Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Fitoterapia ; 174: 105854, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38331050

RESUMO

The chemical transformation of lathyrane nucleus through reduction and oxidation reactions using Euphorbia Factor L1 (EFL1) and Euphorbia Factor L1 (EFL3) as examples were investigated, along with a co-modification strategy of lathyrane nucleus and its side ester chain. A total of 38 lathyrane derivatives (5-42) including 34 new compounds were obtained, which greatly enriched the structural diversity of the lathyrane-type diterpenoids. Cytotoxicity against drug-sensitive and drug (adriamycin, ADM) resistant MCF-7 cells showed that 23 out of 38 transformed derivatives possessed obvious cytotoxic activity with IC50 values ranging from 7.0 to 41.1 µM and 3.2 to 45.5 µM, respectively, against both cells, compared to the noncytotoxic EFL1 and EFL3. The multidrug resistance (MDR) reversing activities of these lathyrane derivatives were further evaluated in MCF-7/ADM. Three transformed compounds (reversal fold, RF = 151.33, 62.94 and 47.3 for 27, 37 and 42) showed markedly higher activity than EFL1 (RF = 32.92) and EFL3 (RF = 39.68). Structure-activity relationship study revealed an essential role of C-6/17 and C-12/13 double bonds on lathyrane nucleus for exerting MDR reversal activity. Western blotting analysis showed that 42 could reduce the expression level of P-glycoprotein (P-gp) in MCF-7/ADM cells; however, the most active compound 27 with an unnatural 5/7/7/4 fused-ring diterpenoid skeleton, had no inhibitory effect on P-gp expression.


Assuntos
Diterpenos , Euphorbia , Fenilpropionatos , Estrutura Molecular , Euphorbia/química , Resistência a Múltiplos Medicamentos , Diterpenos/farmacologia , Diterpenos/química , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/farmacologia , Subfamília B de Transportador de Cassetes de Ligação de ATP
2.
Aging (Albany NY) ; 15(17): 9217-9229, 2023 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-37709489

RESUMO

Euphorbia factor L1 (EFL1), a lathyrane-type diterpenoid from the medicinal herb Euphorbia lathyris L., has been documented to possess various pharmacologic actives. However, the function of EFL1 on breast cancer is not clear. In this study, we explored the effect and mechanism of EFL1 on breast cancer liver metastasis. Female BALB/c mice were subjected to breast cancer-surgical hepatic implantation (SHI) to establish breast cancer liver metastasis model in vivo. At 10 days post-surgery, mice were administrated with EFL1 once daily for a total of 2 weeks. Serum AST and ALT activities, abdominal circumference, peritoneal fluid, tumor weight and volume were determined to assess liver and mesenteric re-metastasis of breast cancer. H&E staining was used to observe morphology changes in tumor, liver and small intestine tissues. ELISA was applied to observe inflammatory levels. Tumor DDR1 expression and immune infiltration were determined using western blotting, immunohistochemistry and flow cytometer methods. Our results showed that EFL1 administration improved liver function (AST and ALT activities), ascites, liver metastasis and mesenteric re-metastasis in SHI mice. Also, SHI-induced inflammatory cell infiltration and IL-1ß, IL-6, TNF-α generation in ascites were decreased by EFL1 treatment. Mechanism study revealed that EFL1 intervention enhanced the ratios of CD4+ and CD8+ and CD49b+(NK) T lymphocytes and decreased Treg cells through downregulating DDR1 in the tumor of SHI mice. Furthermore, overexpression of DDR1 abolished the anti-liver metastasis effect and pro-immune infiltration action of EFL1 in SHI mice. Together, our findings suggested that EFL1 protects against breast cancer liver metastasis in vivo by targeting DDR1-mediated immune infiltration.


Assuntos
Diterpenos , Neoplasias Hepáticas , Melanoma , Segunda Neoplasia Primária , Animais , Feminino , Camundongos , Ascite , Neoplasias Hepáticas/tratamento farmacológico , Melanoma Maligno Cutâneo
3.
Phytomedicine ; 65: 153102, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31654989

RESUMO

BACKGROUND: Euphorbia factor L1 (EFL1) is a lathyrane-type diterpenoid from the medicinal herb Euphorbia lathyris L., and has been reported with intestinal toxicity, but the potential mechanisms remain unknown. PURPOSE: The objective of this study was to investigate the intestinal toxicity of EFL1 and the underlying mechanisms using nematode Caenorhabditis elegans. METHODS: C. elegans were exposed to 0-200 µM EFL1 for 72 h, then the survival rate, body length and body width, locomotion and chemoreception behavior, intestinal ROS and lipofuscin accumulation, intestinal permeability, and defecation rhythm were detected. The γ-aminobutyric acid(GABA) energic neurons AVL and DVB were shown via green fluorescent protein under a laser scanning confocal microscope. The structure of GABA transporter UNC-47 were predicted by homology modeling, and the interaction between EFL1 and UNC-47 was simulated by molecular docking. The mRNA expression of genes related to oxidative stress, intestinal permeability and defecation after EFL1 exposure were detected by RT-qPCR. RESULTS: EFL1 did not induce lethality of nematodes. The general toxicity was characterized by abnormal growth, locomotion and chemoreception. The intestinal barrier was leaky, due to down-regulated cell junction and active cation transport. The mean defecation cycle length in nematodes was decreased, relating to disorder vesicular and ion transport, enhanced rhythm behavior and muscle contraction. The dysfunctional defecation also attributed to injured UNC-47 protein, as well as GABAergic neurons AVL and DVB. Excessive ROS and lipofuscin accumulation were observed in intestine, along with activation of antioxidant enzymes of SOD, COQ7 and CAT. CONCLUSION: This study elucidated the EFL1-induced intestinal toxicity in nematodes, characterized as leaky intestinal barrier and accelerated defecation behavior. The underlying mechanisms were involved in oxidative stress, cell junctions, transportation, rhythm behavior, muscle contraction, and GABAergic neurons.


Assuntos
Caenorhabditis elegans/efeitos dos fármacos , Defecação/efeitos dos fármacos , Diterpenos/efeitos adversos , Intestinos/efeitos dos fármacos , Fenilpropionatos/efeitos adversos , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Diterpenos/química , Regulação da Expressão Gênica , Absorção Intestinal/efeitos dos fármacos , Intestinos/patologia , Simulação de Acoplamento Molecular , Atividade Motora/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Fenilpropionatos/química , Espécies Reativas de Oxigênio/metabolismo , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/química , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/metabolismo
4.
Phytomedicine ; 64: 152929, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31454650

RESUMO

BACKGROUND: Euphorbia factor L1 (EFL1), a lathyrane-type diterpenoid from the medicinal herb Euphorbia lathyris L. (Euphorbiaceae), has been reported for many decades to induce gastric irritation, but the underlying mechanisms remain unclear. PURPOSE: The objective of this study was to investigate EFL1-induced cytotoxicity and the potential mechanisms of action on the human normal gastric epithelial cell GES-1. METHODS: GES-1 cells were treated with EFL1 (12.5-200 µM) for different time intervals, and cell survival, LDH release, intracellular reactive oxygen species (ROS), malondialdehyde (MDA) content, and superoxide dismutase (SOD) activity were detected. Mitochondrial membrane potential (MMP) assay, DAPI staining, DNA fragment assay, and annexin V-FITC/PI staining were performed. The interaction between EFL1 and Bcl-2, cytochrome c, caspase-9, caspase-3, PI3K, AKT, and mTOR proteins was simulated by molecular docking. The mRNA and protein expression of apoptosis and autophagy factors were detected by RT-qPCR and Western blotting. RESULTS: EFL1 decreased survival, increased LDH leakage, and induced abnormal production of ROS, MDA and SOD in GES-1 cells. Mitochondria-mediated apoptosis was characterized by decreased MMP, condensed nuclei, fragmented DNA, and increased apoptosis rate. EFL1 interacted with proteins via hydrogen bonding. The mRNA, total or phosphorylated protein expression of Bcl-2, mitochondrial cytochrome c, PI3K, AKT, mTOR and p62 were downregulated; in contrast, those of cytoplasmic cytochrome c, cleaved caspase-9, cleaved caspase-3, LC3-ll and Beclin-1 were upregulated. CONCLUSION: These findings indicated that EFL1 decreased the survival of GES-1 cells through EFL1-induced oxidative stress, activation of the mitochondria-mediated apoptosis as well as autophagy via inhibition of the PI3K/AKT/mTOR pathway.


Assuntos
Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Diterpenos/farmacologia , Euphorbia/química , Estresse Oxidativo/efeitos dos fármacos , Fenilpropionatos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Simulação de Acoplamento Molecular , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
5.
J Ethnopharmacol ; 227: 41-55, 2018 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-30144497

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Euphorbia semen, the dried and ripe seed of Euphorbia lathyris Linnaeus, is widely cultivated for traditional medicine use. This semen is used to expel water, help with phlegm retention, promote blood circulation, remove blood stasis, cure tinea and scabies, and treat amenorrhea, snakebites, terminal schistosomiasis, anuria and constipation. AIM OF THE REVIEW: This review provides updated, comprehensive and categorized information on the local and traditional uses, phytochemistry, pharmacokinetics, pharmacological activities and toxicity of Euphorbia semen. Future research to deepen the recognition and utilization of Euphorbia semen is proposed. MATERIALS AND METHODS: This article conducted a literature review on information about Euphorbia semen in multiple Internet databases, including PubMed, Web of Science, Wiley, Science Direct, Elsevier, ACS publications, SciFinder, Google Scholar and China National Knowledge Internet, until March of 2018. In this manuscript, a number of books, PhD and MSc dissertations, and Chinese Pharmacopeia were also used as references. RESULTS: Approximately 240 chemical constituents have been isolated and identified from Euphorbia semen, namely, diterpenoids, coumarins, flavonoids, fatty acids, amino acids, and steroids. Pharmacokinetic study focused on investigating absorption, distribution, metabolism and excretion (ADME). The chemical constituents have extensive pharmacological effects, such as diuresis and anti-hyperuricaemia, anti-inflammation, antiviral, anticancer, antioxidant, antipigmentation, anti-platelet aggregation and anti-allergic activities, as well as hepatoprotection and neuroprotection. The toxicity of Euphorbia semen, including acute toxicity, target organ irritation and cocareinogenic effects, have been reported, and the detoxification methods are reviewed. CONCLUSION: Euphorbia semen has extensive pharmacological activity and excellent clinical value, along with intense intestinal irritation. Although plenty of chemical constituents have been isolated and identified, the exact pharmacological and toxicological mechanisms still need to be explored.


Assuntos
Euphorbia , Animais , Euphorbia/química , Humanos , Medicina Tradicional Chinesa , Compostos Fitoquímicos/análise , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/análise , Extratos Vegetais/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA