Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biomol Struct Dyn ; : 1-16, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38373021

RESUMO

Despite a major threat to the public health in tropical and subtropical regions, dengue virus (DENV) infections are untreatable. Therefore, efforts are needed to investigate cost-effective therapeutic agents that could cure DENV infections in future. The NS2B-NS3 protease encoded by the genome of DENV is considered a critical target for the development of anti-dengue drugs. The objective of the current study was to find out a specific inhibitor of the NS2B-NS3 proteases from all four serotypes of DENV. To begin with, nine plant extracts with a medicinal history were evaluated for their role in inhibiting the NS2B-NS3 proteases by Fluorescence Resonance Energy Transfer (FRET) assay. Among the tested extracts, Punica granatum was found to be the most effective one. The metabolic profiling of this extract revealed the presence of several active compounds, including ellagic acid, punicalin and punicalagin, which are well-established antiviral agents. Further evaluation of IC50 values of these three antiviral molecules revealed punicalagin as the most potent anti-NS2B-NS3 protease drug with IC50 of 0.91 ± 0.10, 0.75 ± 0.05, 0.42 ± 0.03, 1.80 ± 0.16 µM against proteases from serotypes 1, 2, 3 and 4, respectively. The docking studies demonstrated that these compounds interacted at the active site of the enzyme, mainly with His and Ser residues. Molecular dynamics simulations analysis also showed the structural stability of the NS2B-NS3 proteases in the presence of punicalagin. In summary, this study concludes that the punicalagin can act as an effective inhibitor against NS2B-NS3 proteases from all four serotypes of DENV.Communicated by Ramaswamy H. Sarma.

2.
J Biol Chem ; 299(12): 105369, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37865311

RESUMO

Cardiac MyBP-C (cMyBP-C) interacts with actin and myosin to fine-tune cardiac muscle contractility. Phosphorylation of cMyBP-C, which reduces the binding of cMyBP-C to actin and myosin, is often decreased in patients with heart failure (HF) and is cardioprotective in model systems of HF. Therefore, cMyBP-C is a potential target for HF drugs that mimic its phosphorylation and/or perturb its interactions with actin or myosin. We labeled actin with fluorescein-5-maleimide (FMAL) and the C0-C2 fragment of cMyBP-C (cC0-C2) with tetramethylrhodamine (TMR). We performed two complementary high-throughput screens (HTS) on an FDA-approved drug library, to discover small molecules that specifically bind to cMyBP-C and affect its interactions with actin or myosin, using fluorescence lifetime (FLT) detection. We first excited FMAL and detected its FLT, to measure changes in fluorescence resonance energy transfer (FRET) from FMAL (donor) to TMR (acceptor), indicating binding. Using the same samples, we then excited TMR directly, using a longer wavelength laser, to detect the effects of compounds on the environmentally sensitive FLT of TMR, to identify compounds that bind directly to cC0-C2. Secondary assays, performed on selected modulators with the most promising effects in the primary HTS assays, characterized the specificity of these compounds for phosphorylated versus unphosphorylated cC0-C2 and for cC0-C2 versus C1-C2 of fast skeletal muscle (fC1-C2). A subset of identified compounds modulated ATPase activity in cardiac and/or skeletal myofibrils. These assays establish the feasibility of the discovery of small-molecule modulators of the cMyBP-C-actin/myosin interaction, with the ultimate goal of developing therapies for HF.


Assuntos
Proteínas de Transporte , Descoberta de Drogas , Insuficiência Cardíaca , Miofibrilas , Bibliotecas de Moléculas Pequenas , Humanos , Actinas/metabolismo , Descoberta de Drogas/métodos , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/metabolismo , Miocárdio/metabolismo , Miosinas/metabolismo , Fosforilação/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Avaliação Pré-Clínica de Medicamentos , Miofibrilas/efeitos dos fármacos , Proteínas de Transporte/metabolismo , Técnicas Biossensoriais , Adenosina Trifosfatases/metabolismo , Músculo Esquelético/metabolismo , Proteínas Recombinantes/metabolismo , Ativação Enzimática/efeitos dos fármacos , Transferência Ressonante de Energia de Fluorescência
3.
Pharmaceutics ; 15(5)2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37242568

RESUMO

In cancer combination therapy, a multimodal delivery vector is used to improve the bioavailability of multiple anti-cancer hydrophobic drugs. Further, targeted delivery of therapeutics along with simultaneous monitoring of the drug release at the tumor site without normal organ toxicity is an emerging and effective strategy for cancer treatment. However, the lack of a smart nano-delivery system limits the application of this therapeutic strategy. To overcome this issue, a PEGylated dual drug, conjugated amphiphilic polymer (CPT-S-S-PEG-CUR), has been successfully synthesized by conjugating two hydrophobic fluorescent anti-cancer drugs, curcumin (CUR) and camptothecin (CPT), through an ester and a redox-sensitive disulfide (-S-S-) linkage, respectively, with a PEG chain via in situ two-step reactions. CPT-S-S-PEG-CUR is spontaneously self-assembled in the presence of tannic acid (TA, a physical crosslinker) into anionic, comparatively smaller-sized (~100 nm), stable nano-assemblies in water in comparison to only polymer due to stronger H-bond formation between polymer and TA. Further, due to the spectral overlap between CPT and CUR and a stable, smaller nano-assembly formation by the pro-drug polymer in water in presence of TA, a successful Fluorescence Resonance Energy Transfer (FRET) signal was generated between the conjugated CPT (FRET donor) and conjugated CUR (FRET acceptor). Interestingly, these stable nano-assemblies showed a preferential breakdown and release of CPT in a tumor-relevant redox environment (in the presence of 50 mM glutathione), leading to the disappearance of the FRET signal. These nano-assemblies exhibited a successful cellular uptake by the cancer cells and an enhanced antiproliferative effect in comparison to the individual drugs in cancer cells (AsPC1 and SW480). Such promising in vitro results with a novel redox-responsive, dual-drug conjugated, FRET pair-based nanosized multimodal delivery vector can be highly useful as an advanced theranostic system towards effective cancer treatment.

4.
Spectrochim Acta A Mol Biomol Spectrosc ; 300: 122902, 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37244026

RESUMO

Chinese herbal medicine is receiving more and more attention at home and abroad as a traditional Chinese clinical medicine. To make herbal medicines can be preserved for a long time, they are usually fumigated with sulfur. However, after the medicinal materials have been fumigated with sulfur, SO2 residues will remain, which, when exposed to water, will create sulfites and bisulfites. Excessive sulfites can cause a variety of severe ailments and diminish the quality and effectiveness of therapeutic plants. Therefore, developing an effective SO32-/HSO3- detection method is important. This study chose coumarin derivatives as fluorescent acceptors and pyridinium acrylonitrile structures as fluorescent donors to create a ratiometric fluorescent probe CPA using the fluorescence resonance energy transfer (FRET) effect. The probe CPA exhibited a fluorescence transition from red to green under excitation at 405 nm with an interval of 149 nm, a reaction time of less than 1 min, a low detection limit of 86 nM, and the probe CPA has good specific recognition of SO32- and is resistant to interference. In addition, CPA has low in vitro cytotoxicity and can successfully detect endogenous sulfites in living cells.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes , Corantes Fluorescentes/química , Medicina Tradicional Chinesa , Colorimetria/métodos , Sulfitos/química , Dióxido de Enxofre
5.
Biosensors (Basel) ; 13(5)2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37232922

RESUMO

The dispersion of uranium in the environment can pose a problem for the health of humans and other living organisms. It is therefore important to monitor the bioavailable and hence toxic fraction of uranium in the environment, but no efficient measurement methods exist for this. Our study aims to fill this gap by developing a genetically encoded FRET-based ratiometric uranium biosensor. This biosensor was constructed by grafting two fluorescent proteins to both ends of calmodulin, a protein that binds four calcium ions. By modifying the metal-binding sites and the fluorescent proteins, several versions of the biosensor were generated and characterized in vitro. The best combination results in a biosensor that is affine and selective for uranium compared to metals such as calcium or other environmental compounds (sodium, magnesium, chlorine). It has a good dynamic range and should be robust to environmental conditions. In addition, its detection limit is below the uranium limit concentration in drinking water defined by the World Health Organization. This genetically encoded biosensor is a promising tool to develop a uranium whole-cell biosensor. This would make it possible to monitor the bioavailable fraction of uranium in the environment, even in calcium-rich waters.


Assuntos
Técnicas Biossensoriais , Urânio , Humanos , Transferência Ressonante de Energia de Fluorescência/métodos , Cálcio , Proteínas de Fluorescência Verde , Técnicas Biossensoriais/métodos
6.
Methods Appl Fluoresc ; 10(3)2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35442215

RESUMO

This work developed a sensitive DNA-based fluorescent probe comprising a cysteine binding unit and a signal amplification unit based on a catalyzed hairpin assembly (CHA) reaction. The cysteine binding unit comprises a homodimer of single-stranded DNA (ssDNA) rich in cytosine and held together by silver ions. In the presence of cysteine, the homodimer is disintegrated because of cysteine-silver binding that liberates the ssDNA, which drives the CHA reaction in the signal amplification unit. Förster resonance energy transfer (FRET) was used to report the generation of the amplified double-stranded DNA (dsDNA) product. Under the optimal conditions, the probe provided a good linearity (100-1200 nM), a good detection limit (47.8 ± 2.7 nM) and quantification limit (159.3 ± 5.3 nM), and a good sensitivity (1.900 ± 0.045µM-1). The probe was then used to detect cysteine in nine real food supplement samples. All results provided good recoveries that are acceptable by the AOAC, indicating that it has potential for practical applications.


Assuntos
Técnicas Biossensoriais , Transferência Ressonante de Energia de Fluorescência , Técnicas Biossensoriais/métodos , Catálise , Cisteína , DNA/genética , DNA de Cadeia Simples , Corantes Fluorescentes , Prata
7.
BMC Complement Med Ther ; 22(1): 98, 2022 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-35366855

RESUMO

BACKGROUND: Hepatitis C virus infection is the main cause of liver ailments across the globe. Several HCV genotypes have been identified in different parts of the world. Effective drugs for combating HCV infections are available but not affordable, particularly to infected individuals from resource-limited countries. Hence, cost-effective drugs need to be developed against important HCV drug targets. As Citrus fruits naturally contain bioactive compounds with antiviral activities, the current study was designed to identify antiviral inhibitors from Citrus fruit extracts against an important drug target, NS3 protease, of HCV genotype 3a which is found predominantly in South Asian countries. METHODS: The full-length NS3 protease alone and the NS3 protease domain in fusion with the cognate NS4A cofactor were expressed in Escherichia coli, and purified by chromatographic techniques. Using the purified protein as a drug target, Citrus extracts were evaluated in a FRET assay, and active ingredients, identified using ESI-MS/MS, were docked to observe the interaction with active site residues of NS3. The best interacting compound was further confirmed through the FRET assay as the inhibitor of NS3 protease. RESULTS: Fusion of the NS3 protease domain to the NS4A cofactor significantly improved the purification yield, and NS3-NS4A was functionally more active than the full-length NS3 alone. The purified protein (NS3-NS4A) was successfully employed in a validated FRET assay to evaluate 14 Citrus fruit extracts, revealing that the mesocarp extract of Citrus paradisi, and whole fruit extracts of C. sinesis, C. aurantinum, and C. reticulata significantly inhibited the protease activity of HCV NS3 protease (IC50 values of 5.79 ± 1.44 µg/mL, 37.19 ± 5.92 µg/mL, 42.62 ± 6.89 µg/mL, and 57.65 ± 3.81 µg/mL, respectively). Subsequent ESI-MSn analysis identified a flavonoid, hesperidin, abundantly present in all the afore-mentioned Citrus extracts. Importantly, docking studies suggested that hesperidin interacts with active site residues, and acts as a potent inhibitor of NS3 protease, exhibiting an IC50 value of 11.34 ± 3.83 µg/mL. CONCLUSIONS: A FRET assay was developed using NS3-NS4A protease, which was successfully utilized for the evaluation of Citrus fruit extracts. Hesperidin, a compound present in the Citrus extracts, was identified as the main flavonoid, which can serve as a cost-effective potent inhibitor of NS3 protease, and could be developed as a drug for antiviral therapy against HCV genotype 3a.


Assuntos
Citrus , Hepatite C , Hesperidina , Genótipo , Hesperidina/farmacologia , Peptídeo Hidrolases/genética , Extratos Vegetais/farmacologia , Serina Endopeptidases/química , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Espectrometria de Massas em Tandem , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo
8.
Acta Pharm Sin B ; 12(1): 92-106, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35127374

RESUMO

Nanoparticulate drug delivery systems (Nano-DDSs) have emerged as possible solution to the obstacles of anticancer drug delivery. However, the clinical outcomes and translation are restricted by several drawbacks, such as low drug loading, premature drug leakage and carrier-related toxicity. Recently, pure drug nano-assemblies (PDNAs), fabricated by the self-assembly or co-assembly of pure drug molecules, have attracted considerable attention. Their facile and reproducible preparation technique helps to remove the bottleneck of nanomedicines including quality control, scale-up production and clinical translation. Acting as both carriers and cargos, the carrier-free PDNAs have an ultra-high or even 100% drug loading. In addition, combination therapies based on PDNAs could possibly address the most intractable problems in cancer treatment, such as tumor metastasis and drug resistance. In the present review, the latest development of PDNAs for cancer treatment is overviewed. First, PDNAs are classified according to the composition of drug molecules, and the assembly mechanisms are discussed. Furthermore, the co-delivery of PDNAs for combination therapies is summarized, with special focus on the improvement of therapeutic outcomes. Finally, future prospects and challenges of PDNAs for efficient cancer therapy are spotlighted.

9.
Anal Bioanal Chem ; 414(7): 2505-2512, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35099583

RESUMO

MicroRNAs are known to be tumor suppressors and promoters and can be used as cancer markers. In this work, a novel oligosensor was designed using Si quantum dots (SiQDs) for the detection of miRNAs. Five-nanometer SiQDs were synthesized, with a band gap of 2.8 eV, fluorescence lifetime of 4.56 µs (τ1/2 = 3.26 µs), quantum yield of 25%, fluorescence rate constant of 6.25 × 104, and non-radiative rate constant of 1.60 × 105 s-1. They showed excellent water dispersibility, good stability (with 95% confidence for 6-month storage) without photobleaching, and high biocompatibility, with an IC50 value of 292.2 µg/L. The SiQDs and Black Hole Quencher-1 (BHQ1) were conjugated to the 5' and 3' terminals of an oligomer, respectively. The resulting hairpin molecular beacon showed resonance energy transfer efficiency of 63%. A distance of 0.91 R (Förster distance) between SiQD and BHQ1 was obtained. In the presence of a stoichiometric amount of the complementary oligonucleotide (ΔGhybridization = -35.09 kcal mol-1), 98% of the fluorescence was recovered due to loop opening of the hairpin structure. The probe showed good selectivity toward miRNA-21, with a limit of detection of 14.9 fM. The oligosensor recoveries of miRNA-21 spiked in human serum and urine were 94-98% and 93-108%, respectively.


Assuntos
MicroRNAs , Pontos Quânticos , Transferência Ressonante de Energia de Fluorescência , Humanos , Pontos Quânticos/química , Silício/química
10.
Spectrochim Acta A Mol Biomol Spectrosc ; 269: 120702, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-34922287

RESUMO

Urgent identification of COVID-19 in infected patients is highly important nowadays. Förster or fluorescence resonance energy transfer (FRET) is a powerful and sensitive method for nanosensing applications, and quantum dots are essential materials in FRET-based nanosensors. The QDs are conjugated to DNA or RNA and used in many applications. Therefore, in the present study, novel fluorescence DNA-conjugated CdTe/ZnS quantum dots nanoprobe designed for detection of Covid-19 after extracting their RNA from saliva of hesitant people. For achieving this purpose, the water-soluble CdTe/ZnS QDs-DNA prepared via replacing the thioglycolic acid (TGA) on the surface of QDs with capture DNA (thiolated DNA) throw a ligand-exchange method. Subsequently, by adding the different concentrations of complementary (target DNA) in a mixture of quencher DNA (BHQ2-labeled DNA) and the QDs-DNA conjugates at different conditions, sandwiched hybrids were formed. The results showed that the fluorescence intensity was decreased with increasing the concentration of target DNA (as a positive control). The linear equation and regression (Y = 40.302 X  + 1 and R2 = 0.98) were obtained by using the Stern-Volmer relationship. The Limit of detection (LOD) was determined 0.000823 µM. The achieved results well confirm the outcomes of the RT-PCR method in real samples.


Assuntos
COVID-19 , Compostos de Cádmio , Pontos Quânticos , DNA , Humanos , SARS-CoV-2 , Sulfetos , Telúrio , Compostos de Zinco
11.
Acta Pharm Sin B ; 11(7): 1978-1992, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34386332

RESUMO

Tumor recurrence after surgery is the main cause of treatment failure. However, the initial stage of recurrence is not easy to detect, and it is difficult to cure in the late stage. In order to improve the life quality of postoperative patients, an efficient synergistic immunotherapy was developed to achieve early diagnosis and treatment of post-surgical tumor recurrence, simultaneously. In this paper, two kinds of theranostic agents based on gold nanorods (AuNRs) platform were prepared. AuNRs and quantum dots (QDs) in one agent was used for the detection of carcinoembryonic antigen (CEA), using fluorescence resonance energy transfer (FRET) technology to indicate the occurrence of in situ recurrence, while AuNRs in the other agent was used for photothermal therapy (PTT), together with anti-PDL1 mediated immunotherapy to alleviate the process of tumor metastasis. A series of assays indicated that this synergistic immunotherapy could induce tumor cell death and the increased generation of CD3+/CD4+ T-lymphocytes and CD3+/CD8+ T-lymphocytes. Besides, more immune factors (IL-2, IL-6, and IFN-γ) produced by synergistic immunotherapy were secreted than mono-immunotherapy. This cooperative immunotherapy strategy could be utilized for diagnosis and treatment of postoperative tumor recurrence at the same time, providing a new perspective for basic and clinical research.

12.
Foods ; 10(7)2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34209659

RESUMO

Antiviral treatments inhibiting Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replication may represent a strategy complementary to vaccination to fight the ongoing Coronavirus disease 19 (COVID-19) pandemic. Molecules or extracts inhibiting the SARS-CoV-2 chymotripsin-like protease (3CLPro) could contribute to reducing or suppressing SARS-CoV-2 replication. Using a targeted approach, we identified 17 plant products that are included in current and traditional cuisines as promising inhibitors of SARS-CoV-2 3CLPro activity. Methanolic extracts were evaluated in vitro for inhibition of SARS-CoV-2 3CLPro activity using a quenched fluorescence resonance energy transfer (FRET) assay. Extracts from turmeric (Curcuma longa) rhizomes, mustard (Brassica nigra) seeds, and wall rocket (Diplotaxis erucoides subsp. erucoides) at 500 µg mL-1 displayed significant inhibition of the 3CLPro activity, resulting in residual protease activities of 0.0%, 9.4%, and 14.9%, respectively. Using different extract concentrations, an IC50 value of 15.74 µg mL-1 was calculated for turmeric extract. Commercial curcumin inhibited the 3CLPro activity, but did not fully account for the inhibitory effect of turmeric rhizomes extracts, suggesting that other components of the turmeric extract must also play a main role in inhibiting the 3CLPro activity. Sinigrin, a major glucosinolate present in mustard seeds and wall rocket, did not have relevant 3CLPro inhibitory activity; however, its hydrolysis product allyl isothiocyanate had an IC50 value of 41.43 µg mL-1. The current study identifies plant extracts and molecules that can be of interest in the search for treatments against COVID-19, acting as a basis for future chemical, in vivo, and clinical trials.

13.
SLAS Discov ; 26(9): 1177-1188, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34112017

RESUMO

Regulators of G protein signaling (RGS) proteins serve as critical regulatory nodes to limit the lifetime and extent of signaling via G protein-coupled receptors (GPCRs). Previously, approaches to pharmacologically inhibit RGS activity have mostly focused on the inhibition of GTPase activity by interrupting the interaction of RGS proteins with the G proteins they regulate. However, several RGS proteins are also regulated by association with binding partners. A notable example is the mammalian RGS7 protein, which has prominent roles in metabolic control, vision, reward, and actions of opioid analgesics. In vivo, RGS7 exists in complex with the binding partners type 5 G protein ß subunit (Gß5) and R7 binding protein (R7BP), which control its stability and activity, respectively. Targeting the whole RGS7/Gß5/R7BP protein complex affords the opportunity to allosterically tune opioid receptor signaling following opioid engagement while potentially bypassing undesirable side effects. Hence, we implemented a novel strategy to pharmacologically target the interaction between RGS7/Gß5 and R7BP. To do so, we searched for protein complex inhibitors using a time-resolved fluorescence resonance energy transfer (FRET)-based high-throughput screening (HTS) assay that measures compound-mediated alterations in the FRET signal between RGS7/Gß5 and R7BP. We performed two HTS campaigns, each screening ~100,000 compounds from the Scripps Drug Discovery Library (SDDL). Each screen yielded more than 100 inhibitors, which will be described herein.


Assuntos
Descoberta de Drogas , Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas RGS/metabolismo , Descoberta de Drogas/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Ensaios de Triagem em Larga Escala/métodos , Humanos , Complexos Multiproteicos/agonistas , Complexos Multiproteicos/antagonistas & inibidores , Ligação Proteica/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas
14.
New Phytol ; 231(5): 1832-1844, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34032290

RESUMO

Abiotic stresses affect plant growth and development by causing cellular damage and/or restricting resources. Plants often respond to stresses through abscisic acid (ABA) signaling. Exogenous ABA application can therefore be used to mimic stress responses, which can be overridden by glucose (Glc) addition during seed germination. It remains unclear whether ABA-mediated germination inhibition is due to regional or global suppression of Glc availability in germinating Arabidopsis seeds. We used a genetically engineered Förster resonance energy transfer (FRET) sensor to ascertain whether ABA affects the spatiotemporal distribution of Glc, 14 C-Glc uptake assays to track potential effects of ABA on sugar import, and transcriptome and mutant analyses to identify genes associated with Glc availability that are involved in ABA-inhibited seed germination. Abscisic acid limits Glc in the hypocotyl largely by suppressing sugar allocation as well as altering sugar metabolism. Mutant plants carrying loss-of-function ABA-inducible sucrose-phosphate synthase (SPS) genes accumulated more Glc, leading to ABA-insensitive germination. We reveal that Glc antagonizes ABA by globally counteracting the ABA influence at the transcript level, including expansin (EXP) family genes suppressed by ABA. This study presents a new perspective on how ABA affects Glc distribution, which likely reflects what occurs when seeds are subjected to abiotic stresses such as drought and salt stress.


Assuntos
Ácido Abscísico , Proteínas de Arabidopsis , Ácido Abscísico/farmacologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Germinação , Glucose , Hipocótilo/metabolismo , Sementes/metabolismo
15.
J Virol ; 95(12)2021 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-33827953

RESUMO

Sweet potato virus disease (SPVD), caused by synergistic infection of Sweet potato chlorotic stunt virus (SPCSV) and Sweet potato feathery mottle virus (SPFMV), is responsible for substantial yield losses all over the world. However, there are currently no approved treatments for this severe disease. The crucial role played by RNase III of SPCSV (CSR3) as an RNA silencing suppressor during the viruses' synergistic interaction in sweetpotato makes it an ideal drug target for developing antiviral treatment. In this study, high-throughput screening (HTS) of small molecular libraries targeting CSR3 was initiated by a virtual screen using Glide docking, allowing the selection of 6,400 compounds out of 136,353. We subsequently developed and carried out kinetic-based HTS using fluorescence resonance energy transfer technology, which isolated 112 compounds. These compounds were validated with dose-response assays including kinetic-based HTS and binding affinity assays using surface plasmon resonance and microscale thermophoresis. Finally, the interference of the selected compounds with viral accumulation was verified in planta In summary, we identified five compounds belonging to two structural classes that inhibited CSR3 activity and reduced viral accumulation in plants. These results provide the foundation for developing antiviral agents targeting CSR3 to provide new strategies for controlling sweetpotato virus diseases.IMPORTANCE We report here a high-throughput inhibitor identification method that targets a severe sweetpotato virus disease caused by coinfection with two viruses (SPCSV and SPFMV). The disease is responsible for up to 90% yield losses. Specifically, we targeted the RNase III enzyme encoded by SPCSV, which plays an important role in suppressing the RNA silencing defense system of sweetpotato plants. Based on virtual screening, laboratory assays, and confirmation in planta, we identified five compounds that could be used to develop antiviral drugs to combat the most severe sweetpotato virus disease.


Assuntos
Antivirais/farmacologia , Crinivirus/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Ipomoea batatas/virologia , Doenças das Plantas/virologia , Ribonuclease III/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Antivirais/química , Antivirais/metabolismo , Crinivirus/enzimologia , Crinivirus/fisiologia , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Ensaios de Triagem em Larga Escala , Simulação de Acoplamento Molecular , Fotossíntese/efeitos dos fármacos , Interferência de RNA , Ribonuclease III/química , Ribonuclease III/metabolismo , Bibliotecas de Moléculas Pequenas/química , Proteínas Virais/antagonistas & inibidores
16.
SLAS Discov ; 26(5): 663-675, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33783261

RESUMO

The predominant assay detection methodologies used for enzyme inhibitor identification during early-stage drug discovery are fluorescence-based. Each fluorophore has a characteristic fluorescence decay, known as the fluorescence lifetime, that occurs throughout a nanosecond-to-millisecond timescale. The measurement of fluorescence lifetime as a reporter for biological activity is less common than fluorescence intensity, even though the latter has numerous issues that can lead to false-positive readouts. The confirmation of hit compounds as true inhibitors requires additional assays, cost, and time to progress from hit identification to lead drug-candidate optimization. To explore whether the use of fluorescence lifetime technology (FLT) can offer comparable benefits to label-free-based approaches such as RapidFire mass spectroscopy (RF-MS) and a superior readout compared to time-resolved fluorescence resonance energy transfer (TR-FRET), three equivalent assays were developed against the clinically validated tyrosine kinase 2 (TYK2) and screened against annotated compound sets. FLT provided a marked decrease in the number of false-positive hits when compared to TR-FRET. Further cellular screening confirmed that a number of potential inhibitors directly interacted with TYK2 and inhibited the downstream phosphorylation of the signal transducer and activator of transcription 4 protein (STAT4).


Assuntos
Descoberta de Drogas/métodos , Descoberta de Drogas/normas , Avaliação Pré-Clínica de Medicamentos/métodos , Avaliação Pré-Clínica de Medicamentos/normas , Corantes Fluorescentes , TYK2 Quinase/antagonistas & inibidores , TYK2 Quinase/química , Transferência Ressonante de Energia de Fluorescência , Ensaios de Triagem em Larga Escala , Espectrometria de Massas , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
17.
Talanta ; 226: 122202, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33676722

RESUMO

In the regulatory network, miRNAs play a regulatory role in a cooperative or antagonistic manner. Simultaneous accurate detection and imaging of multiplexed miRNAs in living cells are of great significance for miRNA-associated biological research and disease diagnosis and treatment. Herein, a MnO2 nanosheet-mediated target-binding-induced fluorescence resonance energy transfer (FRET) strategy was developed for detection and imaging of multiplexed miRNAs in living cells. Two pairs of DNA probes (P1-AF 488/P1'-Cy3 and P2-AF 488/P2'-AF 594) contained the complementary sequence to target miRNAs (miRNA-373 and miRNA-96) and labelled with different fluorescence dyes were designed. They were adsorbed onto MnO2 nanosheets by physisorption to form DNA/MnO2 nanocomposite probes. When the DNA/MnO2 nanocomposite probes were taken up by cells, the MnO2 nanosheets were reduced by intracellular glutathione, accompanying the release of DNA probe pairs. Then the DNA probe pairs specifically recognized and combined with miRNA-373 and miRNA-96 to form stable duplexes, respectively, bringing labelled fluorophores into close proximity to occur FRET. Based on this, the simultaneous imaging of miRNA-373 and miRNA-96 in MDA-MB-231 and L02 cells was successfully implemented. The results displayed a higher expression level of target miRNAs in MDA-MB-231 cells compared to L02 cells. The changes in expression levels of miRNA-96 induced by anti-miRNA-96 or mimics in MDA-MB-231 cells could also be monitored. In addition, the ratiometric detections of multiplexed miRNAs were achieved by utilizing the DNA probe pairs. The proposed strategy provides an alternative method for simultaneous accurate detection and imaging of multiplexed miRNAs and has potential application in biomedical applications.


Assuntos
Transferência Ressonante de Energia de Fluorescência , MicroRNAs , Linhagem Celular Tumoral , Sondas de DNA/genética , Humanos , Compostos de Manganês , MicroRNAs/genética , Óxidos
18.
Polymers (Basel) ; 13(5)2021 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-33673477

RESUMO

In this paper, a fast and simple strategy for sensitive detection of streptavidin (SA) was proposed based on terminal protection of small molecule-linked DNA and cationic conjugated polymer-mediated fluorescence resonance energy transfer (FRET). In principle, we designed a biotin-labelled DNA probe (P1) as the recognitive probe of SA, along with a complementary DNA probe (P2) to form double-stranded DNA (dsDNA) with P1. SYBR Green I (SG I) as a fluorescent dye was further used to specifically bind to dsDNA to emit stronger fluorescence. The cationic poly[(9,9-bis(6'-N,N,N-triethy-lammonium)hexyl) fluorenylene phenylene dibromide] (PFP) acted as the donor to participate in the FRET and transfer energy to the recipient SG I. In the absence of SA, P1 could not hybridize with P2 to form dsDNA and was digested by exonuclease I (Exo I); thus, only a weak FRET signal would be observed. In the presence of SA, biotin could specifically bind to SA, which protected P1 from Exo I cleavage. Then, P1 and P2 were hybridized into dsDNA. Therefore, the addition of SG I and PFP led to obvious FRET signal due to strong electrostatic interactions. Then, SA can be quantitatively detected by monitoring FRET changes. As the whole reagent reaction was carried out in 1.5 mL EP and detected in the colorimetric dish, the operation process of the detection system was relatively simple. The response time for each step was also relatively short. In this detection system, the linear equation was obtained for SA from 0.1 to 20 nM with a low detection limit of 0.068 nM (S/N = 3). In addition, this strategy has also achieved satisfactory results in the application of biological samples, which reveals the application prospect of this method in the future.

19.
Bioact Mater ; 6(8): 2291-2302, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33553816

RESUMO

Phototherapy has been intensively investigated as a non-invasive cancer treatment option. However, its clinical translation is still impeded by unsatisfactory therapeutic efficacy and severe phototoxicity. To achieve high therapeutic efficiency and high security, a nanoassembly of Forster Resonance Energy Transfer (FRET) photosensitizer pairs is developed on basis of dual-mode photosensitizer co-loading and photocaging strategy. For proof-of-concept, an erythrocyte-camouflaged FRET pair co-assembly of chlorine e6 (Ce6, FRET donor) and 1,1'-dioctadecyl-3,3,3',3'-tetramethylindotricarbocyanine iodide (DiR, FRET acceptor) is investigated for breast cancer treatment. Notably, Ce6 in the nanoassemby is quenched by DiR and could be unlocked for photodynamic therapy (PDT) only when DiR is photobleached by 808-nm laser. As a result, Ce6-caused phototoxicity could be well controlled. Under cascaded laser irradiation (808-660 nm), tumor-localizing temperature rise following laser irradiation on DiR not only induces tumor cell apoptosis but also facilitates the tumor penetration of NPs, relieves tumor hypoxia, and promotes the PDT efficacy of Ce6. Such FRET pair-based nanoassembly provides a new strategy for developing multimodal phototherapy nanomedicines with high efficiency and good security.

20.
Biochim Biophys Acta Biomembr ; 1863(4): 183556, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33444623

RESUMO

KvLQT1 and hERG are the α-subunits of the voltage-gated K+ channels which carry the cardiac repolarizing currents IKs and IKr, respectively. These currents function in vivo with some redundancy to maintain appropriate action potential durations (APDs) in cardiomyocytes. As such, protein-protein interactions between hERG and KvLQT1 may be important in normal cardiac electrophysiology, as well as in arrhythmia and sudden cardiac death. Previous phenomenological observations of functional, mutual downregulation between these complementary repolarizing currents in transgenic rabbit models and human cell culture motivate our investigations into protein-protein interactions between hERG and KvLQT1. Previous data suggest that a dynamic, physical interaction between hERG and KvLQT1 modulates the respective currents. However, the mechanism by which hERG-KvLQT1 interactions are regulated is still poorly understood. Phosphorylation is proposed to play a role since modifying the phosphorylation state of each protein has been shown to alter channel kinetics, and both hERG and KvLQT1 are targets of the Ser/Thr protein kinase PKA, activated by elevated intracellular cAMP. In this work, quantitative apFRET analyses of phosphonull and phosphomimetic hERG and KvLQT1 mutants indicate that unphosphorylated hERG does not interact with KvLQT1, suggesting that hERG phosphorylation is important for wild-type proteins to interact. For proteins already potentially interacting, phosphorylation of KvLQT1 appears to be the driving factor abrogating hERG-KvLQT1 interaction. This work increases our knowledge about hERG-KvLQT1 interactions, which may contribute to the efforts to elucidate mechanisms that underlie many types of arrhythmias, and also further characterizes novel protein-protein interactions between two distinct potassium channel families.


Assuntos
Arritmias Cardíacas/metabolismo , Canal de Potássio ERG1/metabolismo , Canal de Potássio KCNQ1/metabolismo , Arritmias Cardíacas/genética , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Canal de Potássio ERG1/genética , Células HEK293 , Humanos , Canal de Potássio KCNQ1/genética , Fosforilação/genética , Regulador Transcricional ERG/genética , Regulador Transcricional ERG/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA