RESUMO
Long-term consumption of mixed fraudulent edible oils increases the risk of developing of chronic diseases which has been a threat to the public health globally. The complicated global supply-chain is making the industry malpractices had often gone undetected. In order to restore the confidence of consumers, traceability (and accountability) of every level in the supply chain is vital. In this work, we shown that machine learning (ML) assisted windowed spectroscopy (e.g., visible-band, infra-red band) produces high-throughput, non-destructive, and label-free authentication of edible oils (e.g., olive oils, sunflower oils), offers the feasibility for rapid analysis of large-scale industrial screening. We report achieving high-level of discriminant (AUC > 0.96) in the large-scale (n ≈ 11,500) of adulteration in olive oils. Notably, high clustering fidelity of 'spectral fingerprints' achieved created opportunity for (hypothesis-free) self-sustaining large database compilation which was never possible without machine learning. (137 words).
Assuntos
Contaminação de Alimentos , Óleos de Plantas , Óleos de Plantas/química , Azeite de Oliva/química , Óleo de Girassol , Análise Espectral , Contaminação de Alimentos/análiseRESUMO
BACKGROUND: Food adulteration has long been considered a major problem. It compromises the quality, safety, and nutritional value of food, posing significant risks to public health. Novel techniques are required to control it. RESULTS: A graphene-based T-shaped monopole antenna sensor was tested for its ability to detect adulteration in liquid foods. Mustard oil was the pure reference sample used for product quality analysis. Olive oil and rice bran oil were adulterants added to the pure sample. It was found that the sensor could be immersed easily in the liquid sample and provided precise results. CONCLUSION: The graphene-based T-shaped monopole antenna sensor can be used for the quality assessment of liquid food products and is suitable for real-time monitoring. © 2024 Society of Chemical Industry.
Assuntos
Grafite , Azeite de Oliva/análise , Contaminação de Alimentos/análise , Óleo de Farelo de Arroz/análiseRESUMO
In our rapidly changing world, where consumers' expectations for healthy food are on the rise, the edible oil content in packaged foods has become a central focus. Among various types of oils, palm oil is often regarded as one of the most contentious. This research study aimed to identify the types of fats present in packaged food products in Türkiye and examined the reasons for their utilization. A total of 1380 packaged food items, classified into 11 categories, were scrutinized, and the types of oils within their ingredients were classified using principal component analysis and hierarchical cluster analysis. The study's results have determined that among packaged food products available in Türkiye, 50.1% contain palm oil, 30.4% contain sunflower oil, 16.4% contain canola oil, 14.9% contain cottonseed oil, 17.9% contain cocoa oil, and 12.6% contain coconut oil. In particular, it was determined that palm oil was used in 91% of bakery products, 81% of margarine and shortening products, and 71.3% of ice creams. Consequently, the data obtained in the context of ongoing debates regarding the fat content in packaged foods, especially concerning palm oil usage, will make a valuable contribution to the literature.
Assuntos
Margarina , Óleos de Plantas , Óleo de Palmeira , Análise de Componente Principal , Turquia , Óleo de CocoRESUMO
Heating edible oils generates aldehydes, potentially leading to adverse health effects, making their analysis essential for quality control. This study presents a convenient miniaturized kapok fiber-supported liquid-phase extraction/in-situ derivatization method for the simultaneous extraction and derivatization of aldehydes in oils. The method involves placing 150 mg oil into a 1 mL pipette tip packed with 25 mg kapok fiber, adding 150 µL ACN with 1.5 mg mL-1 DNPH, and post 30-minute static extraction, retrieving the extractant with a pipettor for liquid chromatography-tandem mass spectrometry analysis. By optimizing critical parameters through a Box-Behnken design, the method exhibits good linearity (1-500 ng g-1, R2 ≥ 0.991), low detection limits (0.2-1.0 ng g-1), excellent accuracy (95.3-107.1%) and high precisions (relative standard deviation < 7.9%). This method simplifies sample preparation processes, cuts solvent use, and facilitates automation. It effectively identifies ten aldehyde variations in six heated oils, displaying distinct profiles consistent with prior research.
Assuntos
Aldeídos , Espectrometria de Massas em Tandem , Espectrometria de Massas em Tandem/métodos , Aldeídos/análise , Cromatografia Líquida , Extração Líquido-Líquido/métodos , Óleos de Plantas/química , Cromatografia Líquida de Alta Pressão/métodosRESUMO
With population and economic development increasing worldwide, the public is increasingly concerned with the health benefits and nutritional properties of vegetable oils (VOs). In this review, the chemical composition and health-promoting benefits of 39 kinds of VOs were selected and summarized using Web of Science TM as the main bibliographic databases. The characteristic chemical compositions were analyzed from fatty acid composition, tocols, phytosterols, squalene, carotenoids, phenolics, and phospholipids. Health benefits including antioxidant activity, prevention of cardiovascular disease (CVD), anti-inflammatory, anti-obesity, anti-cancer, diabetes treatment, and kidney and liver protection were examined according to the key components in representative VOs. Every type of vegetable oil has shown its own unique chemical composition with significant variation in each key component and thereby illustrated their own specific advantages and health effects. Therefore, different types of VOs can be selected to meet individual needs accordingly. For example, to prevent CVD, more unsaturated fatty acids and phytosterols should be supplied by consuming pomegranate seed oil, flaxseed oil, or rice bran oil, while coconut oil or perilla seed oil have higher contents of total phenolics and might be better choices for diabetics. Several oils such as olive oil, corn oil, cress oil, and rice bran oil were recommended for their abundant nutritional ingredients, but the intake of only one type of vegetable oil might have drawbacks. This review increases the comprehensive understanding of the correlation between health effects and the characteristic composition of VOs, and provides future trends towards their utilization for the general public's nutrition, balanced diet, and as a reference for disease prevention. Nevertheless, some VOs are in the early stages of research and lack enough reliable data and long-term or large consumption information of the effect on the human body, therefore further investigations will be needed for their health benefits.
Assuntos
Doenças Cardiovasculares , Óleos de Plantas , Humanos , Óleo de Farelo de Arroz , Óleo de Milho , Óleo de Coco , Doenças Cardiovasculares/prevenção & controleRESUMO
The rising concern about the presence of 3-monochloropropane 1,2 diol ester (3-MCPDE) and glycidyl ester (GE) in food has prompted much research to be conducted. Some process modifications and the use of specific chemicals have been employed to mitigate both 3-MCPDE and GE. Alkalisation using NaOH, KOH, alkali metals or alkaline earth metals and post sparging with steam or ethanol and short path distillation have shown simultaneous mitigation of 51-91% in 3-MCPDE and of 13-99% in GE, both contaminants achieved below 1000 µg/kg. Some of the mitigation methods have resulted in undesirable deterioration in other parameters of the refined oil. When the processed oil is used in food processing, it results in changes to 3-MCPDE and GE. Repeated deep frying above 170 °C in the presence of NaCl and baking at 200 °C with flavouring (dried garlic and onion), resulted in increased 3-MCPDE. Repeated frying in the presence of antioxidants (TBHQ, rosemary and phenolics) decreased 3-MCPDE in processed food. The GE content in foods tends to decline with time, indicating instability of GE's epoxide ring.
Assuntos
Ésteres , alfa-Cloridrina , Óleo de Palmeira/química , Ésteres/análise , Manipulação de Alimentos/métodos , alfa-Cloridrina/análise , Óleos de Plantas/químicaRESUMO
In the process of production, processing, transportation, and storage of edible oils, the oils inevitably come into contact with plastic products. As a result, plasticizers migrate into edible oils, are harmful to human health, and can exhibit reproductive toxicity. Therefore, the determination of plasticizers in edible oils is very important, and a series of sample preparation methods and determination techniques have been developed for the determination of plasticizers in edible oils. Phthalic acid ester (PAE) plasticizers are the most widely used among all plasticizers. This review aims to provide a comprehensive overview of the sample preparation methods and detection techniques reported for the determination of PAEs in edible oils since 2010, focusing on sample preparation methods of edible oils combined with various separation-based analytical techniques, such as gas chromatography (GC) and liquid chromatography (LC) with different detectors. Furthermore, the advantages, disadvantages, and limitations of these techniques as well as the prospective future developments are also discussed.
Assuntos
Ácidos Ftálicos , Plastificantes , Humanos , Plastificantes/análise , Ácidos Ftálicos/análise , Óleos de Plantas/química , Ésteres/análiseRESUMO
Food quality assurance is an important field that directly affects public health. The organoleptic aroma of food is of crucial significance to evaluate and confirm food quality and origin. The volatile organic compound (VOC) emissions (detectable aroma) from foods are unique and provide a basis to predict and evaluate food quality. Soybean and corn oils were added to sesame oil (to simulate adulteration) at four different mixture percentages (25-100%) and then chemically analyzed using an experimental 9-sensor metal oxide semiconducting (MOS) electronic nose (e-nose) and gas chromatography-mass spectroscopy (GC-MS) for comparisons in detecting unadulterated sesame oil controls. GC-MS analysis revealed eleven major VOC components identified within 82-91% of oil samples. Principle component analysis (PCA) and linear detection analysis (LDA) were employed to visualize different levels of adulteration detected by the e-nose. Artificial neural networks (ANNs) and support vector machines (SVMs) were also used for statistical modeling. The sensitivity and specificity obtained for SVM were 0.987 and 0.977, respectively, while these values for the ANN method were 0.949 and 0.953, respectively. E-nose-based technology is a quick and effective method for the detection of sesame oil adulteration due to its simplicity (ease of application), rapid analysis, and accuracy. GC-MS data provided corroborative chemical evidence to show differences in volatile emissions from virgin and adulterated sesame oil samples and the precise VOCs explaining differences in e-nose signature patterns derived from each sample type.
Assuntos
Óleo de Gergelim , Compostos Orgânicos Voláteis , Óleo de Gergelim/análise , Óleo de Gergelim/química , Cromatografia Gasosa-Espectrometria de Massas/métodos , Compostos Orgânicos Voláteis/análise , Nariz Eletrônico , Redes Neurais de ComputaçãoRESUMO
Since lipid oxidation often causes serious food safety issues worldwide, determination of oil's oxidative deterioration becomes quite significant, which still calls for efficient analytical methods. In this work, high-pressure photoionization time-of-flight mass spectrometry (HPPI-TOFMS) was firstly introduced for rapid detection of oxidative deterioration in edible oils. Through non-targeted qualitative analysis, oxidized oils with various oxidation levels were successfully discriminated for the first time by coupling HPPI-TOFMS with the orthogonal partial least squares discriminant analysis (OPLS-DA). Furthermore, by targeted interpretation of the HPPI-TOFMS mass spectra and the subsequent regression analysis (signal intensities vs TOTOX values), good linear correlations were observed for several predominant VOCs. Those specific VOCs were promising oxidation indicators, which would play important roles as TOTOX to judge the oxidation states of tested samples. The proposed HPPI-TOFMS methodology can be used as an innovative tool for accurate and effective assessment of lipid oxidation in edible oils.
Assuntos
Alimentos , Óleos , Espectrometria de Massas , Estresse Oxidativo , Óleos de Plantas/químicaRESUMO
Standard approaches to determining the total polar compounds (TPC) content in frying oils such as the chromatographic techniques are slow, bulky, and expensive. This paper presents the electrochemical analysis of 6 types of frying oils inclusive of 52 frying timepoints, without sample preparation. This is achieved via impedance spectroscopy to capture sample-specific electrical polarization states. To the best of our knowledge, this is a first-of-its-kind comprehensive study of various types of frying oils, with progressively increasing frying timepoints for each type. The principal component analysis distinguishes the frying timepoints well for all oil types. TPC prediction follows, involving supervised machine learning with sample-wise leave-one-out implementation. The R2 values and mean absolute errors across the test samples measure 0.93-0.97 and 0.43-1.19 respectively. This work serves as a reference for electrochemical analysis of frying oils, with the potential for portable TPC predictors for rapid accurate screening of frying oils.
Assuntos
Temperatura Alta , Óleos de Plantas , Óleos de Plantas/análise , Aprendizado de Máquina , CulináriaRESUMO
Oilseeds are sources of not only major compounds such as oil and meal but also of bioactive compounds. Their conventional extraction is related to long extraction time, large non-renewable solvent consumption, high temperature, and therefore, high energy consumption. Ultrasound-assisted extraction (UAE) has emerged as a new and green technology, which can accelerate and/or improve the extraction process of these compounds. Moreover, the possibility of using renewable solvents in the UAE enhances its application and allows obtaining both extracted and remaining products more compatible with current human consumption requirements. This article examines the mechanisms, concepts, and factors that impact oilseeds' UAE with an emphasis on the extraction yield and quality of oil, meal, and bioactive compounds. Furthermore, the effects of combining UAE with other technologies are addressed. Gaps detected in the analyzed literature about oilseed treatment and quality and properties of products, in addition to perspectives about their uses as food ingredients, are also included. Moreover, it highlights the need for increasing research on process scalability, on environmental and economic impacts of the whole process, and on the phenomenological description about the effect of process variables on extraction performances, which will be a key tool for process design, optimization, and control. Understanding ultrasound processing techniques for the extraction of different compounds from oilseeds will serve as useful information for fats and oils and meal scientists in academia and industry to explore the possibility of employing this sustainable approach during the extraction treatment of various crops.
Assuntos
Ingredientes de Alimentos , Humanos , Solventes , Óleos de Plantas , Produtos AgrícolasRESUMO
Distinguishing oil samples from each other is challenging but it is crucial for ensuring food quality, and for detecting and preventing the possible adulteration of these products. Lipidomic profiling is believed to provide sufficient information to get fit-to-purpose confidence of oil identification as well as to deliver oil-specific lipid features which could be used as targets for routine authenticity testing of camelina, flax, and hemp oil in food control laboratories. Conducted di- and triacylglycerol profiling by LC/Q-TOFMS yielded successful differentiation of the oils. A marker panel consisting of 27 lipids (both DAGs and TAGs) useful for quality verification and authenticity assurance of the oils was established. Moreover, sunflower, rapeseed, and soybean oils were analysed as potential adulterants. We identified 6 lipid markers (DAGs 34:6, 35:2, 40:1, 40:2, 42:2, and TAG 63:1) which can be used for revealing the adulteration of camelina, hemp, and flax seed oils with these oils.
Assuntos
Lipidômica , Óleos de Plantas , Óleos de Plantas/análise , Óleo de Soja/análise , Qualidade dos AlimentosRESUMO
Fourier-Transform mid-infrared (FTIR) spectroscopy offers a strong candidate screening tool for rapid, non-destructive and early detection of unauthorized virgin olive oil blends with other edible oils. Potential applications to the official anti-fraud control are supported by dozens of research articles with a "proof-of-concept" study approach through different chemometric workflows for comprehensive spectral analysis. It may also assist non-targeted authenticity testing, an emerging goal for modern food fraud inspection systems. Hence, FTIR-based methods need to be standardized and validated to be accepted by the olive industry and official regulators. Thus far, several literature reviews evaluated the competence of FTIR standalone or compared with other vibrational techniques only in view of the chemometric methodology, regardless of the inherent characteristics of the product spectra or the application scope. Regarding authenticity testing, every step of the methodology workflow, and not only the post-acquisition steps, need thorough validation. In this context, the present review investigates the progress in the research methodology on FTIR-based detection of virgin olive oil adulteration over a period of more than 25 years with the aim to capture the trends, identify gaps or misuses in the existing literature and highlight intriguing topics for future studies. An extensive search in Scopus, Web of Science and Google Scholar, combined with bibliometric analysis, helped to extract qualitative and quantitative information from publication sources. Our findings verified that intercomparison of literature results is often impossible; sampling design, FTIR spectral acquisition and performance evaluation are critical methodological issues that need more specific guidance and criteria for application to product authenticity testing.
Assuntos
Olea , Projetos de Pesquisa , Azeite de Oliva/análise , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Quimiometria , Óleos de Plantas/química , Contaminação de Alimentos/análiseRESUMO
Insect oil is a valuable fraction that is obtained from insect processing. The aim of this study is to evaluate the impact of yellow mealworm oil (YMW) oil (crude, deodorized, and blended with vegetable oil) on the sensory evaluation and aroma profile of fried dough. The sensory evaluation was performed in a sensory lab (central location test, CLT) and at home in order to examine how the evaluation environment or context impacts consumer perceptions. The strongest liking and preference were found for the donuts that were fried in 100% deodorized YMW oil and in YMW oil blended with vegetable oil. The evaluation environment did not affect overall liking scores but had an impact on sensory profiling, with more discriminating sensory terms observed for the test that was conducted at the sensory lab than for the test that was conducted at home. A distinctive profile of volatile organic compounds (VOCs) was found for every fried dough. The discrimination between VOCs and other frying oils that were observed is well in line with the sensory descriptors and the consumer test results. Acetic acid, acetic acid ethenyl ester, and tetrahydro-6-propyl-2H-Pyran-2-one were present in the doughs that were fried in crude YMW oil and in its blend with vegetable oil. They were absent from deodorized YMW oil and from its blend with vegetable oil. This study shows that, as far as fried donuts are concerned, deodorized YMW oil is an alternative to a vegetable oil-the two lead to similar sensorial experiences and preferences. PRACTICAL APPLICATION: Yellow mealworm oil (YMW) oil is a co-product of insect protein that can be valorized in the food industry. In the present study, it is demonstrated that the deodorization of YMW oil produces positive sensorial experiences and increases consumer acceptance of insect-based food. Furthermore, findings indicate that consumer testing at home yields similar acceptance and preference ratings suggesting that this type of testing may be an alternative means of collecting reliable consumer data.
Assuntos
Tenebrio , Animais , Odorantes , Óleos de Plantas , Alimentos , Percepção , Comportamento do ConsumidorRESUMO
Adulteration of edible substances is a potent contemporary food safety issue. Perhaps the overt concern derives from the fact that adulterants pose serious ill effects on human health. Edible oils are one of the most adulterated food products. Perpetrators are adopting ways and means that effectively masks the presence of the adulterants from human organoleptic limits and traditional oil adulteration detection techniques. This review embodies a detailed account of chemical, biosensors, chromatography, spectroscopy, differential scanning calorimetry, non-thermal plasma, dielectric spectroscopy research carried out in the area of falsification assessment of edible oils for the past three decades and a collection of patented oil adulteration detection techniques. The detection techniques reviewed have some advantages and certain limitations, chemical tests are simple; biosensors and nuclear magnetic resonance are rapid but have a low sensitivity; chromatography and spectroscopy are highly accurate with a deterring price tag; dielectric spectroscopy is rapid can be portable and has on-line compatibility; however, the results are susceptible to variation of electric current frequency and intrinsic factors (moisture, temperature, structural composition). This review paper can be useful for scientists or for knowledge seekers eager to be abreast with edible oil adulteration detection techniques.
Assuntos
Alimentos , Óleos de Plantas , Humanos , Óleos de Plantas/química , Análise Espectral/métodos , Contaminação de Alimentos/análiseRESUMO
Furan fatty acids (FuFAs) have been recognized as beneficial food ingredients to human health. Herein, a targeted quantitation approach by gas chromatography coupled to triple quadrupole tandem mass spectrometry (GC-TQ/MS) was developed for the identification of FuFAs in common marine and other edible oils in multiple reaction monitoring (MRM) mode without any isolation and enrichment. The limit-of-quantitation (LOQ, 0.6 pg) was determined under the optimized parameters in MRM mode. Identification of FuFAs in common edible oils demonstrated that marine fish oils were concentrated sources of 9-(3-methyl-5-pentylfuran-2-yl)nonanoic acid (9M5), 11-(3,4-dimethyl-5-propylfuran-2-yl)undecanoic acid (11D3) and 11-(3,4-dimethyl-5-pentylfuran-2-yl)undecanoic acid (11D5). However, FuFAs were not identified in common plant oils. Additionally, 11D5 was identified in the lipids of Schizochytrium limacinum at a comparable level with that in marine fish oil. We believe that this protocol could facilitate the qualitative and quantitative analysis of FuFAs in food and biological samples.
Assuntos
Óleos de Plantas , Espectrometria de Massas em Tandem , Humanos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Óleos de Plantas/química , Ácidos Graxos/química , Óleos de Peixe/química , Furanos/químicaRESUMO
Persistent organic pollutants, such as polycyclic aromatic hydrocarbons, are hazardous trace contaminants frequently observed in food ingredients, such as edible oils. This study aimed to measure PAHs in forty brands of edible oils marketed in southwest Iran. Additionally, we characterized the daily intake of MOE and ILCR using Monte Carlo simulation. To analyze the content of PAHs, the liquid-liquid extraction method followed by GC-MS was utilized. The average concentration of PAHs was mostly lower than the maximum value for individual PAH (2 µg/Kg); however, the average concentration of fluorene (3.86 µg/Kg) and benzo(a)anthracene (3.13 µg/Kg) was more than the permitted level. The highest residual concentrations of PAHs were mostly observed in canola and corn oils. The daily intake of BaP and 4-PAH for 95% of consumers was 0.01 ng/kg BW/day and 0.04 ng/kg BW/day, respectively. Also, MOE was more than 10,000 for the percentiles of 5%, 50%, and 95%. The modeled ILCR showed that consumption of oil does not currently pose a cancer risk for Iranian consumers due to PAHs exposure. Concerning potential health risks, consumption of edible oils is safe; however, regular monitoring and assessment are required.
Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Irã (Geográfico) , Hidrocarbonetos Policíclicos Aromáticos/análise , Método de Monte Carlo , Óleos de Plantas , Alimentos , Medição de RiscoRESUMO
Ricinine is an important biomarker used for detecting the exposure to castor bean products. The current study describes a highly sensitive and selective spectrofluorimetric approach to determine ricinine in various edible oils. It depends on measuring the native fluorescence of ricinine at 365 nm following excitation at 307 nm over a concentration range of 50.0-1200.0 ng/mL. The method displayed high sensitivity with quantitation and detection limits down to 19.56 and 6.46 ng/mL, respectively. The significant factors affecting the fluorescence of ricinine were optimized using 22 full factorial design. The proposed approach was successfully employed for ricinine determination in three types of edible oils with high percent recoveries and low S.D. values. The most important advantage of the developed method is the reduction of sample preparation steps, analysis time, and cost. Hence, it can be better suited for routine analysis and quality control of cooking oils adulterated with castor oil.
Assuntos
Alcaloides , Espectrometria de Fluorescência , Alcaloides/análise , Piridonas , Óleos de PlantasRESUMO
2-tert-butyl-1,4-benzoquinone (TBBQ) is the major oxidative product of tert-butylhydroquinone which is a widely used antioxidant in edible oils. The biotoxicity of TBBQ is a risk to human health, that the rapid and accurate monitoring of TBBQ is needed. Herein, a specific chromogenic reaction between TBBQ and polyethyleneimine (PEI) could generate adducts with maximum absorption at 478 nm. Amine groups of PEI are prone to link with TBBQ through Michael addition to form colored adducts. A colorimetric method for detecting TBBQ in edible oils was developed based on the aforesaid chromogenic reaction. The linear range for TBBQ was from 3.0 to 100.0 µg g-1, having a limit of detection of 1.8 µg g-1. Recoveries results ranged from 88.4 % to 93.1 %, which had a good agreement with that of high-performance liquid chromatography. Our study provides a rapid and simple strategy for the sensitive detection of TBBQ using commercial chemicals.
Assuntos
Antioxidantes , Colorimetria , Aminas , Antioxidantes/análise , Benzoquinonas , Cromatografia Líquida de Alta Pressão , Humanos , Óleos de Plantas/química , PolietilenoiminaRESUMO
Traditional approaches to characterize edible oils such as chemical, chromatographic and light absorption techniques are laborious, expensive, and bulky to implement. This paper presents the electrochemical impedance spectroscopy of 13 types of edible oils, a rapid robust approach to characterizing the electrical behavior of oils without sample preparation. This is achieved through probing the oils via oscillating electric fields to capture oil-specific electrical behaviors. The principal component analysis discriminates the oil types well and establishes repetitive behavioral trends, perceived as electrical signatures. This data is applied in a case study of adulterated peanut oils to quantify adulteration via supervised machine learning with batch-wise leave-one-out implementation. The mean absolute errors and R2 values measure 2.18-3.27 and 0.975-0.991 respectively across 4 test batches. This work provides an exemplar for the electrochemical study of edible oils, with potential for portable proof-of-value device configurations for rapid in situ analysis of edible oils and adulterated oils.