Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Food Drug Anal ; 27(1): 154-163, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30648568

RESUMO

Edible bird's nest (EBN) is a well-known and precious traditional Chinese herbal material (CHM). Because of this, preventing the adulteration of EBN efficiently and precisely is crucial to protect consumers' interests and health. In this study, a loop-mediated isothermal amplification (LAMP) assay was developed for the detection of EBN using specifically designed LAMP primers. The results demonstrated that the identification of EBN by LAMP assay was specific and rapid (within 1 h). It had no cross-reaction with EBN adulterants, including white fungus, egg white and pig skin, in different ratios. The relative detection limit was 0.01% EBN in the adulterants. Moreover, the sensitivity of LAMP in authenticating EBN was 10-8 µg, it showed higher sensitivity than that of conventional PCR with 105 fold. When genomic DNAs extracted from boiled or steamed EBN samples were used as templates, LAMP for EBN detection was not affected and was reproducible after heat processing. In conclusion, the LAMP assay established herein could be applicable for authenticating EBN and for identifying commercial EBN products in herbal markets.


Assuntos
Aves/genética , Análise de Alimentos/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , Animais , Aves/metabolismo , Primers do DNA/genética
2.
BMC Complement Altern Med ; 17(1): 22, 2017 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-28056926

RESUMO

BACKGROUND: Edible Bird's Nest (EBN) as a popular traditional Chinese medicine is believed to have health enhancing and antiviral activities against influenza A virus (IAV); however, the molecular mechanism behind therapeutic effects of EBN is not well characterized. METHODS: In this study, EBNs that underwent different enzymatic preparation were tested against IAV infected cells. 50% cytotoxic concentration (CC50) and 50% inhibitory concentration (IC50) of the EBNs against IAV strain A/Puerto Rico/8/1934(H1N1) were determined by HA and MTT assays. Subsequently, the sialic acid content of the used EBNs were analyzed by fluorometric HPLC. Western Blotting and immunofluorescent staining were used to investigate the effects of EBNs on early endosomal trafficking and autophagy process of influenza virus. RESULTS: This study showed that post inoculations of EBNs after enzymatic preparations have the highest efficacy to inhibit IAV. While CC50 of the tested EBNs ranged from 27.5-32 mg/ml, the IC50 of these compounds ranged between 2.5-4.9 mg/ml. EBNs could inhibit IAV as efficient as commercial antiviral agents, such as amantadine and oseltamivir with different mechanisms of action against IAV. The antiviral activity of these EBNs correlated with the content of N-acetyl neuraminic acid. EBNs could affect early endosomal trafficking of the virus by reducing Rab5 and RhoA GTPase proteins and also reoriented actin cytoskeleton of IAV infected cells. In addition, for the first time this study showed that EBNs can inhibit intracellular autophagy process of IAV life cycle as evidenced by reduction of LC3-II and increasing of lysosomal degradation. CONCLUSIONS: The results procured in this study support the potential of EBNs as supplementary medication or alternative to antiviral agents to inhibit influenza infections. Evidently, EBNs can be a promising antiviral agent; however, these natural compounds should be screened for their metabolites prior to usage as therapeutic approach.


Assuntos
Antivirais/farmacologia , Fatores Biológicos/farmacologia , Aves , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Vírus da Influenza A/efeitos dos fármacos , Influenza Humana/virologia , Citoesqueleto de Actina/efeitos dos fármacos , Citoesqueleto de Actina/metabolismo , Animais , Antivirais/análise , Antivirais/metabolismo , Fatores Biológicos/análise , Fatores Biológicos/metabolismo , Aves/metabolismo , Humanos , Vírus da Influenza A Subtipo H1N1/fisiologia , Vírus da Influenza A/fisiologia , Influenza Humana/metabolismo , Proteínas rab5 de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo
3.
J Ethnopharmacol ; 185: 327-40, 2016 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-26976767

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: For centuries, Edible Bird Nest (EBN) has been used in treatment of variety of respiratory diseases such as flu and cough as a Chinese natural medicine. AIM OF THE STUDY: This natural remedy showed the potential to inhibit influenza A virus (IAV). However, little is known about the mechanism of this process and also the evaluation of this product in an animal model. Hence, the current study was designed to elucidate the antiviral and immunomodulatory effects of EBN against IAV strain A/Puerto Rico/8/1934 (H1N1). MATERIALS AND METHODS: First, influenza infected MDCK cells treated with EBNs from two locations of Malaysia (Teluk Intan and Gua Madai) that prepared with different enzymatic preparations were analyzed by RT-qPCR and ELISA for detection of viral and cytokines genes. The sialic acid composition of these EBNs was evaluated by H-NMR. Subsequently, after toxicity evaluation of EBN from Teluk Intan, antiviral and immunomodulatory effects of this natural product was evaluated in BALB/c mice by analysis of the viral NA gene and cytokine expressions in the first week of the infection. RESULTS: EBN showed high neuraminidase inhibitory properties in both in vitro and in vivo, which was as effective as Oseltamivir phosphate. In addition, EBN decreased NS1 copy number (p<0.05) of the virus along with high immunomodulatory effects against IAV. Some of the immune changes during treatment of IAV with EBN included significant increase in IFNγ, TNFα, NFκB, IL2, some proinflammatory cytokines like IL1ß, IL6, and cytokines with regulatory properties like IL10, IL27, IL12, CCL2 and IL4 depends on the stage of the infection. EBNs from two locations contained different composition of sialic acid and thymol derivatives, which gave them different antiviral properties. EBN from Gua Madai that contained more acetylated sialic acid (Neu2,4,7,8,9 Ac6) showed higher antiviral activity. CONCLUSION: The findings of this study support the antiviral activity of EBN against influenza virus and validate the traditional usage of this natural remedy by elucidation of toxicity and the molecular mechanism of action.


Assuntos
Antivirais/farmacologia , Fatores Imunológicos/uso terapêutico , Vírus da Influenza A Subtipo H1N1 , Infecções por Orthomyxoviridae/tratamento farmacológico , Animais , Antivirais/administração & dosagem , Aves/metabolismo , Citocinas/genética , Citocinas/metabolismo , Flavonoides/química , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Infecções por Orthomyxoviridae/virologia , Saliva/metabolismo , Ácidos Siálicos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA