP-7/JNK/SIRT1/LKB1/AMPK/PGC-1α pathway in DRG neurons, repressed inflammation via PPARγ/NF-κB signaling and inhibited apoptosis through regulation of PPARγ-mediated Bcl-2 family proteins in DRG neurons and sciatic nerves. CONCLUSIONS: Our work has detailed the mechanism underlying the amelioration of PPARγ agonist on DPN-like pathology in mice with MG as a probe, and highlighted the potential of MG in the treatment of DPN.


Assuntos
Compostos de Bifenilo , Diabetes Mellitus Experimental , Neuropatias Diabéticas , Lignanas , Animais , Masculino , Camundongos , Proteínas Quinases Ativadas por AMP/metabolismo , Produtos Biológicos/farmacologia , Compostos de Bifenilo/farmacologia , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/tratamento farmacológico , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Neuropatias Diabéticas/tratamento farmacológico , Hipoglicemiantes/farmacologia , Lignanas/farmacologia , NF-kappa B/metabolismo , PPAR gama/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Nervo Isquiático , Sirtuína 1/metabolismo
18.
Pain Physician ; 25(4): E531-E542, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35793177

RESUMO

BACKGROUND: Chronic pelvic pain (CPP) is a complex, heterogeneous condition affecting both female and male patients with significant effects on quality of life. Chronic pelvic pain is a prevalent but often underdiagnosed condition due to the variation in patient presentation, a gap in communication among specialties, under-reporting of the syndrome, and lack of standardized diagnostic criteria with a subsequent delay in diagnosis. The mechanism of CPP is complex due to multifactorial etiologies of pain and its vast anatomy and innervation. Potential causes of pelvic pain include the nerves, muscles, bone, or organs of the reproductive, gastrointestinal, urological, musculoskeletal, vascular, neurological, and psychological systems. OBJECTIVES: The objective of this article is to review the anatomy of the pelvis, share current lead placement locations, and discuss the current evidence for neuromodulation in the management of chronic pelvic pain. STUDY DESIGN: This is a narrative review of current literature on neuromodulation for chronic pelvic pain. SETTING: A database review. METHODS: A PubMed search was performed to gather literature on neuromodulation for chronic pelvic pain. RESULTS: Traditionally, pelvic pain has been managed with conservative therapies such as physical therapy, pharmacological agents, trigger point injections, botulinum toxin injections, ganglion impar blocks, caudal epidural steroid injections, or superior and inferior hypogastric blocks, but with the evolution of the neuromodulation, there are new advances to incorporate this modality in the management of chronic pelvic pain. LIMITATIONS: This review article possesses limitations and includes published data, excluding case reports. For this reason, some applications of neuromodulation for chronic pelvic pain may be missed. CONCLUSIONS: Neuromodulation may include spinal cord stimulation, dorsal root ganglion stimulation, and peripheral nerve stimulation. Specifically, neuromodulation utilizes electrical stimulation or pharmacological agents to modulate a nerve and alter pain signals. Currently used locations for lead placement include intracranial, spinal cord, dorsal root ganglion, sacral nerve roots, or at a peripheral nerve. As the field of pelvic pain continues to evolve, continued evidence for neuromodulatory interventions is needed.


Assuntos
Dor Crônica , Estimulação da Medula Espinal , Dor Crônica/terapia , Feminino , Gânglios Espinais , Humanos , Masculino , Dor Pélvica/terapia , Qualidade de Vida
19.
Chin J Integr Med ; 28(9): 833-839, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35799085

RESUMO

OBJECTIVE: To study the effect of electroacupuncture (EA) on oxaliplatin-induced peripheral neuropathy (OIPN) in rats. METHODS: Male Sprague-Dawley rats were equally divided into 3 groups using a random number table: the control group, the OIPN group, and the EA (OIPN + EA) group, with 10 rats in each. The time courses of mechanical, cold sensitivity, and microcirculation blood flow intensity were determined. The morphology of the dorsal root ganglion (DRG) was observed by electron microscopic examination. The protein levels of nuclear factor E2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), and the transient receptor potential (TRP) protein family in DRGs were assayed by Western blot. RESULTS: EA treatment significantly reduced mechanical allodynia and cold allodynia in OIPN rats (P<0.01). Notably, oxaliplatin treatment resulted in impaired microcirculatory blood flow and pathomorphological defects in DRGs (P<0.01). EA treatment increased the microcirculation blood flow and attenuated the pathological changes induced by oxaliplatin (P<0.01). In addition, the expression levels of Nrf2 and HO-1 were down-regulated, and the TRP protein family was over-expressed in the DRGs of OIPN rats (P<0.01). EA increased the expression levels of Nrf2 and HO-1 and decreased the level of TRP protein family in DRG (P<0.05 or P<0.01). CONCLUSION: EA may be a potential alternative therapy for OIPN, and its mechanism may be mainly mediated by restoring the Nrf2/HO-1 signaling pathway.


Assuntos
Eletroacupuntura , Doenças do Sistema Nervoso Periférico , Animais , Eletroacupuntura/métodos , Hiperalgesia/terapia , Masculino , Microcirculação , Fator 2 Relacionado a NF-E2 , Oxaliplatina/efeitos adversos , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Ratos , Ratos Sprague-Dawley
20.
Iran J Basic Med Sci ; 25(4): 451-459, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35656078

RESUMO

Objectives: Tissue injury in peripheral sites can result in long-term potentiation in nociceptive neurons and surrounding glial cells, potentially resulting in the development of chronic inflammatory pain (CIP). Acupoint injection (AI) is similar to Western phototherapy, which injects solutions at specific sites to mitigate chronic pain. AI has shown greater benefits compared with acupuncture. In this study, we examined the therapeutic effect and explored the underlying mechanisms of AI in mice CIP model. Materials and Methods: We injected thrice complete Freund's adjuvant (CFA) into the mouse's hind paw to induce CIP. Results: We found that, after two weeks, CFA injection significantly induced mechanical and thermal hyperalgesia which were attenuated by AI treatment. Transient receptor potential V1 (TRPV1) channels and associated molecules were all increased in CIP in mice dorsal root ganglion (DRG), spinal cord (SC), thalamus, and somatosensory cortex (SSC). The aforementioned molecules were mitigated in AI and Trpv1 knockout mice. Furthermore, Iba1-positive cells (microglial marker) were also potentiated and shared a similar tendency with TRPV1. Conclusion: These findings suggest that AI can alleviate chronic pain by reducing TRPV1 overexpression in both neuronal and microglial cells. Our results suggest new potential therapeutic targets for AI in chronic pain.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA