Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 263(Pt 2): 130083, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38423905

RESUMO

Lactic acid bacteria (LAB) exopolysaccharide (EPS) has good water absorption, high viscosity, good stability, so it was widely used in probiotics fields. In this study, EPS-producing LAB strain Lactiplantibacillus plantarum HDL-03 was isolated and identified. Moreover, the HDL-03 EPS was used as a stabilizer and mixed with AgNO3 to synthesize a novel nanoparticle AgNPs whose structure and properties were explored. The monosaccharide composition and molecular weight indicated that HDL-03 EPS was a heteropolysaccharide composed of mannose and glucose. Fourier transform infrared spectroscopy (FT-IR), nuclear magnetic resonance (NMR) spectroscopy analysis and methylation results jointly proved it was a heteropolysaccharide containing 1,3-Manp and 1,6-Glcp. The X-Ray diffraction (XRD) results showed that this EPS has an amorphous structure, while the synthesized AgNPs have crystalline properties. The scanning electron microscopy (SEM) and transmission electron microscopy (TEM) results indicated EPS had a smooth and dense sheet structure, while the surface of AgNPs became rougher and large holes appeared after synthesis. Zeta particle size analysis suggested that the particle size of AgNPs increased by 36.63 nm compared to HDL-03 EPS. FT-IR analysis exhibited that the position of the characteristic peaks of AgNPs changed. The OH moving from a wavelength of 3388.49 cm-1 to a wavelength of 3316.79 cm-1 and telescopic vibration peak changed from 1356.07 cm-1 to 1344.22 cm-1. A plate inhibition test revealed the effect of different concentrations of EPS and AgNO3 synthesized AgNPs on the diameter of inhibition circle produced by the indicator bacteria Escherichia coli and Staphylococcus aureus. Furthermore, AgNPs were applied to the indicator bacteria, which the minimum inhibitory concentration (MIC), time-inhibitory curve, and changes in extracellular conductivity, nucleic acids, proteins, ATP, and lactate dehydrogenase (LDH) levels were determined. The AgNPs inhibited the growth of E. coli and S. aureus and exhibited outstanding antimicrobial properties. With the increase of treatment time, the degree of cell membrane damage increased, the permeability enhanced, and the intracellular substances leaked. These results indicate that HDL-03 EPS has good potential for applications in the production of food packaging, antimicrobials, catheters, textiles and coatings.


Assuntos
Nanopartículas Metálicas , Prata , Prata/farmacologia , Prata/química , Nanopartículas Metálicas/química , Escherichia coli , Espectroscopia de Infravermelho com Transformada de Fourier , Staphylococcus aureus , Antibacterianos/farmacologia , Antibacterianos/química , Testes de Sensibilidade Microbiana , Extratos Vegetais/química , Bactérias
2.
Int J Biol Macromol ; 262(Pt 1): 130060, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38340938

RESUMO

Cordyceps sinensis exopolysaccharide­selenium nanoparticles (EPS-SeNPs) were successfully constructed, characterized, and its Se release kinetics and mechanism were also evaluated in our previous studies. However, the intestinal cellular uptake and transport capacities of EPS-SeNPs remain unknown. On the basis of our previous researches, this work was designed to evaluate the uptake and transport capacities of EPS-SeNPs (EPS/Se = 20/1, 3/1, 1/1, and 3/4) in intestinal epithelial (Caco-2) cells. Confocal laser scanning microscopy results indicated that the internalization of coumarin-6 labeled EPS-SeNPs was in a time-dependent process and eventually located in the cytoplasm, not in the nucleus. Endocytosis inhibitors were employed to evaluate the cellular uptake pathway of EPS-SeNPs, relevant results revealed that clathrin-, caveolae-, and energy-mediated pathways were participated in the internalization of EPS-SeNPs by Caco-2 cells. In addition, the transportation of EPS-SeNPs across Caco-2 cell monolayers was in a concentration-dependent manner. Different particle sizes of EPS-SeNPs presented different uptake and transport capacities in Caco-2 cells. Noteworthy, EPS/Se = 3/4 with the highest selenium content possessed the most superior cellular uptake and transport abilities in Caco-2 cells. The present work may contribute to illustrate the internalization and transport mechanism of EPS-SeNPs, thus facilitating its application in food and medical industries.


Assuntos
Cordyceps , Nanopartículas , Selênio , Humanos , Células CACO-2 , Selênio/farmacologia , Tamanho da Partícula , Nanopartículas/metabolismo
3.
BMC Microbiol ; 23(1): 361, 2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-37993835

RESUMO

BACKGROUND: In investigating of (exopolysaccharide) EPS from unconventional sources, lactic acid bacteria have a vital role due to their generally recognized as safe (GRAS) status. EPSs have diverse applications such as drug delivery, antimicrobial activity, surgical implants, and many more in many sectors. Despite being important, the main hindrance to the commercial application of these significant biopolymers is low productivity. Therefore, this study primarily focuses on optimizing physio-chemical conditions to maximize the previously produced EPS from probiotic Lactiplantibacillus plantarum RO30 (L. plantarum RO30) using one factor at a time (OFAT) and method Response Surface Methodology (RSM). RESULTS: The EPS obtained from L. plantarum RO30 named REPS. The medium formulation for REPS production using the OFAT method revealed that sucrose (20 g/L, beef extract (25 g/L), and ammonium sulfate at 4 g/L concentration were the optimum carbon, organic and inorganic nitrogen sources, and REPS yield was increased up to 9.11 ± 0.51 g/L. RSM experiments revealed that, a greatly significant quadratic polynomial attained from the Central Composite Design (CCD) model was fruitful for specifying the most favorable cultural conditions that have significant consequences on REPS yield. The maximal amount of REPS (10.32 g/L) was formed by: sucrose (40 g/L), beef extract (25 g/L), pH (5.5), incubation temperature (30 °C), and incubation period (72 h). A high closeness was obtained between the predicted and experimental values and it displayed the efficiency of the RSM. CONCLUSION: This study was conducted to reinforce REPS production in the probiotic LAB L. plantarum RO30 by utilizing various experimental parameters. The maximum REPS yield of 10.32 g/L was attained under the circumstances optimized in the study.


Assuntos
Lactobacillales , Probióticos , Projetos de Pesquisa , Sacarose , Extratos Vegetais
4.
Biomedicines ; 11(9)2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37760961

RESUMO

Exopolysaccharides (EPS) are exogenous microbial metabolites generated predominantly during the development of bacteria. They have several biological potentials, including antibacterial, antioxidant, and anticancer actions. Polysaccharide-coated nanoparticles have high biological activity and are used in treatments and diagnostics. In this research, selenium nanoparticles (SeNPs) are synthesized and conjugated with bacterial (Bacillus sp. MKUST-01) exopolysaccharide (EPS). Initially, the creation of SeNPs conjugates was verified through UV-Vis spectral examination, which exhibited a prominent peak at 264 nm. Additionally, X-ray diffraction (XRD) analysis further substantiated the existence of crystalline Se, as evidenced by a robust reflection at 29.78°. Another reflection observed at 23.76° indicated the presence of carbon originating from the EPS. Fourier transform infrared spectroscopy (FT-IR) analysis of the EPS capped with SeNPs displayed characteristic peaks at 3425 cm-1, 2926 cm-1, 1639 cm-1, and 1411 cm-1, corresponding to the presence of O-H, C-H, C=O, and COO-groups. The SeNPs themselves were found to possess elongated rod-shaped structures with lengths ranging from 250 to 550 nm and a diameter of less than 70 nm, as confirmed using scanning electron microscopy and particle size analysis. In contrast to the SeNPs, the SeNPs-EPS conjugates showed no hemolytic activity. The overall antioxidant activity of SeNPs-EPS conjugates outperformed 20% higher than SeNPs and EPS. Additionally, experimental observations involving gnotobiotic Artemia nauplii experiments were also recorded, such as the supplementation of EPS and SeNPs-EPS conjugates corresponding to enhanced growth and increased survival rates compared to Artemia nauplii fed with SeNPs and a microalgal diet.

5.
Int J Biol Macromol ; 247: 125747, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37429344

RESUMO

This wok investigated the effects of Cordyceps sinensis exopolysaccharide­selenium nanoparticles (EPS-SeNPs), EPS-Se-1, EPS-Se-2, EPS-Se-3, and EPS-Se-4) with particle sizes (79-124 nm) and Se contents (20.11-40.80 µg/mg) on endocytosis and antitumor activity against human hepatocellular carcinoma (HepG2) cells and revealed the apoptosis-related mechanisms. EPS-SeNPs inhibited HepG2 cells proliferation in a dose and Se content-dependent manner by disrupting cell membrane and mitochondrial integrity, promoting reactive oxygen species production. EPS-SeNPs were endocytosed by HepG2 cells through a clathrin-mediated pathway and followed the quasi-first-order kinetics model, indicating physical adsorption played a dominant role in cellular uptake behavior of EPS-SeNPs. Notably, EPS-Se-3 with the lowest particle size (79 nm) showed the highest antitumor activity and the strongest ability to promote cell apoptosis. Western blotting results revealed that EPS-Se-3 increased expressions of Bax, Cytochrome c, cleaved caspase-9, cleaved caspase-3, Fas, p53, and cleaved caspase-8, while decreased the expressions of Bcl-2 and PARP, as contrast to that of control. Overall, EPS-SeNPs induced cell apoptosis through intrinsic mitochondria-mediated and extrinsic death receptor-mediated pathways.


Assuntos
Cordyceps , Neoplasias Hepáticas , Nanopartículas , Selênio , Humanos , Selênio/farmacologia , Selênio/metabolismo , Células Hep G2 , Apoptose , Mitocôndrias/metabolismo , Neoplasias Hepáticas/patologia , Receptores de Morte Celular/metabolismo
6.
Food Chem ; 425: 136369, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37269640

RESUMO

Exopolysaccharides (EPS) produced in situ by lactic acid bacteria (LAB) during sourdough fermentation have the potential to replace hydrocolloids in gluten-free sourdoughs. This study investigated effects of an EPS-producing Weissella cibaria NC516.11 fermentation on chemical, rheological properties of sourdough and the quality of buckwheat bread. Results indicate that the buckwheat sourdough fermentation by W. cibaria NC516.11 had lower pH (4.47) and higher total titrable acidity (8.36 mL) compared with other groups, and the polysaccharide content reached 3.10 ± 0.16 g/kg. W. cibaria NC516.11 can significantly improve the rheological properties and viscoelastic properties of sourdough. Compared with control group, the baking loss of NC516.11 group bread decreased by 19.94%, specific volume increased by 26.03%, and showed good appearance and cross-sectional morphology. Scanning electron micrograph revealed an intact and less porous cell structure. Meanwhile, W. cibaria NC516.11 significantly improved the texture of the bread and reduced the hardness and moisture loss during storage.


Assuntos
Fagopyrum , Lactobacillales , Pão/microbiologia , Estudos Transversais , Lactobacillus , Fermentação
7.
Carbohydr Polym ; 314: 120882, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37173036

RESUMO

Food freshness monitoring is vital to ensure food safety. Recently, packaging materials incorporating pH-sensitive films have been employed to monitor the freshness of food products in real time. The film-forming matrix of the pH-sensitive film is essential to maintain the desired physicochemical functions of the packaging. Conventional film-forming matrices, such as polyvinyl alcohol (PVA), have drawbacks of low water resistance, poor mechanical properties, and weak antioxidant ability. In this study, we successfully synthesise PVA/riclin (P/R) biodegradable polymer films to overcome these limitations. The films feature riclin, an agrobacterium-derived exopolysaccharide. The uniformly dispersed riclin conferred outstanding antioxidant activity to the PVA film and significantly improved its tensile strength and barrier properties by forming hydrogen bonds. Purple sweet potato anthocyanin (PSPA) was used as a pH indicator. The intelligent film with added PSPA provided robust surveillance of volatile ammonia and changed its color within 30 s in the pH range of 2-12. This multifunctional colorimetric film also engendered discernible color changes when the quality of shrimp deteriorated, demonstrating its great potential as an intelligent packaging material to monitor food freshness.


Assuntos
Antocianinas , Colorimetria , Antocianinas/química , Embalagem de Alimentos , Álcool de Polivinil/química , Extratos Vegetais/química , Concentração de Íons de Hidrogênio
8.
Arch Microbiol ; 205(5): 210, 2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37115477

RESUMO

Biofilm formation and resistance to antibiotics in pathogenic bacteria are important concerns in the treatment of infectious diseases. A new rapid, eco-friendly and cost-effective strategy to overcome these problems is the use of microbial exopolysaccharides (EPS) for green synthesis of various metal nanoparticles (NPs). This study used EPS from a native probiotic Lactobacillus isolate to synthesize silver nanoparticles (AgNPs) with effective antimicrobial, antibiofilm and antioxidant properties. AgNPs were synthesized by 10 mg of EPS of Lactobacillus paracasei (L. paracasei MN809528) isolated from a local yogurt. The characteristics of EPS AgNPs were confirmed using UV-VIS, FT-IR, DLS, XRD, EDX, FE-SEM, and zeta potential. Antimicrobial, antibiofilm and antioxidant activities of EPS AgNPs were evaluated by the agar well diffusion, microtiter dilution, SEM electron microscopy, and DPPH radical absorption methods, respectively. Spectroscopy data indicated the presence of a 466-nm peak as a feature of AgNPs. FT-IR confirmed the presence of biological agents in the synthesis of AgNPs. FE-SEM results showed that the synthesized AgNPs had a spherical shape with the size of 33-38 nm. Synthesized AgNPs at a concentration of 100 mg/ml demonstrated a significant inhibitory activity compared to chemically synthesized AgNPs. These NPs, exhibited the greatest effect of inhibiting the Escherichia coli and Pseudomonas aeruginosa biofilm formation at sub-MIC concentration, and the best effect of DPPH radical as antioxidant activity was determined at 50-µg/ml concentration. Our findings reveal that EPS AgNPs synthesized by the native isolate of L. paracasei (MN809528) is an inexpensive and environment-friendly candidate for application in pharmaceuticals fields.


Assuntos
Anti-Infecciosos , Lacticaseibacillus paracasei , Nanopartículas Metálicas , Antioxidantes/farmacologia , Antioxidantes/química , Prata/farmacologia , Prata/química , Espectroscopia de Infravermelho com Transformada de Fourier , Nanopartículas Metálicas/química , Testes de Sensibilidade Microbiana , Tamanho da Partícula , Anti-Infecciosos/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Extratos Vegetais/farmacologia , Escherichia coli , Biofilmes
9.
J Appl Microbiol ; 134(4)2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37055367

RESUMO

During the last few decades, endophytes have attracted increased attention due to their ability to produce a plethora of bioactive secondary metabolites. These compounds not only help the endophytes to outcompete other plant-associated microbes or pathogens through quorum sensing, but also enable them to surmount the plant immune system. However, only a very few studies have described the interlink between various biochemical and molecular factors of host-microbe interactions involved in the production of these pharmacological metabolites. The peculiar mechanisms by which endophytes modulate plant physiology and metabolism through elicitors, as well as how they use transitional compounds of primary and secondary metabolism as nutrients and precursors for the synthesis of new compounds or enhancing existing metabolites, are still less understood. This study thus attempts to address the aspects of synthesis of such metabolites used in therapeutics by the endophytes in the light of their ecological significance, adaptation, and intercommunity interactions. Our study explores how endophytes adapt to the specific host environment, especially in medicinal plants that produce metabolites with pharmacological potential and simultaneously modulate host gene expression for the biosynthesis of these metabolites. We also discuss the differential interactions of fungal and bacterial endophytes with their hosts.


Assuntos
Plantas Medicinais , Plantas Medicinais/microbiologia , Endófitos/fisiologia , Metabolismo Secundário , Adaptação Fisiológica , Percepção de Quorum , Fungos/metabolismo
10.
Int J Mol Sci ; 24(6)2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36982816

RESUMO

The gut microbiota is composed of several microbial strains with diverse and variable compositions in both healthy and sick people. An undisturbed gut microbiota needs to be sustained in order to perform all physiological, metabolic, and immune functions in a normal way to prevent the development of diseases. This article has reviewed the published information on the issue of disruption of the balance of the gut microbiota. This disruption could be for many reasons, such as microbial infection in the gastrointestinal tract, food poisoning, diarrhoea, chemotherapy, malnutrition, lifestyle, and ageing. If this disruption is not restored to normal, it might cause dysbiosis. Eventually, a gut microbiota interrupted by dysbiosis might initiate several health issues, such as inflammation of the gastrointestinal tract, the induction of cancer, and the progression of a variety of diseases such as irritable bowel syndrome and inflammatory bowel disease. This review concluded that biotherapy is a natural way of using probiotic products, whether in form of food, beverages, or supplements, to restore the gut microbiota disrupted by dysbiosis. Metabolites secreted by the ingested probiotics help to relieve gastrointestinal tract inflammation and can avoid the induction of cancer.


Assuntos
Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Síndrome do Intestino Irritável , Neoplasias , Probióticos , Humanos , Síndrome do Intestino Irritável/terapia , Disbiose/terapia , Disbiose/complicações , Probióticos/uso terapêutico , Inflamação/terapia , Inflamação/complicações , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/complicações , Neoplasias/tratamento farmacológico , Neoplasias/complicações , Terapia Biológica
11.
J Microbiol Biotechnol ; 33(4): 519-526, 2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-36788470

RESUMO

Panax ginseng is one of the most important herbal medicinal plants consumed as health functional food and can be fermented to achieve better efficacy. Lacticaseibacillus, one of the representative genera among lactic acid bacteria (LAB), has also been used as a probiotic material for health functional foods due to its beneficial effects on the human body. To achieve a synergistic effect by using these excellent dietary supplement ingredients together, a novel LAB strain was isolated from the root of 6-year-old ginseng. Through similarity analysis of 16S rRNAs and whole-genome sequences, the strain was confirmed as belonging to the genus Lacticaseibacillus and was named L. casei KGC1201. KGC1201 not only met all safety standards as food, but also showed excellent probiotic properties such as acid resistance, bile salt resistance, and intestinal adhesion. In particular, KGC1201 exhibited superior acid resistance through morphological observation identifying that the cell surface damage of KGC1201 was less than that of the L. casei type strain KCTC3109. Gene expression studies were conducted to elucidate the molecular mechanisms of KGC1201's acid resistance, and the expression of the glycosyltransferase gene was found to be significantly elevated under acidic conditions. Exopolysaccharides (EPSs) biosynthesized by glycosyltransferase were also increased in KGC1201 compared to KCTC3109, which may contribute to better protection of KGC1201 cells from strong acidity. Therefore, KGC1201, with its increased acid resistance through molecular mechanisms and excellent probiotic properties, can be used in health functional foods to provide greater benefit to overall human health and well-being.


Assuntos
Lacticaseibacillus casei , Lactobacillales , Panax , Probióticos , Humanos , Criança , Lacticaseibacillus casei/genética , Lacticaseibacillus , Ácidos e Sais Biliares
12.
J Funct Biomater ; 15(1)2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38248680

RESUMO

With the phase-out of amalgam and the increase in minimally invasive dentistry, there is a growing need for high-strength composite materials that can kill residual bacteria and promote tooth remineralization. This study quantifies how antibacterial polylysine (PLS) and re-mineralizing monocalcium phosphate monohydrate (MCPM) affect Streptococcus mutans biofilms and the strength of dental composites. For antibacterial studies, the MCPM-PLS filler percentages were 0-0, 8-4, 12-6, and 16-8 wt% of the composite filler phase. Composite discs were immersed in 0.1% sucrose-supplemented broth containing Streptococcus mutans (UA159) and incubated in an anaerobic chamber for 48 h. Surface biomass was determined by crystal violet (CV) staining. Growth medium pH was measured at 24 and 48 h. Biofilm bacterial viability (CFU), exo-polysaccharide (water-soluble glucan (WSG) and water-insoluble glucan (WIG)), and extracellular DNA (eDNA) were quantified. This was by serial dilution plate counting, phenol-sulfuric acid microassay, and fluorometry, respectively. The biaxial flexural strengths were determined after water immersion for 1 week, 1 month, and 1 year. The MCPM-PLS wt% were 8-4, 8-8, 16-4 and 16-8. The normalized biomass, WSG, and WIG showed a linear decline of 66%, 64%, and 55%, respectively, as the PLS level increased up to 8%. The surrounding media pH (4.6) was all similar. A decrease in bacterial numbers with the 12-6 formula and a significant reduction with 16-8 compared to the 0-0 formulation was observed. The eDNA concentrations in biofilms formed on 12-6 and 16-8 formulations were significantly less than the 0-0 control and 8-4 formulations. Doubling MCPM and PLS caused a 14 and 19% reduction in strength in 1 week, respectively. Average results were lower at 1 month and 1 year but affected less upon doubling MCPM and PLS levels. Moreover, a 4% PLS may help to reduce total biomass and glucan levels in biofilms on the above composites. Higher levels are required to reduce eDNA and provide bactericidal action, but these can decrease early strength.

13.
World J Microbiol Biotechnol ; 39(2): 49, 2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36542187

RESUMO

Microbial exopolysaccharides (EPSs) are mostly produced by bacteria and fungi and have potential use in the production of biomedical products such as nutraceuticals and in tissue engineering applications. The present study investigated the in vitro biological activities and in vivo wound healing effects of EPSs produced from a Sclerotium-forming fungus (Sclerotium glucanicum DSM 2159) and a yeast (Rhodosporidium babjevae), denoted as scleroglucan (Scl) and EPS-R, respectively. EPS yields of 0.9 ± 0.07 g/L and 1.11 ± 0.4 g/L were obtained from S. glucanicum and R. babjevae, respectively. The physicochemical properties of the EPSs were characterized using infrared spectroscopy and scanning electron microscopy. Further investigations of the biological properties showed that both EPSs were cytocompatible toward the human fibroblast cell line and demonstrated  hemocompatibility. Favorable wound healing capacities of the EPSs (10 mg/mL) were also established via in vivo tests. The present study therefore showed that the EPSs produced by S. glucanicum and R. babjevae have the potential use as biocompatible components for the promotion of dermal wound healing.


Assuntos
Ascomicetos , Cicatrização , Humanos , Bactérias/metabolismo , Ascomicetos/metabolismo , Suplementos Nutricionais , Linhagem Celular , Polissacarídeos Bacterianos/farmacologia , Polissacarídeos Bacterianos/metabolismo
14.
3 Biotech ; 12(9): 212, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35959165

RESUMO

Enterobacter ludwigii is an oral growing bacteria responsible for teeth blackening. It can form biofilm. The exopolysaccharide (EPS) cluster associated with biofilm formation was isolated using ethanol precipitation and the formaldehyde-sodium hydroxide method. The chemical characterization of EPS was done using UV spectroscopy, Fourier transforms infrared spectroscopy, and gas chromatography-mass spectrometry. Energy-dispersive X-ray spectroscopy (EDS) analysis of  EPS has revealed the presence of carbon > boron > nitrogen > phosphorous > calcium > sulfur > iron > potassium > magnesium. The carbon content was quite high (72.72-77.63%) in the EPS due to polysaccharide composition. The study showed the presence of different monosaccharides glucose (16.91%), galactose (4.25%), mannose (4.04%), and xylose (8.06%) as the major components of EPS. It appears such as thin filaments with three-dimensional structure, compact, irregular lumps and stacked flakes of polysaccharides. The EPS was also examined using different 1D, 2D Nuclear Magnetic Resonance (NMR) spectroscopy techniques (1H NMR, 13C NMR, 1H-1H COSY, 1H-13C HSQC, 1H-13C HMBC) with different deuterated solvents (Protic and aprotic solvents for exchangeable protons), which showed eight distinguished monomers (seven confirmed by HSQC spectrum and one from 1H spectrum). Semi-crystalline nature and thermal stability were confirmed by X-ray diffractogram and differential scanning calorimetry analysis, respectively. The EPS further shows antioxidant potential in a concentration-dependent manner. It can form a stable emulsion against different edible oil that makes it promising alternative for use in food, and pharmaceutical industries. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-022-03279-z.

15.
Foods ; 11(11)2022 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-35681410

RESUMO

This study evaluated the effects of probiotic Lactobacillus plantarum MC5 on the quality, antioxidant activity, and storage stability of yogurt, to determine its possible application as a starter in milk fermentation. Four groups of yogurt were made with different proportions of probiotic L. plantarum MC5 and commercial starters. The yogurt samples' rheological properties, texture properties, antioxidant activity, storage stability, and exopolysaccharides (EPS) content during storage were determined. The results showed that 2:1 and 1:1 yogurt samples (supplemented with L. plantarum MC5) attained the highest EPS content (982.42 mg/L and 751.71 mg/L) during storage. The apparent viscosity, consistency, cohesiveness, and water holding capacity (WHC) of yogurt samples supplemented with L. plantarum MC5 were significantly higher than those of the control group (p < 0.05). Further evaluation of antioxidant activity revealed that yogurt samples containing MC5 starter significantly increased in DPPH, ABTS, OH, and ferric iron-reducing power. The study also found that adding MC5 can promote the growth of Streptococcus thermophilus. Therefore, yogurt containing L. plantarum MC5 had favorable rheological properties, texture, and health effects. The probiotic MC5 usage in milk fermentation showed adequate potential for industrial application.

16.
Int J Biol Macromol ; 213: 339-351, 2022 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-35649440

RESUMO

This work investigated the protective effects of Cordyceps sinensis exopolysaccharide­selenium nanoparticles (EPS-SeNPs) at different Se/EPS ratios (1/20, 1/3, 1/1, and 4/3) against 0.4 mM H2O2-induced oxidative stress in human hepatoma (HepG2) cells. Results revealed that EPS-SeNPs (0.1-4.0 µg/mL) promoted the proliferation of HepG2 cells with a cell viability of over 90% during H2O2 stress. Different Se/EPS ratios of EPS-SeNPs provided protective effects against H2O2-induced oxidative stress in HepG2 cells by increasing cell viability, restoring cell and nucleus morphology, as well as reducing lactate dehydrogenase (LDH) levels. Particularly, EPS-SeNPs (Se/EPS = 1/1) with the smallest particle size showed the highest cell viability and the greatest inhibitory effect on LDH level. Besides, EPS-SeNPs also inhibited nitric oxide and reactive oxygen species (ROS) production, and increased mitochondrial membrane potential, superoxide dismutase (SOD), and catalase levels while reducing glutathione (GSH) content. Specially, EPS-SeNPs at Se/EPS ratio of 1/3 with smaller size showed the lowest ROS level and the highest antioxidant activities (SOD and GSH), implying that the ROS generation was inhibited by increasing enzymatic and non-enzymatic antioxidants. The enhanced protective effect of EPS-SeNPs (Se/EPS = 1/1 and 1/3) might be attributed to its smaller particle size.


Assuntos
Cordyceps , Nanopartículas , Selênio , Antioxidantes/farmacologia , Cordyceps/metabolismo , Células Hep G2 , Humanos , Peróxido de Hidrogênio/farmacologia , Estresse Oxidativo , Polissacarídeos , Espécies Reativas de Oxigênio/metabolismo , Selênio/farmacologia , Superóxido Dismutase/metabolismo
17.
Ecotoxicol Environ Saf ; 226: 112863, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34619478

RESUMO

Heavy metal contamination poses a serious environmental hazard, globally necessitating intricate attention. Heavy metals can cause deleterious health hazards to humans and other living organisms even at low concentrations. Environmental biotechnologists and eco-toxicologists have rigorously assessed a plethora of bioremediation mechanisms that can hamper the toxic outcomes and the molecular basis for rejuvenating the hazardous impacts, optimistically. Environmental impact assessment and restoration of native and positive scenario has compelled biological management in ensuring safety replenishment in polluted realms often hindered by heavy metal toxicity. Copious treatment modalities have been corroborated to mitigate the detrimental effects to remove heavy metals from polluted sites. In particular, Biological-based treatment methods are of great attention in the metal removal sector due to their high efficiency at low metal concentrations, ecofriendly nature, and cost-effectiveness. Due to rapid multiplication and growth rates, bacteria having metal resistance are advocated for metal removal applications. Evolutionary implications of coping with heavy metals toxicity have redressed bacterial adaptive/resistance strategies related to physiological and cross-protective mechanisms. Ample reviews have been reported for the bacterial adaptive strategies to cope with heavy metal toxicity. Nevertheless, a holistic review summarizing the redox reactions that address the cross-reactivity mechanisms between metallothionein synthesis, extracellular polysaccharides production, siderophore production, and efflux systems of metal resistant bacteria are scarce. Molecular dissection of how bacteria adapt themselves to metal toxicity can augment novel and innovative technologies for efficient detoxification, removal, and combat the restorative difficulties for stress alleviations. The present comprehensive compilation addresses the identification of newer methodologies, summarizing the prevailing strategies of adaptive/resistance mechanisms in bacterial bioremediation. Further pitfalls and respective future directions are enumerated in invigorating effective bioremediation technologies including overexpression studies and delivery systems. The analysis will aid in abridging the gap for limitations in heavy metal removal strategies and necessary cross-talk in elucidating the complex cascade of events in better bioremediation protocols.


Assuntos
Metais Pesados , Adaptação Fisiológica , Adaptação Psicológica , Bactérias , Biodegradação Ambiental , Humanos , Metais Pesados/análise , Metais Pesados/toxicidade
18.
mBio ; 12(5): e0244621, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34579578

RESUMO

Aspergillus fumigatus is a ubiquitous mold that can cause invasive pulmonary infections in immunocompromised patients. Within the lung, A. fumigatus forms biofilms that can enhance resistance to antifungals and immune defenses. Aspergillus biofilm formation requires the production of a cationic matrix exopolysaccharide, galactosaminogalactan (GAG). In this study, recombinant glycoside hydrolases (GH)s that degrade GAG were evaluated as antifungal agents in a mouse model of invasive aspergillosis. Intratracheal GH administration was well tolerated by mice. Pharmacokinetic analysis revealed that although GHs have short half-lives, GH prophylaxis resulted in reduced fungal burden in leukopenic mice and improved survival in neutropenic mice, possibly through augmenting pulmonary neutrophil recruitment. Combining GH prophylaxis with posaconazole treatment resulted in a greater reduction in fungal burden than either agent alone. This study lays the foundation for further exploration of GH therapy in invasive fungal infections. IMPORTANCE The biofilm-forming mold Aspergillus fumigatus is a common causative agent of invasive fungal airway disease in patients with a compromised immune system or chronic airway disease. Treatment of A. fumigatus infection is limited by the few available antifungals to which fungal resistance is becoming increasingly common. The high mortality rate of A. fumigatus-related infection reflects a need for the development of novel therapeutic strategies. The fungal biofilm matrix is in part composed of the adhesive exopolysaccharide galactosaminogalactan, against which antifungals are less effective. Previously, we demonstrated antibiofilm activity with recombinant forms of the glycoside hydrolase enzymes that are involved in galactosaminogalactan biosynthesis. In this study, prophylaxis with glycoside hydrolases alone or in combination with the antifungal posaconazole in a mouse model of experimental aspergillosis improved outcomes. This study offers insight into the therapeutic potential of combining biofilm disruptive agents to leverage the activity of currently available antifungals.


Assuntos
Antifúngicos/administração & dosagem , Aspergillus fumigatus/patogenicidade , Biofilmes/efeitos dos fármacos , Glicosídeo Hidrolases/administração & dosagem , Glicosídeo Hidrolases/genética , Aspergilose Pulmonar Invasiva/prevenção & controle , Animais , Antifúngicos/farmacocinética , Biofilmes/crescimento & desenvolvimento , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Feminino , Glicosídeo Hidrolases/farmacocinética , Aspergilose Pulmonar Invasiva/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Neutropenia , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/genética , Virulência
19.
Nutrients ; 13(4)2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33921025

RESUMO

Polysaccharides such as ß-2,1-linked fructans including inulin or fructose oligosaccharides are well-known prebiotics with recognised immunomodulatory properties. In recent years, other fructan types covering ß-2,6-linked fructans, particularly microbial levans, have gained increasing interest in the field. ß-2,6-linked fructans of different degrees of polymerisation can be synthesised by plants or microbes including those that reside in the gastrointestinal tract. Accumulating evidence suggests a role for these ß-2,6 fructans in modulating immune function. Here, we provide an overview of the sources and structures of ß-2,6 fructans from plants and microbes and describe their ability to modulate immune function in vitro and in vivo along with the suggested mechanisms underpinning their immunomodulatory properties. Further, we discuss the limitations and perspectives pertinent to current studies and the potential applications of ß-2,6 fructans including in gut health.


Assuntos
Frutanos/farmacologia , Fatores Imunológicos/farmacologia , Extratos Vegetais/farmacologia , Prebióticos , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Trato Gastrointestinal/imunologia , Humanos , Imunidade/efeitos dos fármacos
20.
Cell Prolif ; 54(6): e13039, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33830560

RESUMO

OBJECTIVES: Whether periodic oral intake of postbiotics positively affects weight regulation and prevents obesity-associated diseases in vivo is unclear. This study evaluated the action mechanism of Lactobacillus plantarum L-14 (KTCT13497BP) extract and the effects of its periodic oral intake in a high-fat-diet (HFD) mouse model. MATERIALS AND METHODS: Mouse pre-adipocyte 3T3-L1 cells and human bone marrow mesenchymal stem cells (hBM-MSC) were treated with L-14 extract every 2 days during adipogenic differentiation, and the mechanism underlying anti-adipogenic effects was analysed at cellular and molecular levels. L-14 extract was orally administrated to HFD-feeding C57BL/6J mice every 2 days for 7 weeks. White adipose tissue was collected and weighed, and liver and blood serum were analysed. The anti-adipogenic mechanism of exopolysaccharide (EPS) isolated from L-14 extract was also analysed using Toll-like receptor 2 (TLR2) inhibitor C29. RESULTS: L-14 extract inhibited 3T3-L1 and hBM-MSC differentiation into mature adipocytes by upregulating AMPK signalling pathway in the early stage of adipogenic differentiation. The weight of the HFD + L-14 group (31.51 ± 1.96 g) was significantly different from that of the HFD group (35.14 ± 3.18 g). L-14 extract also significantly decreased the serum triacylglycerol/high-density lipoprotein cholesterol ratio (an insulin resistance marker) and steatohepatitis. In addition, EPS activated the AMPK signalling pathway by interacting with TLR2, consequently inhibiting adipogenesis. CONCLUSIONS: EPS from L-14 extract inhibits adipogenesis via TLR2 and AMPK signalling pathways, and oral intake of L-14 extract improves obesity and obesity-associated diseases in vivo. Therefore, EPS can be used to prevent and treat obesity and metabolic disorders.


Assuntos
Lactobacillus plantarum , Obesidade/terapia , Probióticos/uso terapêutico , Proteínas Quinases/metabolismo , Receptor 2 Toll-Like/metabolismo , Células 3T3-L1 , Quinases Proteína-Quinases Ativadas por AMP , Adipogenia , Animais , Dieta Hiperlipídica/efeitos adversos , Suplementos Nutricionais , Humanos , Lactobacillus plantarum/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade/etiologia , Obesidade/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA