Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nutrients ; 16(2)2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38257140

RESUMO

p-Synephrine is a common alkaloid widely distributed in citrus fruits. However, the effects of p-synephrine on the metabolic profiles of individuals with energy abnormalities are still unclear. In the study, we investigated the effect of p-synephrine on energy homeostasis and metabolic profiles using a high fat diet (HFD)-induced mouse model. We found that p-synephrine inhibited the gain in body weight, liver weight and white adipose tissues weight induced by HFD. p-Synephrine supplementation also reduced levels of serum total cholesterol (TC), triglyceride (TG) and low-density lipoprotein cholesterol (LDL-C) but not to a statistically significant degree. Histological analysis showed that HFD induced excessive lipid accumulation and glycogen loss in the liver and adipocyte enlargement in perirenal fat tissue, while p-synephrine supplementation reversed the changes induced by HFD. Moreover, HFD feeding significantly increased mRNA expression levels of tumor necrosis factor-α (TNF-α) and interleukin-1ß (IL-1ß) and reduced the mRNA expression level of interleukin-10 (IL-10) compared to the control group, while p-synephrine supplementation significantly reversed these HFD-induced changes. Liver and serum metabolomic analysis showed that p-synephrine supplementation significantly altered small molecule metabolites in liver and serum in HFD mice and that the changes were closely associated with improvement of energy homeostasis. Notably, amino acid metabolism pathways, both in liver and serum samples, were significantly enriched. Our study suggests that p-synephrine improves energy homeostasis probably by regulating amino acid metabolism in HFD mice, which provides a novel insight into the action mechanism of p-synephrine modulating energy homeostasis.


Assuntos
Citrus , Sinefrina , Animais , Camundongos , Sinefrina/farmacologia , Dieta Hiperlipídica/efeitos adversos , Homeostase , LDL-Colesterol , RNA Mensageiro , Aminoácidos
2.
Biol Trace Elem Res ; 202(4): 1325-1334, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38105318

RESUMO

Chromium supplementation has been notably recognized for its potential health benefits, especially in enhancing insulin sensitivity and managing glucose metabolism. However, recent studies have begun to shed light on additional mechanisms of action for chromium, expanding our understanding beyond its classical effects on the insulin-signaling pathway. The beta subunit of mitochondrial ATP synthase is considered a novel site for Cr(III) action, influencing physiological effects apart from insulin signaling. The physiological effects of chromium supplementation have been extensively studied, particularly in its role in anti-oxidative efficacy and glucose metabolism. However, recent advancements have prompted a re-evaluation of chromium's mechanisms of action beyond the insulin signaling pathway. The discovery of the beta subunit of mitochondrial ATP synthase as a potential target for chromium action is discussed, emphasizing its crucial role in cellular energy production and metabolic regulation. A meticulous analysis of relevant studies that were earlier carried out could shed light on the relationship between chromium supplementation and mitochondrial ATP synthase. This review categorizes studies based on their primary investigations, encompassing areas such as muscle protein synthesis, glucose and lipid metabolism, and antioxidant properties. Findings from these studies are scrutinized to distinguish patterns aligning with the new hypothesis. Central to this exploration is the presentation of studies highlighting the physiological effects of chromium that extend beyond the insulin signaling pathway. Evaluating the various independent mechanisms of action that chromium impacts cellular energy metabolism and overall metabolic balance has become more important. In conclusion, this review is a paradigm shift in understanding chromium supplementation, paving the way for future investigations that leverage the intricate interplay between chromium and mitochondrial ATP synthase.


Assuntos
Proteínas Quinases Ativadas por AMP , ATPases Mitocondriais Próton-Translocadoras , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Insulina/metabolismo , Glucose/metabolismo , Cromo/farmacologia , Cromo/metabolismo
3.
J Dairy Sci ; 107(5): 2864-2882, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38101729

RESUMO

Rumen-protected choline (RPC) promotes benefits in milk production, immunity, and health in dairy cows by optimizing lipid metabolism during transition period management and early lactation. However, the RPC success in dairy cows depends on choline bioavailability, which is affected by the type of protection used in rumen-protected choline. Therefore, our objectives were to determine the effects of a novel RPC on dry matter intake (DMI), identify markers of metabolism and immunity, and evaluate lactation performance. Dry Holstein (n = 48) cows at 245 ± 3 d of gestation were blocked by parity and assigned to control or RPC treatment within each block. Cows enrolled in the RPC treatment received 15 g/d of CholiGEM (Kemin Industries, Cavriago RE, Italy) from 21 d prepartum and 30 g/d of CholiGEM from calving to 21 d postpartum. During the transition period, DMI was measured daily, and blood was sampled weekly for energy-related metabolites such as ß-hydroxybutyrate (BHB), glucose, and nonesterified fatty acids (NEFA), as well as immune function markers such as haptoglobin (Hp) and lipopolysaccharide-binding protein (LPB). Vaginal discharge samples were collected at the calving and 7 d postpartum and stored in microcentrifuge tubes at -80°C until 16S rRNA sequencing. The main responses of body condition score, body weight, DMI, milk yield, milk components, and immune function markers were analyzed using the GLIMMIX procedure of SAS with the effects of treatment, time, parity, and relevant covariates added to the models. The relative abundance of microbiome α-diversity was evaluated by 3 indexes (Chao1, Shannon, and Simpson) and ß-diversity by principal coordinate analysis and permutational multivariate ANOVA. We found no differences in DMI in the pre- and postpartum periods. Cows fed RPC increased the yields of energy- and 3.5% fat-corrected milk and fat yield in primiparous and multiparous cows, with an interaction between treatment and parity for these lactation variables. However, we found no differences in milk protein and lactose up to 150 DIM between treatments. Glucose, NEFA, and BHB had no differences between the treatments. However, RPC decreased BHB numerically (control = 1.07 ± 0.13 vs. RPC = 0.63 ± 0.13) in multiparous on the third week postpartum and tended to reduce the incidence of subclinical ketosis (12.7% vs. 4.2%). No effects for Hp and LPB were found in cows fed RPC. Chao1, Shannon, and Simpson indexes were lower at calving in the RPC treatment than in the Control. However, no differences were found 7 d later for Chao1, Shannon, and Simpson indexes. The vaginal discharge microbiome was altered in cows fed RPC at 7 d postpartum. Fusobacterium, a common pathogen associated with metritis, was reduced in cows fed RPC. Rumen-protected choline enhanced lactation performance and health and altered the vaginal discharge microbiome which is a potential proxy for uterine healthy in dairy cows. The current study's findings corroborate that RPC is a tool to support adaptation to lactation and shed light on opportunities for further research in reproductive health.


Assuntos
Doenças dos Bovinos , Descarga Vaginal , Gravidez , Feminino , Bovinos , Animais , Colina/farmacologia , Colina/metabolismo , Dieta/veterinária , Suplementos Nutricionais/análise , Ácidos Graxos não Esterificados , Rúmen/metabolismo , RNA Ribossômico 16S/metabolismo , Período Pós-Parto/metabolismo , Lactação/fisiologia , Glucose/metabolismo , Descarga Vaginal/veterinária , Doenças dos Bovinos/metabolismo
4.
Nutrients ; 15(23)2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-38068746

RESUMO

Camellia seed oil (CO) is used as edible oil in southern China because of its excellent fatty acid composition and abundant bioactive compounds. Chronic kidney disease (CKD) is one of the most common chronic degenerative diseases in China, and active compounds in vegetable oil, like virgin olive oil, have been demonstrated to be efficacious in the management of CKD. In this study, virgin CO was refined using a standard process. The refining had minimal impact on the fatty acid composition, but significantly reduced the presence of bioactive compounds like polyphenols in CO. Sprague-Dawley (SD) rats fed with high fat diet (Group G) were treated with either virgin (Group Z) or refined CO (Group R). The oral administration of CO alleviated lipid accumulation and decreased body and kidney weight gain. Furthermore, treatment with virgin CO increased the renal ATP content. The renal expression levels of AMPK and key enzymes involved in fatty acid oxidation (CPT-1 and ACOX1) and glycolysis (HK, PFK, PK and GAPDH) were up-regulated in Group Z, thereby enhancing the ATP production. Virgin CO treatment downregulated the expression level of SREBP2 and its downstream target genes, such as ACC, FAS, and HMGCR, which reduced lipid synthesis. These findings indicate that virgin CO improves glycolipid metabolism and restores energy homeostasis in the kidneys of rats fed with a high-fat diet by modulating the AMPK-SREBP-signaling pathway, suggesting the potential of active compounds in virgin CO for managing the renal failure associated with glycolipid dysmetabolism.


Assuntos
Camellia , Insuficiência Renal Crônica , Ratos , Animais , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Ratos Sprague-Dawley , Óleos de Plantas/farmacologia , Óleos de Plantas/metabolismo , Azeite de Oliva/metabolismo , Metabolismo dos Lipídeos , Rim/metabolismo , Ácidos Graxos/metabolismo , Insuficiência Renal Crônica/metabolismo , Glicolipídeos/metabolismo , Trifosfato de Adenosina/metabolismo , Fígado/metabolismo
5.
Neurotoxicology ; 99: 244-253, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37944760

RESUMO

Misused volatile solvents typically contain toluene (TOL) as the main psychoactive ingredient. Cyclohexane (CHX) can also be present and is considered a safer alternative. Solvent misuse often occurs at early stages of life, leading to permanent neurobehavioral impairment and growth retardation. However, a comprehensive examination of the effects of TOL and CHX on stress regulation and energy balance is lacking. Here, we compared the effect of a binge-pattern exposure to TOL or CHX (4,000 or 8,000 ppm) on body weight, food intake, the hypothalamus-pituitary-adrenal (HPA) and hypothalamus-pituitary-thyroid (HPT) axes in male adolescent Wistar rats. At 8,000 ppm, TOL decreased body weight gain without affecting food intake. In addition, TOL and CHX altered the HPA and HPT axes' function in a solvent- and concentration-dependent manner. The highest TOL concentration produced HPA axis hyperactivation in animals not subjected to stress, which was evidenced by increased corticotropin-releasing-factor (CRF) release from the median eminence (ME), elevated adrenocorticotropin hormone (ACTH) and corticosterone serum levels, and decreased CRF mRNA levels in the hypothalamic paraventricular nucleus (PVN). TOL (8,000 ppm) also increased triiodothyronine (T3) serum levels, decreased pro-thyrotropin-releasing-hormone (pro-TRH) mRNA transcription in the PVN, pro-TRH content in the ME, and serum thyroid stimulating hormone (TSH) levels. CHX did not affect the HPA axis. We propose that the increased HPT axis activity induced by TOL can be related to the impaired body weight gain associated with inhalant misuse. These findings may contribute to a better understanding of the effects of the misused solvents TOL and CHX.


Assuntos
Hormônio Liberador da Corticotropina , Sistema Hipotálamo-Hipofisário , Ratos , Masculino , Animais , Ratos Wistar , Hormônio Liberador da Corticotropina/genética , Hormônio Liberador da Corticotropina/metabolismo , Tolueno/toxicidade , Sistema Hipófise-Suprarrenal/metabolismo , Hipotálamo/metabolismo , Peso Corporal , RNA Mensageiro , Solventes/toxicidade , Corticosterona
6.
Front Endocrinol (Lausanne) ; 14: 1256514, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37780616

RESUMO

Hypothalamic obesity (HO) is a complex and rare disorder affecting multiple regulatory pathways of energy intake and expenditure in the brain as well as the regulation of the autonomic nervous system and peripheral hormonal signaling. It can be related to monogenic obesity syndromes which often affect the central leptin-melanocortin pathways or due to injury of the hypothalamus from pituitary and hypothalamic tumors, such as craniopharyngioma, surgery, trauma, or radiation to the hypothalamus. Traditional treatments of obesity, such as lifestyle intervention and specific diets, are still a therapeutic cornerstone, but often fail to result in meaningful and sustained reduction of body mass index. This review will give an update on pharmacotherapies of HO related to hypothalamic injury. Recent obesity drug developments are promising for successful obesity intervention outcomes.


Assuntos
Lesões Encefálicas Traumáticas , Craniofaringioma , Doenças Hipotalâmicas , Neoplasias Hipofisárias , Humanos , Doenças Hipotalâmicas/complicações , Doenças Hipotalâmicas/tratamento farmacológico , Hipotálamo/metabolismo , Obesidade/complicações , Obesidade/tratamento farmacológico , Craniofaringioma/complicações , Craniofaringioma/tratamento farmacológico , Lesões Encefálicas Traumáticas/metabolismo , Neoplasias Hipofisárias/metabolismo
7.
Int J Mol Sci ; 24(9)2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37175952

RESUMO

Phosphoglucomutase 1 (PGM1) is a key enzyme for the regulation of energy metabolism from glycogen and glycolysis, as it catalyzes the interconversion of glucose 1-phosphate and glucose 6-phosphate. PGM1 deficiency is an autosomal recessive disorder characterized by a highly heterogenous clinical spectrum, including hypoglycemia, cleft palate, liver dysfunction, growth delay, exercise intolerance, and dilated cardiomyopathy. Abnormal protein glycosylation has been observed in this disease. Oral supplementation with D-galactose efficiently restores protein glycosylation by replenishing the lacking pool of UDP-galactose, and rescues some symptoms, such as hypoglycemia, hepatopathy, and growth delay. However, D-galactose effects on skeletal muscle and heart symptoms remain unclear. In this study, we established an in vitro muscle model for PGM1 deficiency to investigate the role of PGM1 and the effect of D-galactose on nucleotide sugars and energy metabolism. Genome-editing of C2C12 myoblasts via CRISPR/Cas9 resulted in Pgm1 (mouse homologue of human PGM1, according to updated nomenclature) knockout clones, which showed impaired maturation to myotubes. No difference was found for steady-state levels of nucleotide sugars, while dynamic flux analysis based on 13C6-galactose suggested a block in the use of galactose for energy production in knockout myoblasts. Subsequent analyses revealed a lower basal respiration and mitochondrial ATP production capacity in the knockout myoblasts and myotubes, which were not restored by D-galactose. In conclusion, an in vitro mouse muscle cell model has been established to study the muscle-specific metabolic mechanisms in PGM1 deficiency, which suggested that galactose was unable to restore the reduced energy production capacity.


Assuntos
Hipoglicemia , Fosfoglucomutase , Animais , Camundongos , Galactose/farmacologia , Glucose , Homeostase , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Nucleotídeos , Fosfatos , Fosfoglucomutase/genética , Fosfoglucomutase/metabolismo
8.
Int J Mol Sci ; 24(8)2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37108533

RESUMO

Dysfunctional glucose sensing in homeostatic brain regions such as the hypothalamus is interlinked with the pathogenesis of obesity and type 2 diabetes mellitus. However, the physiology and pathophysiology of glucose sensing and neuronal homeostatic regulation remain insufficiently understood. To provide a better understanding of glucose signaling to the brain, we assessed the responsivity of the hypothalamus (i.e., the core region of homeostatic control) and its interaction with mesocorticolimbic brain regions in 31 normal-weight, healthy participants. We employed a single-blind, randomized, crossover design of the intravenous infusion of glucose and saline during fMRI. This approach allows to investigate glucose signaling independent of digestive processes. Hypothalamic reactivity and connectivity were assessed using a pseudo-pharmacological design and a glycemia-dependent functional connectivity analysis, respectively. In line with previous studies, we observed a hypothalamic response to glucose infusion which was negatively related to fasting insulin levels. The observed effect size was smaller than in previous studies employing oral or intragastric administration of glucose, demonstrating the important role of the digestive process in homeostatic signaling. Finally, we were able to observe hypothalamic connectivity with reward-related brain regions. Given the small amount of glucose employed, this points toward a high responsiveness of these regions to even a small energy stimulus in healthy individuals. Our study highlights the intricate relationship between homeostatic and reward-related systems and their pronounced sensitivity to subtle changes in glycemia.


Assuntos
Diabetes Mellitus Tipo 2 , Glucose , Humanos , Glucose/farmacologia , Infusões Intravenosas , Método Simples-Cego , Hipotálamo/diagnóstico por imagem
9.
Endocrinology ; 164(6)2023 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-37029960

RESUMO

In menopausal and postmenopausal women, the risk for obesity, cardiovascular disease, osteoporosis, and gut dysbiosis are elevated by the depletion of 17ß-estradiol. A diet that is high in omega-6 polyunsaturated fatty acids (PUFAs), particularly linoleic acid (LA), and low in saturated fatty acids (SFAs) found in coconut oil and omega-3 PUFAs may worsen symptoms of estrogen deficiency. To investigate this hypothesis, ovariectomized C57BL/6J and transgenic fat-1 mice, which lower endogenous omega-6 polyunsaturated fatty acids, were treated with either a vehicle or estradiol benzoate (EB) and fed a high-fat diet with a high or low PUFA:SFA ratio for ~15 weeks. EB treatment reversed obesity, glucose intolerance, and bone loss in ovariectomized mice. fat-1 mice fed a 1% LA diet experienced reduced weight gain and adiposity, while those fed a 22.5% LA diet exhibited increased energy expenditure and activity in EB-treated ovariectomized mice. Coconut oil SFAs and omega-3 FAs helped protect against glucose intolerance without EB treatment. Improved insulin sensitivity was observed in wild-type and fat-1 mice fed 1% LA diet with EB treatment, while fat-1 mice fed 22.5% LA diet was protected against insulin resistance without EB treatment. The production of short-chain fatty acids by gut microbial microbiota was linked to omega-3 FAs production and improved energy homeostasis. These findings suggest that a balanced dietary fatty acid profile containing SFAs and a lower ratio of omega-6:omega-3 FAs is more effective in alleviating metabolic disorders during E2 deficiency.


Assuntos
Estradiol , Ácidos Graxos Ômega-3 , Ácidos Graxos , Intolerância à Glucose , Feminino , Animais , Camundongos , Ovariectomia , Camundongos Transgênicos , Camundongos Endogâmicos C57BL , Intolerância à Glucose/prevenção & controle , Estradiol/farmacologia , Óleo de Coco , Microbioma Gastrointestinal , Ácido Linoleico
10.
Endocrinology ; 164(5)2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36917637

RESUMO

Pituitary adenylate cyclase-activating polypeptide (PACAP) and its cognate receptor PAC1R play key roles in energy balance. Central neuropeptide systems like PACAP are critical to the neuroendocrine system that regulates energy homeostasis in regions of the hypothalamus. A thorough investigation into central PACAP's influence on energy balance presents an opportunity to reveal putative causes of energy imbalance that could lead to obesity. In this review, we provide a brief overview of preclinical studies that have examined hypothalamic PACAP's influence on feeding behavior and metabolic regulation. Notably, due to the complexity and pleiotropic nature of the PACAP system, we highlight the need for a nuanced examination of PACAP signaling that utilizes a complex intersection of signaling circuitry in energy regulation that could ultimately offer insights to future therapeutic targets relevant for treating obesity.


Assuntos
Polipeptídeo Hipofisário Ativador de Adenilato Ciclase , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase , Humanos , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Hipotálamo/metabolismo , Peso Corporal , Obesidade
11.
Eur J Endocrinol ; 188(3): R37-R45, 2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36883605

RESUMO

Obesity and its comorbidities are long-standing, challenging global health problems. Lack of exercise, overnutrition, and especially the consumption of fat-rich foods are some of the most important factors leading to an increase in prevalence in modern society. The pathophysiology of obesity as a metabolic inflammatory disease has moved into focus since new therapeutic approaches are required. The hypothalamus, a brain area responsible for energy homeostasis, has recently received special attention in this regard. Hypothalamic inflammation was identified to be associated with diet-induced obesity and new evidence suggests that it may be, beyond that, a pathological mechanism of the disease. This inflammation impairs the local signaling of insulin and leptin leading to dysfunction of the regulation of energy balance and thus, weight gain. After a high-fat diet consumption, activation of inflammatory mediators such as the nuclear factor κB or c-Jun N-terminal kinase pathway can be observed, accompanied by elevated secretion of pro-inflammatory interleukins and cytokines. Brain resident glia cells, especially microglia and astrocytes, initiate this release in response to the flux of fatty acids. The gliosis occurs rapidly before the actual weight gain. Dysregulated hypothalamic circuits change the interaction between neuronal and non-neuronal cells, contributing to the establishment of inflammatory processes. Several studies have reported reactive gliosis in obese humans. Although there is evidence for a causative role of hypothalamic inflammation in the obesity development, data on underlying molecular pathways in humans are limited. This review discusses the current state of knowledge on the relationship between hypothalamic inflammation and obesity in humans.


Assuntos
Gliose , Obesidade , Humanos , Gliose/etiologia , Gliose/metabolismo , Gliose/patologia , Obesidade/metabolismo , Hipotálamo/metabolismo , Aumento de Peso , Inflamação , Dieta Hiperlipídica , Metabolismo Energético
12.
Int J Mol Sci ; 24(4)2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36834616

RESUMO

Molecular profiling of the hypothalamus in response to metabolic shifts is a critical cue to better understand the principle of the central control of whole-body energy metabolism. The transcriptional responses of the rodent hypothalamus to short-term calorie restriction have been documented. However, studies on the identification of hypothalamic secretory factors that potentially contribute to the control of appetite are lacking. In this study, we analyzed the differential expression of hypothalamic genes and compared the selected secretory factors from the fasted mice with those of fed control mice using bulk RNA-sequencing. We verified seven secretory genes that were significantly altered in the hypothalamus of fasted mice. In addition, we determined the response of secretory genes in cultured hypothalamic cells to treatment with ghrelin and leptin. The current study provides further insights into the neuronal response to food restriction at the molecular level and may be useful for understanding the hypothalamic control of appetite.


Assuntos
Hipotálamo , Inanição , Camundongos , Animais , Hipotálamo/metabolismo , Leptina/metabolismo , Inanição/metabolismo , Apetite/fisiologia , Jejum/fisiologia , Grelina/metabolismo , Perfilação da Expressão Gênica
13.
J Neurochem ; 165(4): 467-486, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36648204

RESUMO

The discovery of leptin in 1994 was an "eureka moment" in the field of neurometabolism that provided new opportunities to better understand the central control of energy balance and glucose metabolism. Rapidly, a prevalent model in the field emerged that pro-opiomelanocortin (POMC) neurons were key in promoting leptin's anorexigenic effects and that the arcuate nucleus of the hypothalamus (ARC) was a key region for the regulation of energy homeostasis. While this model inspired many important discoveries, a growing body of literature indicates that this model is now outdated. In this review, we re-evaluate the hypothalamic leptin-melanocortin model in light of recent advances that directly tackle previous assumptions, with a particular focus on the ARC. We discuss how segregated and heterogeneous these neurons are, and examine how the development of modern approaches allowing spatiotemporal, intersectional, and chemogenetic manipulations of melanocortin neurons has allowed a better definition of the complexity of the leptin-melanocortin system. We review the importance of leptin in regulating glucose homeostasis, but not food intake, through direct actions on ARC POMC neurons. We further highlight how non-POMC, GABAergic neurons mediate leptin's direct effects on energy balance and influence POMC neurons.


Assuntos
Leptina , Melanocortinas , Melanocortinas/metabolismo , Pró-Opiomelanocortina/genética , Pró-Opiomelanocortina/metabolismo , Hipotálamo/metabolismo , Núcleo Arqueado do Hipotálamo , Metabolismo Energético/fisiologia
14.
Clin Transl Med ; 12(11): e1091, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36314066

RESUMO

BACKGROUND: The melanocortin receptor accessory proteins (MRAP1 and MRAP2) are well-known endocrine regulators for the trafficking and signalling of all five melanocortin receptors (MC1R-MC5R). The observation of MRAP2 on regulating several non-melanocortin G protein-coupled receptors (GPCRs) has been sporadically reported, whereas other endogenous GPCR partners of the MRAP protein family are largely unknown. METHODS: Here, we performed single-cell transcriptome analysis and drew a fine GPCR blueprint and MRAPs-associated network of two major endocrine organs, the hypothalamus and adrenal gland at single-cell resolution. We also integrated multiple bulk RNA-seq profiles and single-cell datasets of human and mouse tissues, and narrowed down a list of 48 GPCRs with strong endogenous co-expression correlation with MRAPs. RESULTS: 36 and 46 metabolic-related GPCRs were consequently identified as novel interacting partners of MRAP1 or MRAP2, respectively. MRAPs exhibited protein-protein interactions and varying pharmacological properties on the surface translocation, constitutive activities and ligand-stimulated downstream signalling of these GPCRs. Knockdown of MRAP2 expression by hypothalamic administration of adeno-associated virus (AAV) packed shRNA stimulated body weight gain in mouse model. Co-injection of corticotropinreleasing factor (CRF), the agonist of corticotropin releasing hormone receptor 1 (CRHR1), suppressed feeding behaviour in a MRAP2-dependent manner. CONCLUSIONS: Collectively, our study has comprehensively elucidated the complex GPCR networks in two major endocrine organs and redefined the MRAP protein family as broad-spectrum GPCR modulators. MRAP proteins not only serve as a vital endocrine pivot on the regulation of global GPCR activities in vivo that could explain the composite physiological phenotypes of the MRAP2 null murine model but also provide us with new insights of the phenotyping investigation of GPCR-MRAP functional complexes.


Assuntos
Proteínas de Transporte , Receptores de Melanocortina , Animais , Humanos , Camundongos , Receptores de Melanocortina/genética , Receptores de Melanocortina/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Melanocortinas/metabolismo , Glândulas Suprarrenais/metabolismo , Hipotálamo/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
15.
Int J Mol Sci ; 23(19)2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36233205

RESUMO

The role of omega-3 polyunsaturated fatty acids (n-3 PUFAs) in the regulation of energy homeostasis remains poorly understood. In this study, we used a transgenic fat-1 mouse model, which can produce n-3 PUFAs endogenously, to investigate how n-3 PUFAs regulate the morphology and function of brown adipose tissue (BAT). We found that high-fat diet (HFD) induced a remarkable morphological change in BAT, characterized by "whitening" due to large lipid droplet accumulation within BAT cells, associated with obesity in wild-type (WT) mice, whereas the changes in body fat mass and BAT morphology were significantly alleviated in fat-1 mice. The expression of thermogenic markers and lypolytic enzymes was significantly higher in fat-1 mice than that in WT mice fed with HFD. In addition, fat-1 mice had significantly lower levels of inflammatory markers in BAT and lipopolysaccharide (LPS) in plasma compared with WT mice. Furthermore, fat-1 mice were resistant to LPS-induced suppression of UCP1 and PGC-1 expression and lipid deposits in BAT. Our data has demonstrated that high-fat diet-induced obesity is associated with impairments of BAT morphology (whitening) and function, which can be ameliorated by elevated tissue status of n-3 PUFAs, possibly through suppressing the effects of LPS on inflammation and thermogenesis.


Assuntos
Tecido Adiposo Marrom , Ácidos Graxos Ômega-3 , Tecido Adiposo Marrom/metabolismo , Animais , Dieta Hiperlipídica/efeitos adversos , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Ômega-3/farmacologia , Ácidos Graxos Insaturados/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Obesidade/genética , Obesidade/metabolismo , Termogênese
16.
Cell Metab ; 34(10): 1532-1547.e6, 2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36198294

RESUMO

The hypothalamus is key in the control of energy balance. However, strategies targeting hypothalamic neurons have failed to provide viable options to treat most metabolic diseases. Conversely, the role of astrocytes in systemic metabolic control has remained largely unexplored. Here, we show that obesity promotes anatomically restricted remodeling of hypothalamic astrocyte activity. In the paraventricular nucleus (PVN) of the hypothalamus, chemogenetic manipulation of astrocytes results in bidirectional control of neighboring neuron activity, autonomic outflow, glucose metabolism, and energy balance. This process recruits a mechanism involving the astrocytic control of ambient glutamate levels, which becomes defective in obesity. Positive or negative chemogenetic manipulation of PVN astrocyte Ca2+ signals, respectively, worsens or improves metabolic status of diet-induced obese mice. Collectively, these findings highlight a yet unappreciated role for astrocytes in the direct control of systemic metabolism and suggest potential targets for anti-obesity strategy.


Assuntos
Astrócitos , Hipotálamo , Animais , Astrócitos/metabolismo , Metabolismo Energético/fisiologia , Glucose/metabolismo , Ácido Glutâmico/metabolismo , Hipotálamo/metabolismo , Camundongos , Obesidade/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo
17.
Pharmacol Rep ; 74(5): 774-789, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36083576

RESUMO

The brain orchestrates whole-body metabolism through an intricate system involving interneuronal crosstalk and communication. Specifically, a key player in this complex circuitry is the hypothalamus that controls feeding behaviour, energy expenditure, body weight and metabolism, whereby hypothalamic neurons sense and respond to circulating hormones, nutrients, and chemicals. Dysregulation of these neurons contributes to the development of metabolic disorders, such as obesity and type 2 diabetes. The involvement of hypothalamic microRNAs, post-transcriptional regulators of gene expression, in the central regulation of energy homeostasis has become increasingly apparent, although not completely delineated. This review summarizes current evidence demonstrating the regulation of feeding-related neuropeptides by brain-derived microRNAs as well as the regulation of specific miRNAs by nutrients and other peripheral signals. Moreover, the involvement of microRNAs in the central nervous system control of insulin, leptin, and estrogen signal transduction is examined. Finally, the therapeutic and diagnostic potential of microRNAs for metabolic disorders will be discussed and the regulation of brain-derived microRNAs by nutrients and other peripheral signals is considered. Demonstrating a critical role of microRNAs in hypothalamic regulation of energy homeostasis is an innovative route to uncover novel biomarkers and therapeutic candidates for metabolic disorders.


Assuntos
Diabetes Mellitus Tipo 2 , MicroRNAs , Neuropeptídeos , Humanos , Leptina/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Ingestão de Alimentos , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/terapia , Diabetes Mellitus Tipo 2/metabolismo , Homeostase/fisiologia , Hipotálamo/metabolismo , Neuropeptídeos/metabolismo , Insulina/metabolismo , Estrogênios/metabolismo
18.
Int J Mol Sci ; 23(16)2022 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-36012700

RESUMO

Obesity has achieved the appearance of a global epidemic and is a serious cause for concern. The hypothalamus, as the central regulator of energy homeostasis, plays a critical role in regulating food intake and energy expenditure. In this study, we show that TRIM67 in the hypothalamus was responsive to body-energy homeostasis whilst a deficiency of TRIM67 exacerbated metabolic disorders in high-fat-diet-induced obese mice. We found exacerbated neuroinflammation and apoptosis in the hypothalamus of obese TRIM67 KO mice. We also found reduced BDNF in the hypothalamus, which affected the fat sympathetic nervous system innervation and contributed to lipid accumulation in adipose tissue under high-fat-diet exposure. In this study, we reveal potential implications between TRIM67 and the hypothalamic function responding to energy overuptake as well as a consideration for the therapeutic diagnosis of obesity.


Assuntos
Hipotálamo , Obesidade , Proteínas com Motivo Tripartido , Tecido Adiposo/metabolismo , Animais , Proteínas do Citoesqueleto/metabolismo , Dieta Hiperlipídica/efeitos adversos , Metabolismo Energético , Hipotálamo/metabolismo , Hipotálamo/patologia , Inflamação/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Obesos , Obesidade/metabolismo , Proteínas com Motivo Tripartido/genética
19.
Int J Mol Sci ; 23(14)2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35887027

RESUMO

There are fundamental sex differences in the regulation of energy homeostasis. Better understanding of the underlying mechanisms of energy balance that account for this asymmetry will assist in developing sex-specific therapies for sexually dimorphic diseases such as obesity. Multiple organs, including the hypothalamus and adipose tissue, play vital roles in the regulation of energy homeostasis, which are regulated differently in males and females. Various neuronal populations, particularly within the hypothalamus, such as arcuate nucleus (ARC), can sense nutrient content of the body by the help of peripheral hormones such leptin, derived from adipocytes, to regulate energy homeostasis. This review summarizes how adipose tissue crosstalk with homeostatic network control systems in the brain, which includes energy regulatory regions and the hypothalamic-pituitary axis, contribute to energy regulation in a sex-specific manner. Moreover, development of obesity is contingent upon diet and environmental factors. Substances from diet and environmental contaminants can exert insidious effects on energy metabolism, acting peripherally through the aryl hydrocarbon receptor (AhR). Developmental AhR activation can impart permanent alterations of neuronal development that can manifest a number of sex-specific physiological changes, which sometimes become evident only in adulthood. AhR is currently being investigated as a potential target for treating obesity. The consensus is that impaired function of the receptor protects from obesity in mice. AhR also modulates sex steroid receptors, and hence, one of the objectives of this review is to explain why investigating sex differences while examining this receptor is crucial. Overall, this review summarizes sex differences in the regulation of energy homeostasis imparted by the adipose-hypothalamic axis and examines how this axis can be affected by xenobiotics that signal through AhR.


Assuntos
Tecido Adiposo , Metabolismo Energético , Hipotálamo , Receptor Cross-Talk , Receptores de Hidrocarboneto Arílico , Caracteres Sexuais , Tecido Adiposo/metabolismo , Animais , Metabolismo Energético/fisiologia , Feminino , Homeostase , Hipotálamo/metabolismo , Masculino , Camundongos , Obesidade/metabolismo , Receptor Cross-Talk/fisiologia , Receptores de Hidrocarboneto Arílico/metabolismo
20.
J Physiol Biochem ; 78(3): 603-617, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35678998

RESUMO

Nucleobindin2 (NUCB2) is a member of nucleobindin family which was first found in the nucleus of the hypothalamus, and had a relationship in diet and energy homeostasis. Its location in normal tissues such as stomach and islet further confirms that it plays a vital role in the regulation of physiological functions of the body. Besides, NUCB2 participates in tumorigenesis through activating various signal-pathways, more and more studies indicate that NUCB2 might impact tumor progression by promoting or inhibiting proliferation, apoptosis, autophagy, metastasis, and invasion of tumor cells. In this review, we comprehensively stated NUCB2's expression and functions, and introduced the role of NUCB2 in physiology and pathology and its mechanism. What is more, pointed out the potential direction of future research.


Assuntos
Proteínas de Ligação ao Cálcio , Proteínas do Tecido Nervoso , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ligação a DNA/metabolismo , Hipotálamo/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Nucleobindinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA