Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 267
Filtrar
Mais filtros

Medicinas Complementares
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Control Release ; 370: 168-181, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38643936

RESUMO

The high prevalence and severity of hepatocellular carcinoma (HCC) present a significant menace to human health. Despite the significant advancements in nanotechnology-driven antineoplastic agents, there remains a conspicuous gap in the development of targeted chemotherapeutic agents specifically designed for HCC. Consequently, there is an urgent need to explore potent drug delivery systems for effective HCC treatment. Here we have exploited the interplay between HCC and adipocyte to engineer a hybrid adipocyte-derived exosome platform, serving as a versatile vehicle to specifically target HCC and exsert potent antitumor effect. A lipid-like prodrug of docetaxel (DSTG) with a reactive oxygen species (ROS)-cleavable linker, and a lipid-conjugated photosensitizer (PPLA), spontaneously co-assemble into nanoparticles, functioning as the lipid cores of the hybrid exosomes (HEMPs and NEMPs). These nanoparticles are further encapsuled within adipocyte-derived exosome membranes, enhancing their affinity towards HCC cancer cells. As such, cancer cell uptakes of hybrid exosomes are increased up to 5.73-fold compared to lipid core nanoparticles. Our in vitro and in vivo experiments have demonstrated that HEMPs not only enhance the bioactivity of the prodrug and extend its circulation in the bloodstream but also effectively inhibit tumor growth by selectively targeting hepatocellular carcinoma tumor cells. Self-facilitated synergistic drug release subsequently promoting antitumor efficacy, inducing significant inhibition of tumor growth with minimal side effects. Our findings herald a promising direction for the development of targeted HCC therapeutics.


Assuntos
Adipócitos , Antineoplásicos , Carcinoma Hepatocelular , Docetaxel , Exossomos , Neoplasias Hepáticas , Nanopartículas , Exossomos/metabolismo , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/patologia , Animais , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/patologia , Humanos , Docetaxel/administração & dosagem , Docetaxel/farmacologia , Docetaxel/uso terapêutico , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Adipócitos/efeitos dos fármacos , Nanopartículas/química , Nanopartículas/administração & dosagem , Pró-Fármacos/administração & dosagem , Pró-Fármacos/uso terapêutico , Linhagem Celular Tumoral , Fármacos Fotossensibilizantes/administração & dosagem , Fármacos Fotossensibilizantes/uso terapêutico , Fármacos Fotossensibilizantes/farmacologia , Camundongos Nus , Fototerapia/métodos , Sistemas de Liberação de Medicamentos , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Camundongos Endogâmicos BALB C
2.
Nanotheranostics ; 8(3): 344-379, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38577318

RESUMO

Modern medicine relies on a small number of key biologics, which can be found in nature but require further characterization and purification before they can be used. Since the herbal remedy is given through a dated and ineffective method of drug administration, its effectiveness is diminished. The novel form of medicine delivery has the potential to increase the effectiveness of herbal substances while decreasing their side effects. This is the main idea behind utilising different ways of drug delivery in herbal treatments. Several benefits arise from novel formulations of herbal compounds as compared to their conventional counterparts. These include enhanced penetrating ability into tissues, constant delivery of effective doses, and resistance to physical and chemical degradation. Controlled and targeted delivery that include herbal components allow for more traditional dosing while simultaneously increasing their efficacy. Enhancing the biodistribution and target site accumulation of systemically administered herbal medicines is the goal of nanomedicine formulations. The field of nanotheranostics has made significant advancements in the development of herbal compounds by combining diagnostic and therapeutic functions on a single nanoscale platform. It is critically important to create a theranostic nanoplatform that is derived from plants and is intrinsically "all-in-one" for single molecules. In addition to examining the mechanistic approach to nanoparticle synthesis, this review highlights the therapeutic effects of nanoscale phytochemical delivery systems. Furthermore, we have evaluated the scope for future advancements in this field, discussed several nanoparticles that have been developed recently for herbal imaging, and provided experimental evidence that supports their usage.


Assuntos
Sistemas de Liberação de Medicamentos , Medicina de Precisão , Distribuição Tecidual , Sistemas de Liberação de Medicamentos/métodos , Nanomedicina/métodos , Nanotecnologia
3.
Nanomaterials (Basel) ; 14(6)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38535664

RESUMO

In recent years, nanocarriers have been widely used as an effective solution for oral administration of pharmaceuticals. However, there is still an urgent need to speed up their translation to clinical practice. Cost-effective and industrially scalable methodologies are still needed. Herein, the production of vitamin C-loaded liposomes for nutraceutical purposes has been investigated and optimized by adopting a High-Pressure Homogenizer. Initially, the impact of process parameters on particles size, distributions, and morphology was explored. The findings document that the pressure and cycle manipulation allow for control over liposome size and polydispersity, reaching a maximum encapsulation efficiency exceeding 80%. This significantly improves the storage stability of vitamin C, as demonstrated by monitoring its antioxidant activity. Furthermore, the in vitro simulation of gastrointestinal digestion shows that liposomes could protect the active substance from damage and control its release in the gastrointestinal fluid. Thus, the whole nanodelivery system can contribute to enhancing vitamin C bioavailability. In conclusion, the results indicate that this innovative approach to producing vitamin C liposomes holds promise for clinical translation and industrial scale-up. Indeed, by utilizing food-grade materials and straightforward equipment, it is possible to produce stable and functional liposomes suitable for health products.

4.
J Oleo Sci ; 73(4): 583-591, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38556291

RESUMO

In this study, it is demonstrated that natural microalgae oils, which contain fatty acid components including docosahexaenoic acid (DHA), could be directly applied to fabricate vesicular structures in aqueous phase through a forced formation process. The microalgae oil vesicles had initial average diameters of 170- 230 nm with negative charges apparently caused by dissociation of the fatty acid components. The vesicles possessed excellent stability with lifetimes for at least 450 days. The formation of the vesicular structures with hydrophilic cores/regions was confirmed by the transmission electron microscopy (TEM) image and successful encapsulation of a hydrophilic material. For encapsulation of a hydrophobic material, lutein, the vesicle size was increased probably due to the insertion of lutein into the hydrophobic vesicular bilayer structures. The analysis of Fourier transform infrared (FTIR) spectroscopy suggested that the vesicular bilayer fluidity was decreased by encapsulating lutein. However, the lutein-encapsulating microalgae oil vesicles still possessed high stability and the vesicular structures could maintain intact even at an environmental temperature up to 60℃. Applicability of the microalgae oil vesicles as drug delivery carriers was also demonstrated by successful encapsulation of curcumin. However, when the loaded curcumin was increased to a certain amount, physical stability of the microalgae oil vesicles was significantly reduced. This is probably because the vesicular structures with only limited spaces for accommodating hydrophobic materials were strongly affected by encapsulating a large amount of curcumin. It is interesting to note that by adding egg L-α-phosphatidylcholine, the curcumin encapsulation-induced instability of the microalgae oil vesicles could be alleviated. The results indicated that vesicular structures could be fabricated from microalgae oils and the microalgae oil vesicles were capable of encapsulating hydrophilic or hydrophobic materials for drug delivery applications. The findings lay a background for further dosage form development of nutritional supplements encapsulated by natural microalgae oils.


Assuntos
Curcumina , Microalgas , Microalgas/química , Luteína , Óleos , Portadores de Fármacos/química , Ácidos Docosa-Hexaenoicos
5.
Inflammopharmacology ; 32(3): 1659-1704, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38520574

RESUMO

Curcumol (Cur), a guaiane-type sesquiterpenoid hemiketal, is an important and representative bioactive component extracted from the essential oil of the rhizomes of Curcumae rhizoma which is also known as "Ezhu" in traditional Chinese medicine. Recently, Cur has received considerable attention from the research community due to its favorable pharmacological activities, including anti-cancer, hepatoprotective, anti-inflammatory, anti-viral, anti-convulsant, and other activities, and has also exerted therapeutic effect on various cancers, liver diseases, inflammatory diseases, and infectious diseases. Pharmacokinetic studies have shown that Cur is rapidly distributed in almost all organs of rats after intragastric administration with high concentrations in the small intestine and colon. Several studies focusing on structure-activity relationship (SAR) of Cur have shown that some Cur derivatives, chemically modified at C-8 or C-14, exhibited more potent anti-cancer activity and lower toxicity than Cur itself. This review aims to comprehensively summarize the latest advances in the pharmacological and pharmacokinetic properties of Cur in the last decade with a focus on its anti-cancer and hepatoprotective potentials, as well as the research progress in drug delivery system and potential applications of Cur to date, to provide researchers with the latest information, to highlighted the limitations of relevant research at the current stage and the aspects that should be addressed in future research. Our results indicate that Cur and its derivatives could serve as potential novel agents for the treatment of a variety of diseases, particularly cancer and liver diseases.


Assuntos
Sistemas de Liberação de Medicamentos , Sesquiterpenos , Animais , Sesquiterpenos/farmacologia , Sesquiterpenos/farmacocinética , Sesquiterpenos/administração & dosagem , Humanos , Relação Estrutura-Atividade , Sistemas de Liberação de Medicamentos/métodos , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Antineoplásicos/administração & dosagem
6.
Acta Pharm Sin B ; 14(2): 602-622, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38322345

RESUMO

Calcium-based biomaterials have been intensively studied in the field of drug delivery owing to their excellent biocompatibility and biodegradability. Calcium-based materials can also deliver contrast agents, which can enhance real-time imaging and exert a Ca2+-interfering therapeutic effect. Based on these characteristics, amorphous calcium carbonate (ACC), as a brunch of calcium-based biomaterials, has the potential to become a widely used biomaterial. Highly functional ACC can be either discovered in natural organisms or obtained by chemical synthesis However, the standalone presence of ACC is unstable in vivo. Additives are required to be used as stabilizers or core-shell structures formed by permeable layers or lipids with modified molecules constructed to maintain the stability of ACC until the ACC carrier reaches its destination. ACC has high chemical instability and can produce biocompatible products when exposed to an acidic condition in vivo, such as Ca2+ with an immune-regulating ability and CO2 with an imaging-enhancing ability. Owing to these characteristics, ACC has been studied for self-sacrificing templates of carrier construction, targeted delivery of oncology drugs, immunomodulation, tumor imaging, tissue engineering, and calcium supplementation. Emphasis in this paper has been placed on the origin, structural features, and multiple applications of ACC. Meanwhile, ACC faces many challenges in clinical translation, and long-term basic research is required to overcome these challenges. We hope that this study will contribute to future innovative research on ACC.

7.
Curr Diabetes Rev ; 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38299420

RESUMO

The utilization of nanotechnology-based herbal medication delivery systems is gaining attention as a novel approach to treating diabetes mellitus. The incorporation of nanotechnology into herbal medicine provides benefits such as enhanced Stability, solubility, and bioavailability of herbal medications. The purpose of this paper is to summarise the present status of research on herbal medicine delivery systems based on nanotechnology for the treatment of diabetic patients. The paper evaluates the various nanocarriers and herbal drugs used, the challenges and opportunities in the development of these systems, and their potential efficacy and safety. Additionally, the paper highlights the need for further research to optimize the formulation and delivery of these systems. This review's overarching objective is to provide a complete understanding of the possibilities of herbal medication delivery systems based on nanotechnology in diabetes mellitus treatment.

8.
Curr Drug Deliv ; 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38409707

RESUMO

The utilization of novel drug delivery systems loaded with essential oils has gained significant attention as a promising approach for biomedical applications in recent years. Plants possess essential oils that exhibit various medicinal properties, i.e., anti-oxidant, anti-microbial, anti- inflammatory, anti-cancer, immunomodulatory, etc., due to the presence of various phytoconstituents, including terpenes, phenols, aldehydes, ketones, alcohols, and esters. An understanding of conventional and advanced extraction techniques of Essential Oils (EOs) from several plant sources is further required before considering or loading EOs into drug delivery systems. Therefore, this article summarizes the various extraction techniques of EOs and their existing limitations. The in-built biological applications of EOs are of prerequisite importance for treating several diseases. Thus, the mechanisms of action of EOs for anti-inflammatory, anti-oxidant, anti-bacterial activities, etc., have been further explored in this article. The encapsulation of essential oils in micro or nanometric systems is an intriguing technique to render adequate stability to the thermosensitive compounds and shield them against environmental factors that might cause chemical degradation. Thus, the article further summarizes the advanced drug delivery approaches loaded with EOs and current challenges in the future outlook of EOs for biomedical applications.

9.
Biomed Pharmacother ; 173: 116330, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38422656

RESUMO

Traditional Chinese medicine polysaccharides (TCMPs) have gained increasing attention in the field of nanomedicine due to their diverse biological activities and favorable characteristics as drug carriers, including biocompatibility, biodegradability, safety, and ease of modification. TCMPs-based nano-drug delivery systems (NDDSs) offer several advantages, such as evasion of reticuloendothelial system (RES) phagocytosis, protection against biomolecule degradation, enhanced drug bioavailability, and potent therapeutic effects. Therefore, a comprehensive review of the latest developments in TCMPs-based NDDSs and their applications in disease therapy is of great significance. This review provides an overview of the structural characteristics and biological activities of TCMPs relevant to carrier design, the strategies employed for constructing TCMPs-based NDDSs, and the versatile role of TCMPs in these systems. Additionally, current challenges and future prospects of TCMPs in NDDSs are discussed, aiming to provide valuable insights for future research and clinical translation.


Assuntos
Medicina Tradicional Chinesa , Sistemas de Liberação de Fármacos por Nanopartículas , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Polissacarídeos/química
10.
Sci Rep ; 14(1): 4689, 2024 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-38409460

RESUMO

Antimicrobial resistance is a worldwide health problem that demands alternative antibacterial strategies. Modified nano-composites can be an effective strategy as compared to traditional medicine. The current study was designed to develop a biocompatible nano-drug delivery system with increased efficacy of current therapeutics for biomedical applications. Zinc oxide nanoparticles (ZnO-NPs) were synthesized by chemical and green methods by mediating with Moringa olifera root extract. The ZnO-NPs were further modified by drug conjugation and coating with PEG (CIP-PEG-ZnO-NPs) to enhance their therapeutic potential. PEGylated ZnO-ciprofloxacin nano-conjugates were characterized by Fourier Transform Infrared spectroscopy, X-ray diffractometry, and Scanning Electron Microscopy. During antibacterial screenings chemically and green synthesized CIP-PEG-ZnO-NPs revealed significant activity against clinically isolated Gram-positive and Gram-negative bacterial strains. The sustainable and prolonged release of antibiotics was noted from the CIP-PEG conjugated ZnO-NPs. The synthesized nanoparticles were found compatible with RBCs and Baby hamster kidney cell lines (BHK21) during hemolytic and MTT assays respectively. Based on initial findings a broad-spectrum nano-material was developed and tested for biomedical applications that eradicated Staphylococcus aureus from the infectious site and showed wound-healing effects during in vivo applications. ZnO-based nano-drug carrier can offer targeted drug delivery, and improved drug stability and efficacy resulting in better drug penetration.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Óxido de Zinco , Ciprofloxacina/farmacologia , Óxido de Zinco/química , Nanopartículas Metálicas/química , Antibacterianos/farmacologia , Antibacterianos/química , Nanopartículas/química , Microscopia Eletrônica de Varredura , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Espectroscopia de Infravermelho com Transformada de Fourier , Testes de Sensibilidade Microbiana
11.
J Drug Target ; 32(3): 311-324, 2024 12.
Artigo em Inglês | MEDLINE | ID: mdl-38269853

RESUMO

The boom in cancer immunotherapy has provided many patients with a better chance of survival, but opportunities often come with challenges. Single immunotherapy is not good enough to eradicate tumours, and often fails to achieve the desired therapeutic effect because of the low targeting of immunotherapy drugs, and causes more side effects. As a solution to this problem, researchers have developed several nano Drug Delivery Systems (NDDS) to deliver immunotherapeutic agents to achieve good therapeutic outcomes. However, traditional drug delivery systems (DDS) have disadvantages such as poor bioavailability, high cytotoxicity, and difficulty in synthesis, etc. Herbal Polysaccharides (HPS), derived from natural Chinese herbs, inherently possess low toxicity. Furthermore, the biocompatibility, biodegradability, hydrophilicity, ease of modification, and immunomodulatory activities of HPS offer unique advantages in substituting traditional DDS. This review initially addresses the current developments and challenges in immunotherapy. Subsequently, it focuses on the immunomodulatory mechanisms of HPS and their design as nanomedicines for targeted drug delivery in tumour immunotherapy. Our findings reveal that HPS-based nanomedicines exhibit significant potential in enhancing the efficacy of cancer immunotherapy, providing crucial theoretical foundations and practical guidelines for future clinical applications.


Assuntos
Sistemas de Liberação de Fármacos por Nanopartículas , Neoplasias , Humanos , Sistemas de Liberação de Medicamentos , Imunoterapia , Neoplasias/tratamento farmacológico , Polissacarídeos
12.
Tissue Eng Part B Rev ; 30(2): 230-253, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37897069

RESUMO

Wound healing has been a challenge in the medical field. Tremendous research has been carried out to expedite wound healing by fabricating various formulations, some of which are now commercially available. However, owing to their natural source, people have been attracted to advanced formulations with herbal components. Among various herbs, curcumin has been the center of attraction from ancient times for its healing properties due to its multiple therapeutic effects, including antioxidant, antimicrobial, anti-inflammatory, anticarcinogenic, neuroprotective, and radioprotective properties. However, curcumin has a low water solubility and rapidly degrades into inactive metabolites, which limits its therapeutic efficacy. Henceforth, a carrier system is needed to carry curcumin, guard it against degradation, and keep its bioavailability and effectiveness. Different formulations with curcumin have been synthesized, and exist in the form of various synthetic and natural materials, including nanoparticles, hydrogels, scaffolds, films, fibers, and nanoemulgels, improving its bioavailability dramatically. This review discusses the advances in different types of curcumin-based formulations used in wound healing in recent times, concentrating on its mechanisms of action and discussing the updates on its application at several stages of the wound healing process. Impact statement Curcumin is a herbal compound extracted from turmeric root and has been used since time immemorial for its health benefits including wound healing. In clinical formulations, curcumin shows low bioavailability, which mainly stems from the way it is delivered in the body. Henceforth, a carrier system is needed to carry curcumin, guard it against degradation, while maintaining its bioavailability and therapeutic efficacy. This review offers an overview of the advanced technological interventions through tissue engineering approaches to efficiently utilize curcumin in different types of wound healing applications.


Assuntos
Curcumina , Humanos , Curcumina/farmacologia , Curcumina/uso terapêutico , Disponibilidade Biológica , Cicatrização , Hidrogéis , Solubilidade
13.
J Sep Sci ; 47(1): e2300677, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37994256

RESUMO

Although Qixue Shuangbu Prescription (QSP) is a classic Chinese medicine prescription for treating chronic heart failure. Low bioavailability due to the insolubility and poor biofilm permeability of the main bioactive ingredients of QSP is still a key factor limiting its efficacy. In this study, a novel self-microemulsifying drug delivery system was proposed to effectively improve the bioavailability of QSP. The qualified ultra-high-performance liquid chromatography-tandem mass spectrometry methodology was established to investigate the pharmacokinetics characteristics of the QSP self-microemulsifying drug delivery system. Our results showed that 11 components in the self-microemulsifying drug delivery system group had prolonged T1/2 and MRT0-t values compared with QSP extract. The Cmax of calycosin-7-glucoside (CG), vanillic acid and paeoniflorin increased 2.5 times, 2.4 times and 2.3 times, respectively. The relative bioavailability values of CG, paeoniflorin and ononin were most significantly affected, increasing by 383.2%, 336.5% and 307.1%, respectively. This study promoted the development of new dosage forms of QSP and provided a useful reference for improving dosage forms to solve the problem of low bioavailability of traditional Chinese medicine.


Assuntos
Medicamentos de Ervas Chinesas , Glucosídeos , Monoterpenos , Espectrometria de Massas em Tandem , Animais , Ratos , Administração Oral , Cromatografia Líquida de Alta Pressão/métodos , Medicamentos de Ervas Chinesas/análise , Prescrições , Ratos Sprague-Dawley , Espectrometria de Massas em Tandem/métodos
14.
Phytother Res ; 38(2): 880-911, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38088265

RESUMO

Current pharmaceutical research is energetically excavating the pharmacotherapeutic role of herb-derived ingredients in multiple malignancies' targeting. Luteolin is one of the major phytochemical components that exist in various traditional Chinese medicine or medical herbs. Mounting evidence reveals that this phytoconstituent endows prominent therapeutic actions on diverse malignancies, with the underlying mechanisms, combined medication strategy, and pharmacokinetics elusive. Additionally, the clinical trial and pharmaceutical investigation of luteolin remain to be systematically delineated. The present review aimed to comprehensively summarize the updated information with regard to the anticancer mechanism, combined medication strategies, pharmacokinetics, clinical trials, and pharmaceutical researches of luteolin. The survey corroborates that luteolin executes multiple anticancer effects mainly by dampening proliferation and invasion, spurring apoptosis, intercepting cell cycle, regulating autophagy and immune, inhibiting inflammatory response, inducing ferroptosis, and pyroptosis, as well as epigenetic modification, and so on. Luteolin can be applied in combination with numerous clinical anticarcinogens and natural ingredients to synergistically enhance the therapeutic efficacy of malignancies while reducing adverse reactions. For pharmacokinetics, luteolin has an unfavorable oral bioavailability, it mainly persists in plasma as glucuronides and sulfate-conjugates after being metabolized, and is regarded as potent inhibitors of OATP1B1 and OATP2B1, which may be messed with the pharmacokinetic interactions of miscellaneous bioactive substances in vivo. Besides, pharmaceutical innovation of luteolin with leading-edge drug delivery systems such as host-guest complexes, nanoparticles, liposomes, nanoemulsion, microspheres, and hydrogels are beneficial to the exploitation of luteolin-based products. Moreover, some registered clinical trials on luteolin are being carried out, yet clinical research on anticancer effects should be continuously promoted.


Assuntos
Flavonas , Neoplasias , Humanos , Luteolina/farmacologia , Luteolina/uso terapêutico , Preparações Farmacêuticas , Flavonas/farmacologia , Flavonas/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Disponibilidade Biológica
15.
Drug Deliv ; 31(1): 2296349, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38130151

RESUMO

Pain management remains among the most common and largely unmet clinical problems today. Local anesthetics play an indispensable role in pain management. The main limitation of traditional local anesthetics is the limited duration of a single injection. To address this problem, catheters are often placed or combined with other drugs in clinical practice to increase the time that local anesthetics act. However, this method does not meet the needs of clinical analgesics. Therefore, many researchers have worked to develop local anesthetic extended-release types that can be administered in a single dose. In recent years, drug extended-release systems have emerged dramatically due to their long duration and efficacy, providing more possibilities for the application of local anesthetics. This paper summarizes the types of local anesthetic drug delivery systems and their clinical applications, discusses them in the context of relevant studies on local anesthetics, and provides a summary and outlook on the development of local anesthetic extended-release agents.


Assuntos
Anestésicos Locais , Manejo da Dor , Anestesia Local , Analgésicos , Sistemas de Liberação de Medicamentos
16.
Artigo em Chinês | WPRIM | ID: wpr-1006284

RESUMO

Chinese materia medica has a wide range of clinical applications, but it has many active ingredients with different physicochemical properties, and the target organs, action pathways and mechanisms for different ingredients to exert their efficacy are not the same. Therefore, it is difficult to design and develop a co-delivery system loading multiple components of Chinese materia medica to maximize the synergistic therapeutic efficiency. Based on the characteristics of effectiveness and functionality of active ingredients, the strategies for multi-component co-delivery of Chinese materia medica can be categorized into two types:firstly, based on the effectiveness of active ingredients, new carriers such as liposomes, nanoparticles can be constructed to load multi-components of Chinese materia medica. secondly, based on the functionality of some active ingredients of Chinese materia medica, they are employed in the construction of co-delivery system, which can give play to the dual characteristics of their own efficacy and preparation functions. In this paper, we summarized the relevant research progress of the above two types of multi-component co-delivery strategies, and mainly discussed the pharmaceutical functions of the active ingredients in co-delivery systems, in order to find a more suitable multi-component co-delivery strategy, promoting the design and development of new delivery systems of Chinese materia medica.

17.
Curr Issues Mol Biol ; 45(12): 9985-10017, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38132470

RESUMO

Medicinal plants have been utilized to treat a variety of conditions on account of the bioactive properties that they contain. Most bioactive constituents from plants are of limited effectiveness, due to poor solubility, limited permeability, first-pass metabolism, efflux transporters, chemical instability, and food-drug interactions However, when combined with vesicular drug delivery systems (VDDS), herbal medicines can be delivered at a predetermined rate and can exhibit site-specific action. Vesicular drug delivery systems are novel pharmaceutical formulations that make use of vesicles as a means of encapsulating and transporting drugs to various locations within the body; they are a cutting-edge method of medication delivery that combats the drawbacks of conventional drug delivery methods. Drug delivery systems offer promising strategies to overcome the bioavailability limitations of bioactive phytochemicals. By improving their solubility, protecting them from degradation, enabling targeted delivery, and facilitating controlled release, drug delivery systems can enhance the therapeutic efficacy of phytochemicals and unlock their full potential in various health conditions. This review explores and collates the application of plant-based VDDS with the potential to exhibit protective effects against lung function loss in the interest of innovative and effective treatment and management of respiratory illnesses.

18.
ACS Appl Bio Mater ; 6(12): 5502-5514, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38016693

RESUMO

Natural photosensitizers, such as curcumin or parietin, play a vital role in photodynamic therapy (PDT), causing a light-mediated reaction that kills cancer cells. PDT is a promising treatment option for glioblastoma, especially when combined with nanoscale drug delivery systems. The curcumin- or parietin-loaded lipid nanoparticles were prepared via dual asymmetric centrifugation and subsequently characterized through physicochemical analyses including dynamic light scattering, laser Doppler velocimetry, and atomic force microscopy. The combination of PDT and lipid nanoparticles has been evaluated in vitro regarding uptake, safety, and efficacy. The extensive and well-vascularized chorioallantois membrane (CAM) of fertilized hen's eggs offers an optimal platform for three-dimensional cell culture, which has been used in this study to evaluate the photodynamic efficacy of lipid nanoparticles against glioblastoma cells. In contrast to other animal models, the CAM model lacks a mature immune system in an early stage, facilitating the growth of xenografts without rejection. Treatment of xenografted U87 glioblastoma cells on CAM was performed to assess the effects on tumor viability, growth, and angiogenesis. The xenografts and the surrounding blood vessels were targeted through topical application, and the effects of photodynamic therapy have been confirmed microscopically and via positron emission tomography and X-ray computed tomography. Finally, the excised xenografts embedded in the CAM were analyzed histologically by hematoxylin and eosin and KI67 staining.


Assuntos
Curcumina , Glioblastoma , Fotoquimioterapia , Humanos , Animais , Feminino , Fotoquimioterapia/métodos , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Curcumina/farmacologia , Curcumina/uso terapêutico , Galinhas , Linhagem Celular Tumoral
19.
Materials (Basel) ; 16(19)2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37834674

RESUMO

Recently, rare diseases have received attention due to the need for improvement in diagnosed patients' and their families' lives. Duchenne muscular dystrophy (DMD) is a rare, severe, progressive, muscle-wasting disease. Today, the therapeutic standard for treating DMD is corticosteroids, which cause serious adverse side effects. Nutraceuticals, e.g., herbal extracts or essential oils (EOs), are possible active substances to develop new drug delivery systems to improve DMD patients' lives. New drug delivery systems lead to new drug effects, improved safety and accuracy, and new therapies for rare diseases. Herbal extracts and EOs combined with click chemistry can lead to the development of safer treatments for DMD. In this review, we focus on the need for novel drug delivery systems using EOs as the therapy for DMD and the potential use of click chemistry for drug delivery systems. New EO complex drug delivery systems may offer a new approach for improving muscle conditions and mental health issues associated with DMD. However, further research should identify the potential of these systems in the context of DMD. In this review, we discuss possibilities for applying EOs to DMD before implementing expensive research in a theoretical way.

20.
J Nanobiotechnology ; 21(1): 391, 2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37884969

RESUMO

Depression is a severe mental disorder among public health issues. Researchers in the field of mental health and clinical psychiatrists have long been faced with difficulties in slow treatment cycles, high recurrence rates, and lagging efficacy. These obstacles have forced us to seek more advanced and effective treatments. Research has shown that novel drug delivery strategies for natural medicinal plants can effectively improve the utilization efficiency of the active molecules in these plants and therefore improve their efficacy. Currently, with the development of treatment technologies and the constant updating of novel drug delivery strategies, the addition of natural medicinal antidepressant therapy has given new significance to the study of depression treatment against the background of novel drug delivery systems. Based on this, this review comprehensively evaluates and analyses the research progress in novel drug delivery systems, including nanodrug delivery technology, in intervention research strategies for neurological diseases from the perspective of natural medicines for depression treatment. This provided a new theoretical foundation for the development and application of novel drug delivery strategies and drug delivery technologies in basic and clinical drug research fields.


Assuntos
Plantas Medicinais , Humanos , Sistemas de Liberação de Medicamentos , Antidepressivos/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA