Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Chin Med ; 19(1): 22, 2024 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-38311790

RESUMO

BACKGROUND: Expansins (EXP) are important enzymes that are involved in the extension of plant cells and regulation of root configurations, which play important roles in resisting various stresses. As a model medicinal plant, Salvia miltiorrhiza is well recognized for treating coronary heart disease, myocardial infection, and other cardiovascular and cerebrovascular diseases; however, the SmEXP gene family has not yet been analyzed. METHODS: The SmEXP family was systematically analyzed using bioinformatics. Quantitative real-time PCR was employed to analyze the tissue expression patterns of the SmEXP family, as well as its expression under abscisic acid (ABA) treatment and abiotic stress. Subcellular localization assay revealed the localization of SmEXLA1, SmEXLB1, and SmEXPA2. RESULTS: This study identified 29 SmEXP that belonged to four different subfamilies. SmEXP promoter analysis suggested that it may be involved in the growth, development, and stress adaptation of S. miltiorrhiza. An analysis of the expression patterns of SmEXP revealed that ABA, Cu2+, and NaCl had regulatory effects on its expression. A subcellular localization assay showed that SmEXLA1 and SmEXLB1 were located on the nucleus and cell membrane, while SmEXPA2 was located on the cell wall. CONCLUSION: For this study, the SmEXP family was systematically analyzed for the first time, which lays a foundation for further elucidating its physiological and biological functionality.

2.
Plant Cell Rep ; 42(3): 575-585, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36624204

RESUMO

KEY MESSAGE: A highly efficient transformation procedure to generate transgenic Stylosanthes roots was established. SgEXPB1 is involved in Stylosanthes root growth under phosphorus deficiency. Stylo (Stylosanthes spp.) is an important forage legume widely applied in agricultural systems in the tropics. Due to the recalcitrance of stylo genetic transformation, functional characterization of candidate genes involved in stylo root growth is limited. This study established an efficient procedure for Agrobacterium rhizogenes-mediated transformation for generating transgenic composite plants of S. guianensis cultivar 'Reyan No. 5'. Results showed that composite stylo plants with transgenic hairy roots were efficiently generated by A. rhizogenes strains K599 and Arqual, infecting the residual hypocotyl at 1.0 cm of length below the cotyledon leaves of 9-d-old seedlings, leading to a high transformation efficiency of > 95% based on histochemical ß-glucuronidase (GUS) staining. Notably, 100% of GUS staining-positive hairy roots can be achieved per composite stylo plant. Subsequently, SgEXPB1, a ß-expansin gene up-regulated by phosphorus (P) deficiency in stylo roots, was successfully overexpressed in hairy roots. Analysis of hairy roots showed that root growth and P concentration in the transgenic composite plants were increased by SgEXPB1 overexpression under low-P treatment. Taken together, a highly efficient A. rhizogenes-mediated transformation procedure for generating composite stylo plants was established to study the function of SgEXPB1, revealing that this gene is involved in stylo root growth during P deficiency.


Assuntos
Fabaceae , Fósforo , Plantas Geneticamente Modificadas/genética , Fósforo/farmacologia , Fabaceae/genética , Genes de Plantas , Folhas de Planta/genética , Raízes de Plantas , Transformação Genética
3.
Plant Sci ; 323: 111377, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35820549

RESUMO

The thermo-sensitive cytoplasmic male-sterility line with Aegilops kotschyi cytoplasm (K-TCMS) is completely male sterile under low temperature (< 18 ℃) during Zadoks growth stages 45-52, whereas its fertility can be restored under hot temperature (≥ 20 ℃). The K-TCMS line may facilitate hybrid breeding and hybrid wheat production. Therefore, to elucidate the molecular mechanisms of its male sterility/fertility conversion, we conducted the association analysis of proteins and transcript expression to screen fertility related genes using RNA-seq, iTRAQ, and PRM-based assay. A gene encoding expansin protein in wheat, TaEXPB5, was isolated in K-TCMS line KTM3315A, which upregulated expression in the fertility anthers. Subcellular localization analysis suggested that TaEXPB5 protein localized to nucleus and cell wall. The silencing of TaEXPB5 displayed pollen abortion and the declination of fertility. Further, cytological investigation indicated that the silencing of TaEXPB5 induced the early degradation of tapetum and abnormal development of pollen wall. These results implied that TaEXPB5 may be essential for anther or pollen development and male fertility of KTM3315A. These findings provide a novel insight into molecular mechanism of fertility conversion for thermo-sensitive cytoplasmic male-sterility wheat, and contribute to the molecular breeding of hybrid wheat in the future.


Assuntos
Aegilops , Infertilidade Masculina , Aegilops/genética , Citoplasma/genética , Regulação da Expressão Gênica de Plantas , Humanos , Masculino , Melhoramento Vegetal , Infertilidade das Plantas/genética , Pólen/genética , Triticum/genética
4.
New Phytol ; 231(5): 1832-1844, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34032290

RESUMO

Abiotic stresses affect plant growth and development by causing cellular damage and/or restricting resources. Plants often respond to stresses through abscisic acid (ABA) signaling. Exogenous ABA application can therefore be used to mimic stress responses, which can be overridden by glucose (Glc) addition during seed germination. It remains unclear whether ABA-mediated germination inhibition is due to regional or global suppression of Glc availability in germinating Arabidopsis seeds. We used a genetically engineered Förster resonance energy transfer (FRET) sensor to ascertain whether ABA affects the spatiotemporal distribution of Glc, 14 C-Glc uptake assays to track potential effects of ABA on sugar import, and transcriptome and mutant analyses to identify genes associated with Glc availability that are involved in ABA-inhibited seed germination. Abscisic acid limits Glc in the hypocotyl largely by suppressing sugar allocation as well as altering sugar metabolism. Mutant plants carrying loss-of-function ABA-inducible sucrose-phosphate synthase (SPS) genes accumulated more Glc, leading to ABA-insensitive germination. We reveal that Glc antagonizes ABA by globally counteracting the ABA influence at the transcript level, including expansin (EXP) family genes suppressed by ABA. This study presents a new perspective on how ABA affects Glc distribution, which likely reflects what occurs when seeds are subjected to abiotic stresses such as drought and salt stress.


Assuntos
Ácido Abscísico , Proteínas de Arabidopsis , Ácido Abscísico/farmacologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Germinação , Glucose , Hipocótilo/metabolismo , Sementes/metabolismo
5.
BMC Genomics ; 22(1): 252, 2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33836656

RESUMO

BACKGROUND: Plant transitions to land require robust cell walls for regulatory adaptations and to resist changing environments. Cell walls provide essential plasticity for plant cell division and defense, which are often conferred by the expansin superfamily with cell wall-loosening functions. However, the evolutionary mechanisms of expansin during plant terrestrialization are unclear. RESULTS: Here, we identified 323 expansin proteins in 12 genomes from algae to angiosperms. Phylogenetic evolutionary, structural, motif gain and loss and Ka/Ks analyses indicated that highly conserved expansin proteins were already present in algae and expanded and purified after plant terrestrialization. We found that the expansion of the FtEXPA subfamily was caused by duplication events and that the functions of certain duplicated genes may have differentiated. More importantly, we generated space-time expression profiles and finally identified five differentially expressed FtEXPs in both large and small fruit Tartary buckwheat that may regulate fruit size by responding to indoleacetic acid. CONCLUSIONS: A total of 323 expansin proteins from 12 representative plants were identified in our study during terrestrialization, and the expansin family that originated from algae expanded rapidly after the plants landed. The EXPA subfamily has more members and conservative evolution in angiosperms. FtEXPA1, FtEXPA11, FtEXPA12, FtEXPA19 and FtEXPA24 can respond to indole-3-acetic acid (IAA) signals and regulate fruit development. Our study provides a blueprint for improving the agronomic traits of Tartary buckwheat and a reference for defining the evolutionary history of the expansin family during plant transitions to land.


Assuntos
Fagopyrum , Magnoliopsida , Fagopyrum/metabolismo , Frutas/genética , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Magnoliopsida/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
6.
J Exp Bot ; 71(9): 2629-2640, 2020 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-32006044

RESUMO

De-esterification of homogalacturonan (HG) is thought to stiffen pectin gels and primary cell walls by increasing calcium cross-linking between HG chains. Contrary to this idea, recent studies found that HG de-esterification correlated with reduced stiffness of living tissues, measured by surface indentation. The physical basis of such apparent wall softening is unclear, but possibly involves complex biological responses to HG modification. To assess the direct physical consequences of HG de-esterification on wall mechanics without such complications, we treated isolated onion (Allium cepa) epidermal walls with pectin methylesterase (PME) and assessed wall biomechanics with indentation and tensile tests. In nanoindentation assays, PME action softened the wall (reduced the indentation modulus). In tensile force/extension assays, PME increased plasticity, but not elasticity. These softening effects are attributed, at least in part, to increased electrostatic repulsion and swelling of the wall after PME treatment. Despite softening and swelling upon HG de-esterification, PME treatment alone failed to induce cell wall creep. Instead, acid-induced creep, mediated by endogenous α-expansin, was reduced. We conclude that HG de-esterification physically softens the onion wall, yet reduces expansin-mediated wall extensibility.


Assuntos
Hidrolases de Éster Carboxílico , Cebolas , Hidrolases de Éster Carboxílico/metabolismo , Parede Celular/metabolismo , Esterificação , Cebolas/metabolismo , Pectinas/metabolismo
7.
BMC Plant Biol ; 20(1): 85, 2020 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-32087672

RESUMO

BACKGROUND: Phosphorus (P) deficiency is one of the major constraints limiting plant growth, especially in acid soils. Stylosanthes (stylo) is a pioneer tropical legume with excellent adaptability to low P stress, but its underlying mechanisms remain largely unknown. RESULTS: In this study, the physiological, molecular and metabolic changes in stylo responding to phosphate (Pi) starvation were investigated. Under low P condition, the growth of stylo root was enhanced, which was attributed to the up-regulation of expansin genes participating in root growth. Metabolic profiling analysis showed that a total of 256 metabolites with differential accumulations were identified in stylo roots response to P deficiency, which mainly included flavonoids, sugars, nucleotides, amino acids, phenylpropanoids and phenylamides. P deficiency led to significant reduction in the accumulation of phosphorylated metabolites (e.g., P-containing sugars, nucleotides and cholines), suggesting that internal P utilization was enhanced in stylo roots subjected to low P stress. However, flavonoid metabolites, such as kaempferol, daidzein and their glycoside derivatives, were increased in P-deficient stylo roots. Furthermore, the qRT-PCR analysis showed that a set of genes involved in flavonoids synthesis were found to be up-regulated by Pi starvation in stylo roots. In addition, the abundances of phenolic acids and phenylamides were significantly increased in stylo roots during P deficiency. The increased accumulation of the metabolites in stylo roots, such as flavonoids, phenolic acids and phenylamides, might facilitate P solubilization and cooperate with beneficial microorganisms in rhizosphere, and thus contributing to P acquisition and utilization in stylo. CONCLUSIONS: These results suggest that stylo plants cope with P deficiency by modulating root morphology, scavenging internal Pi from phosphorylated metabolites and increasing accumulation of flavonoids, phenolic acids and phenylamides. This study provides valuable insights into the complex responses and adaptive mechanisms of stylo roots to P deficiency.


Assuntos
Fabaceae/metabolismo , Metaboloma , Compostos de Fósforo/metabolismo , Fósforo/deficiência , Raízes de Plantas/metabolismo , Fabaceae/genética , Expressão Gênica , Genes de Plantas , Solo/química
8.
Viruses ; 12(1)2020 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-31948116

RESUMO

The plant cell wall acts not only as a physical barrier, but also as a complex and dynamic structure that actively changes under different biotic and abiotic stress conditions. The question is, how are the different cell wall compounds modified during different interactions with exogenous stimuli such as pathogens? Plants exposed to viral pathogens respond to unfavorable conditions on multiple levels. One challenge that plants face under viral stress is the number of processes required for differential cell wall remodeling. The key players in these conditions are the cell wall genes and proteins, which can be regulated in specific ways during the interactions and have direct influences on the rebuilding of the cell wall structure. The cell wall modifications occurring in plants during viral infection remain poorly described. Therefore, this study focuses on cell wall dynamics as an effect of incompatible interactions between the potato virus Y (PVYNTN) and resistant potatoes (hypersensitive plant), as well as compatible (susceptible plant) interactions. Our analysis describes, for the first time, the expression of the potato expansin A3 (StEXPA3) and potato extensin 4 (StEXT4) genes in PVYNTN-susceptible and -resistant potato plant interactions. The results indicated a statistically significant induction of the StEXPA3 gene during a susceptible response. By contrast, we demonstrated the predominantly gradual activation of the StEXT4 gene during the hypersensitive response to PVYNTN inoculation. Moreover, the in situ distributions of expansins (StEXPAs), which are essential cell wall-associated proteins, and the hydroxyproline-rich glycoprotein (HRGP) extensin were investigated in two types of interactions. Furthermore, cell wall loosening was accompanied by an increase in StEXPA deposition in a PVYNTN-susceptible potato, whereas the HRGP content dynamically increased during the hypersensitive response, when the cell wall was reinforced. Ultrastructural localization and quantification revealed that the HRGP extensin was preferably located in the apoplast, but deposition in the symplast was also observed in resistant plants. Interestingly, during the hypersensitive response, StEXPA proteins were mainly located in the symplast area, in contrast to the susceptible potato where StEXPA proteins were mainly observed in the cell wall. These findings revealed that changes in the intracellular distribution and abundance of StEXPAs and HRGPs can be differentially regulated, depending on different types of PVYNTN-potato plant interactions, and confirmed the involvement of apoplast and symplast activation as a defense response mechanism.


Assuntos
Parede Celular/metabolismo , Glicoproteínas/metabolismo , Proteínas de Plantas/metabolismo , Potyvirus/fisiologia , Solanum tuberosum/virologia , Parede Celular/genética , Parede Celular/ultraestrutura , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Glicoproteínas/genética , Interações Hospedeiro-Patógeno , Doenças das Plantas/genética , Doenças das Plantas/virologia , Proteínas de Plantas/genética , Solanum tuberosum/genética
9.
Plant J ; 100(6): 1101-1117, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31469935

RESUMO

How cell wall elasticity, plasticity, and time-dependent extension (creep) relate to one another, to plant cell wall structure and to cell growth remain unsettled topics. To examine these issues without the complexities of living tissues, we treated cell-free strips of onion epidermal walls with various enzymes and other agents to assess which polysaccharides bear mechanical forces in-plane and out-of-plane of the cell wall. This information is critical for integrating concepts of wall structure, wall material properties, tissue mechanics and mechanisms of cell growth. With atomic force microscopy we also monitored real-time changes in the wall surface during treatments. Driselase, a potent cocktail of wall-degrading enzymes, removed cellulose microfibrils in superficial lamellae sequentially, layer-by-layer, and softened the wall (reduced its mechanical stiffness), yet did not induce wall loosening (creep). In contrast Cel12A, a bifunctional xyloglucanase/cellulase, induced creep with only subtle changes in wall appearance. Both Driselase and Cel12A increased the tensile compliance, but differently for elastic and plastic components. Homogalacturonan solubilization by pectate lyase and calcium chelation greatly increased the indentation compliance without changing tensile compliances. Acidic buffer induced rapid cell wall creep via endogenous α-expansins, with negligible effects on wall compliances. We conclude that these various wall properties are not tightly coupled and therefore reflect distinctive aspects of wall structure. Cross-lamellate networks of cellulose microfibrils influenced creep and tensile stiffness whereas homogalacturonan influenced indentation mechanics. This information is crucial for constructing realistic molecular models that define how wall mechanics and growth depend on primary cell wall structure.


Assuntos
Parede Celular/química , Parede Celular/metabolismo , Cebolas/química , Cebolas/metabolismo , Células Vegetais/metabolismo , Celulase , Celulose , Elasticidade , Proteínas Fúngicas , Glicosídeo Hidrolases , Microfibrilas , Microscopia de Força Atômica , Pectinas/química , Polissacarídeo-Liases , Polissacarídeos/metabolismo , Resistência à Tração
10.
J Dairy Sci ; 102(9): 8059-8073, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31326164

RESUMO

Four experiments were conducted to examine the effects of a recombinant bacterial expansin-like protein (BsEXLX1) from Bacillus subtilis and a commercial exogenous fibrolytic enzyme (EFE) preparation for ruminants on hydrolysis of pure substrates (cellulose and xylan) and in vitro digestibility of bermudagrass haylage (BMH). Recombinant Escherichia coli BL21 strain was used to express BsEXLX1; the protein was purified using an affinity column. In experiment 1, carboxymethylcellulose, Whatman #1 filter paper (General Electric, Boston, MA) and oat-spelt xylan substrates were subjected to 4 treatments (1) sodium citrate buffer (control), (2) BsEXLX1 (162 µg/g of substrate), (3) EFE (2.3 mg/g of substrate), and (4) EFE + BsELX1 in 3 independent runs. Samples were incubated at optimal conditions for both additives (pH 5 and 50°C) or at ruminal (pH 6 and 39°C) or ambient (pH 6 and 25°C) conditions for 24 h and sugar release was measured. In experiment 2, digestibility in vitro of BMH was examined after treatment with the following: (1) control (buffer only), (2) BsEXLX1 (162 µg/g of dry matter), (3) EFE (2.2 mg/g of dry matter), and (4) EFE + BsEXLX1 in 3 independent runs at 39°C for 24 h. Experiment 3 examined effects of EFE and BsEXLX1 on simulated preingestive hydrolysis and profile of released sugars from BMH after samples were suspended in deionized water with sodium azide at 25°C for 24 h in 2 independent runs. In experiment 4, the sequence of the BsEXLX1 purified protein was compared with 447 ruminal bacterial genomes to identify similar proteins from the rumen. In experiment 1, compared with EFE alone, EFE and BsEXLX1 synergistically increased sugar release from carboxymethylcellulose and Whatman #1 filter paper under all simulated conditions; however, hydrolysis of xylan was not improved. In experiment 2, compared with EFE alone, treatment with EFE and BsEXLX1 increased neutral detergent fiber and acid detergent fiber digestibility of bermudagrass haylage (by 5.5 and 15%, respectively) and total volatile fatty acid concentrations, and decreased acetate-propionate ratio. In experiment 3, compared with EFE alone. The EFE and BsEXLX1 synergistically reduced concentrations of neutral detergent fiber and acid detergent fiber and increased release of sugars by 9.3%, particularly cellobiose (72.5%). In experiment 4, a similar sequence to that of BsEXLX1 was identified in Bacillus licheniformis, and similar hypothetical protein sequences were identified in Ruminococcus flavefaciens strains along with different protein structures in E. xylanophilum and Lachnospiraceae. This study showed that an expansin-like protein synergistically increased the hydrolysis of pure cellulose substrates and the hydrolysis and digestibility in vitro of BMH.


Assuntos
Ração Animal , Proteínas de Bactérias/administração & dosagem , Bovinos/metabolismo , Cynodon , Proteínas Alimentares/administração & dosagem , Digestão , Xilosidases/administração & dosagem , Animais , Bacillus subtilis , Cynodon/química , Fibras na Dieta/metabolismo , Fermentação , Hidrólise , Distribuição Aleatória , Proteínas Recombinantes/administração & dosagem , Rúmen/metabolismo
11.
Medicina (Kaunas) ; 55(5)2019 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-31121985

RESUMO

Background and objectives: Group-1 grass allergens or beta-expansins (EXPBs) are major allergens from pollen of all grass species. Previous studies showed that they are highly conserved (64-85%) in Pooideae species, which are found mostly in the temperate regions. However, the information about group-1 allergens from common grass species in subtropical areas is still lacking. This study aimed to assess the sequence diversity of group-1 grass pollen allergens in subtropical areas, especially in Southeast Asia. Materials and Methods: Group-1 allergens were cloned from pollen of eight grass species using a single set of primers. Sequences were analyzed and IgE and IgG4 binding regions were compared to the previously reported epitopes in homologous EXPBs. The phylogenetic analysis was used to assess the relationship between sequences of these species and previously characterized EXPBs. Moreover, three-dimensional structure of the EXPB was modeled based on homology to Zea m 1. Results: Sequences from eight grass species were nearly identical. It is conceivable that the primers used for cDNA amplification detected the same isoform in different species. In fact, the deduced amino acid sequences shared 97.79-100% identity with each other and 15/819 polymorphic nucleotide positions were identified. The predicted structure showed that the IgE and IgG4 epitopes and polymorphic residues were located in both domains 1 and 2. The dendrogram presents clustering of class A EXPBs into four groups corresponding to the grass subfamilies. Conclusions: This study identified the allergens with near-identical sequences from different grass species. This isoform could be the major cross-reacting allergenic protein from commonly found grass species.


Assuntos
Alérgenos/imunologia , Poaceae/imunologia , Pólen/imunologia , Biodiversidade , Humanos , Tailândia
12.
Plant Cell Environ ; 42(4): 1205-1221, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30203844

RESUMO

High temperature (HT) is becoming an increasingly serious factor in limiting crop production with global climate change. During hot seasons, owing to prevailing HT, cultivated tomatoes are prone to exhibiting stigma exsertion, which hampers pollination and causes fruit set failure. However, the underlying regulatory mechanisms of the HT-induced stigma exsertion remain largely unknown. Here, we demonstrate that stigma exsertion induced by HT in cultivated tomato is caused by more seriously shortened stamens than pistils, which is different from the stigma exsertion observed in wild tomato species. Under the HT condition, the different responses of pectin, sugar, expansin, and cyclin cause cell wall remodelling and differentially localized cell division and selective cell enlargement, which further determine the lengths of stamens and pistils. In addition, auxin and jasmonate (JA) are implicated in regulating cell division and cell expansion in stamens and pistils, and exogenous JA instead of auxin treatment can effectively rescue tomato stigma exsertion through regulating the JA/COI1 signalling pathway. Our findings provide a better understanding of stigma exsertions under the HT condition in tomato and uncover a new function of JA in improving plant abiotic stress tolerance.


Assuntos
Ciclopentanos/metabolismo , Flores/fisiologia , Oxilipinas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Transdução de Sinais , Solanum lycopersicum/metabolismo , Flores/crescimento & desenvolvimento , Frutose/metabolismo , Glucose/metabolismo , Temperatura Alta , Ácidos Indolacéticos/metabolismo , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/fisiologia , Pectinas/metabolismo , Polinização , Reação em Cadeia da Polimerase em Tempo Real , Autofertilização , Sacarose/metabolismo
13.
Mol Plant Pathol ; 19(10): 2333-2348, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30011123

RESUMO

Rhizomania of sugar beet, caused by Beet necrotic yellow vein virus (BNYVV), is characterized by excessive lateral root (LR) formation leading to dramatic reduction of taproot weight and massive yield losses. LR formation represents a developmental process tightly controlled by auxin signaling through AUX/IAA-ARF responsive module and LATERAL ORGAN BOUNDARIES DOMAIN (LBD) transcriptional network. Several LBD transcription factors play central roles in auxin-regulated LR development and act upstream of EXPANSINS (EXPs), cell wall (CW)-loosening proteins involved in plant development via disruption of the extracellular matrix for CW relaxation and expansion. Here, we present evidence that BNYVV hijacks these auxin-regulated pathways resulting in formation LR and root hairs (RH). We identified an AUX/IAA protein (BvAUX28) as interacting with P25, a viral virulence factor. Mutational analysis indicated that P25 interacts with domains I and II of BvAUX28. Subcellular localization of co-expressed P25 and BvAUX28 showed that P25 inhibits BvAUX28 nuclear localization. Moreover, root-specific LBDs and EXPs were greatly upregulated during rhizomania development. Based on these data, we present a model in which BNYVV P25 protein mimics action of auxin by removing BvAUX28 transcriptional repressor, leading to activation of LBDs and EXPs. Thus, the evidence highlights two pathways operating in parallel and leading to uncontrolled formation of LRs and RHs, the main manifestation of the rhizomania syndrome.


Assuntos
Beta vulgaris/metabolismo , Beta vulgaris/virologia , Vírus de Plantas/patogenicidade , Fatores de Transcrição/metabolismo , Doenças das Plantas/genética , Doenças das Plantas/virologia , Fatores de Transcrição/genética , Proteínas Virais/genética , Proteínas Virais/metabolismo , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
14.
Planta ; 247(2): 381-392, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29022073

RESUMO

MAIN CONCLUSION: Treatment with aluminum triggers a unique response in tea seedlings resulting in biochemical modification of the cell wall, regulation of the activity of the loosening agents, and elongation of root. Unlike most terrestrial plants, tea (Camellia sinensis L.) responds to aluminum (Al) through the promotion of its root elongation; but the real mechanism(s) behind this phenomenon is not well understood. A plausible relationship between the modifications of the cell wall and the promotion of root elongation was examined in tea seedlings treated for 8 days with 400 µM Al. The mechanical properties of the cell wall, the composition of its polysaccharides and their capacity to absorb Al, the expression of genes, and the activities of the wall-modifying proteins were studied. With 6 h of the treatment, about 40% of the absorbed Al was bound to the cell wall; however, the amount did not increase thereafter. Meanwhile, the activity of pectin methylesterase, the level of pectin demethylation, the amounts and the average molecular mass of xyloglucan in the root apices significantly decreased upon exposure to Al, resulting in the reduction of Al binding sites. On the other hand, the activity and the gene expression of peroxidase decreased, whereas the activity and gene expression of xyloglucan-degrading enzymes, the expression of expansin A and the H +-ATPase4 genes increased in the Al-treated plants. Interestingly, it was accompanied by the increase of elastic and viscous extensibility of the root apices. From the results, it can be suggested that the biochemical modification of the cell walls reduces sites of Al binding to roots and triggers the activity of the loosening agents, thereby increasing the length of tea roots.


Assuntos
Alumínio/toxicidade , Camellia sinensis/metabolismo , Hidrolases de Éster Carboxílico/metabolismo , Proteínas de Plantas/metabolismo , Camellia sinensis/efeitos dos fármacos , Camellia sinensis/crescimento & desenvolvimento , Parede Celular/efeitos dos fármacos , Parede Celular/metabolismo , Glucanos/análise , Pectinas/metabolismo , Proteínas de Plantas/genética , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Polissacarídeos/metabolismo , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Xilanos/análise
15.
Comput Biol Chem ; 70: 31-39, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28780227

RESUMO

Plant pollens are airborne allergens, as their inhalation causes immune activation, leading to rhinitis, conjunctivitis, sinusitis and oral allergy syndrome. A myriad of pollen proteins belonging to profilin, expansin, polygalacturonase, glucan endoglucosidase, pectin esterase, and lipid transfer protein class have been identified. In the present in silico study, the protein domains of fifteen pollen sequences were extracted from the UniProt database and submitted to the interactive web tool SMART (Simple Modular Architecture Research Tool), for finding the protein domain profiles. Analysis of the data based on custom-made scripts revealed the conservation of pathogenic domains such as OmpH, PROF, PreSET, Bet_v_1, Cpl-7 and GAS2. Further, the retention of critical domains like CHASE2, Galanin, Dak2, DALR_1, HAMP, PWI, EFh, Excalibur, CT, PbH1, HELICc, and Kelch in pollen proteins, much like cockroach allergens and lethal viruses (such as HIV, HCV, Ebola, Dengue and Zika) was observed. Based on the shared motifs in proteins of taxonomicall-ydispersed organisms, it can be hypothesized that allergens and pathogens manipulate the human immune system in a similar manner. Allergens, being inanimate, cannot replicate in human body, and are neutralized by immune system. But, when the allergens are unremitting, the immune system becomes persistently hyper-sensitized, creating an inflammatory milieu. This study is expected to contribute to the understanding of pollen allergenicity and pathogenicity.


Assuntos
Alérgenos/química , Alérgenos/imunologia , Proteínas de Plantas/química , Proteínas de Plantas/imunologia , Pólen/química , Pólen/imunologia , Humanos
16.
J Exp Bot ; 67(2): 463-76, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26608646

RESUMO

The advent of user-friendly instruments for measuring force/deflection curves of plant surfaces at high spatial resolution has resulted in a recent outpouring of reports of the 'Young's modulus' of plant cell walls. The stimulus for these mechanical measurements comes from biomechanical models of morphogenesis of meristems and other tissues, as well as single cells, in which cell wall stress feeds back to regulate microtubule organization, auxin transport, cellulose deposition, and future growth directionality. In this article I review the differences between elastic modulus and wall extensibility in the context of cell growth. Some of the inherent complexities, assumptions, and potential pitfalls in the interpretation of indentation force/deflection curves are discussed. Reported values of elastic moduli from surface indentation measurements appear to be 10- to >1000-fold smaller than realistic tensile elastic moduli in the plane of plant cell walls. Potential reasons for this disparity are discussed, but further work is needed to make sense of the huge range in reported values. The significance of wall stress relaxation for growth is reviewed and connected to recent advances and remaining enigmas in our concepts of how cellulose, hemicellulose, and pectins are assembled to make an extensible cell wall. A comparison of the loosening action of α-expansin and Cel12A endoglucanase is used to illustrate two different ways in which cell walls may be made more extensible and the divergent effects on wall mechanics.


Assuntos
Parede Celular/fisiologia , Desenvolvimento Vegetal , Fenômenos Biomecânicos , Parede Celular/enzimologia , Pectinas , Células Vegetais/fisiologia
17.
Plant Physiol Biochem ; 78: 53-62, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24636907

RESUMO

Phosphorus (P) is a critical macronutrient required for numerous functions in plants and is one of the limiting factors for plant growth. Phosphate availability has a strong effect on root system architecture. Expansins are encoded by a superfamily of genes that are organized into four families, and growing evidence has demonstrated that expansins are involved in almost all aspects of plant development, especially root development. In the current study, we demonstrate that expansins may be involved in increasing phosphorus availability by regulating the growth and development of plant roots. Multiple expansins (five α- and nine ß-expansin genes) were up- or down-regulated in response to phosphorus and showed different expression patterns in wheat. Meanwhile, the expression level of TaEXPB23 was up-regulated at excess-P condition, suggesting the involvement of TaEXPB23 in phosphorus adaptability. Overexpression of the TaEXPB23 resulted in improved phenotypes, particularly improved root system architecture, as indicated by the increased number of lateral roots in transgenic tobacco plants under excess-P and low-P conditions. Thus, these transgenic plants maintained better photosynthetic gas exchange ability than the control under both P-sufficient and P-deficient conditions.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Fósforo/farmacologia , Proteínas de Plantas/genética , Triticum/genética , Adaptação Fisiológica/efeitos dos fármacos , Adaptação Fisiológica/genética , Biomassa , Relação Dose-Resposta a Droga , Família Multigênica , Fósforo/metabolismo , Fotossíntese/efeitos dos fármacos , Fotossíntese/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Brotos de Planta/genética , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Tempo , Triticum/crescimento & desenvolvimento , Triticum/metabolismo
18.
Plant Physiol Biochem ; 70: 433-44, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23835361

RESUMO

To investigate the role of jasmonates (JAs) in the ripening of Fragaria chiloensis fruit, two concentrations of methyl jasmonate (MeJA, 10 and 100 µM) were evaluated at 2, 5 and 9 d using an in vitro ripening system. Fruit quality parameters; the contents of anthocyanin, lignin and cell wall polymers; and the transcriptional profiles of several ripening-related genes were analyzed. MeJA accelerated fruit ripening by means of a transitory increase in the soluble solid content/titratable acidity ratio, anthocyanin accumulation and an increase in softening at day 5. The expression of several phenylpropanoid-related genes, primarily those associated with anthocyanin biosynthesis, was increased under MeJA treatment, which correlated with an increased accumulation of anthocyanin. MeJA also altered the expression profiles of some cell wall-modifying genes, namely, EG1 and XTH1, and these changes correlated with a transient reduction in the firmness of MeJA-treated fruits. MeJA-responsive elements were observed in the promoter region of the EG1 gene. MeJA also increased the expression of LOX, AOS and OPR3, genes involved in the biosynthesis of JAs, and these changes correlated with the transient activation of fruit ripening observed. Conversely, the expression of ethylene and lignin biosynthesis genes (ACS, ACO, CAD and POD27) increased in MeJA-treated fruits at day 9. The present findings suggest that JAs promote the ripening of non-climacteric fruits through their involvement in anthocyanin accumulation, cell wall modification and the biosynthesis of ethylene and JAs.


Assuntos
Acetatos/metabolismo , Ciclopentanos/metabolismo , Fragaria/genética , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Expressão Gênica , Genes de Plantas , Oxilipinas/metabolismo , Desenvolvimento Vegetal/genética , Acetatos/farmacologia , Antocianinas/genética , Antocianinas/metabolismo , Parede Celular/efeitos dos fármacos , Parede Celular/metabolismo , Ciclopentanos/farmacologia , Etilenos/biossíntese , Fragaria/efeitos dos fármacos , Fragaria/crescimento & desenvolvimento , Fragaria/metabolismo , Frutas/efeitos dos fármacos , Frutas/crescimento & desenvolvimento , Expressão Gênica/efeitos dos fármacos , Lignina/biossíntese , Lignina/genética , Oxilipinas/farmacologia , Desenvolvimento Vegetal/efeitos dos fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
19.
J Biochem ; 154(2): 195-205, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23694780

RESUMO

Pollen proteins from several grass species have been identified and characterized as causative allergens in grass pollinosis. In contrast, allergenic potential of pollen proteins from rice, which belongs to the same Poaceae family, has not well been investigated, despite that a few clinical cases have been reported on rice-pollen allergy. In this study, to characterize expression and allergenic potential of pollen proteins from rice (Oryza sativa, ssp. japonica), rice putative proteins for ß-expansin (EXP), a Ca(2+)-binding protein (CBP)/polcalcin, extensin (EXT), profilin (PRF) and polygalacturonase (PGA) retrieved from a rice complete cDNA database were prepared as recombinant proteins, and the antibodies to these recombinant proteins were obtained. Immuno-blotting and immuno-histological analyses showed that rice putative EXP, EXT and PGA were expressed abundantly in anther tissue and pollen granules and immuno-cross reactive with pollen proteins from timothy grass. ELISA and immuno-dot blotting analyses using serum specimens from allergic patients showed that majority of the specimens was positive in the IgE-binding to EXP and EXT, but weakly to PGA and almost negative to PRF. EXP and EXT were suggested to be potentially allergenic in the rice-pollen allergy as well as the grass pollinosis.


Assuntos
Alérgenos/imunologia , Imunoglobulina E/imunologia , Oryza/imunologia , Proteínas de Plantas/imunologia , Pólen/imunologia , Rinite Alérgica Sazonal/imunologia , Adulto , Alérgenos/química , Alérgenos/genética , Especificidade de Anticorpos , Sítios de Ligação de Anticorpos , Criança , Pré-Escolar , Reações Cruzadas , Escherichia coli/genética , Feminino , Expressão Gênica , Humanos , Lactente , Masculino , Oryza/química , Oryza/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética , Pólen/química , Pólen/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA