Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Vector Borne Dis ; 60(3): 225-237, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37843232

RESUMO

West Nile virus (WNV) is a rapidly spreading mosquito-transmitted zoonotic flavivirus. Mosquitoes belonging to the genus Culex are incriminated as the principal vectors of the virus, which causes West Nile fever (WNF) in humans. Manifestations of WNF include a mild, self-limiting, flu-like illness, which in severe cases (rare) may progress to encephalitis, resulting in life-threatening consequences. WNV is geographically distributed worldwide, covering Africa, the Americas, Europe, and Asia (except Antarctica). The virus exists in a bird-mosquito transmission cycle in nature, with humans and horses as incidental/accidental hosts. The virus can infect a large variety of hosts worldwide, i.e., about 300 birds and around 70 different mosquito species belonging to several genera. For a long time, it was believed that WNV was not highly virulent and caused only mild infection globally. However, the recent frequent and increasing incidence of clinically severe WNV infections, such as encephalitis in humans and horses with significant mortality, has been reported in the Americas, Europe, and several East Asian countries. The emergence of lineage 2 strains endemic to Africa, with epidemic potential in humans and horses in Europe, is considered a serious global health concern. Although WNV is known to circulate in India since 1952, its re-emergence with severe neuro-invasive pathogenic potential in humans in Assam, Kerala, West Bengal and Tamil Nadu states signals urgent efforts to understand the dynamics of circulating strains with regard to its vector, hosts, and environment. This could be done by prioritizing "One Health" approach for developing effective preventive and control strategies. In view of the global interest, we present an overview of the circulating genetic lineages of WNV in India in comparison with the global scenario. In addition, we stress on holistic approaches of "One Health" strategy as the current need of the hour for designing effective preventive and control strategies in the country.


Assuntos
Culicidae , Febre do Nilo Ocidental , Vírus do Nilo Ocidental , Humanos , Animais , Cavalos , Vírus do Nilo Ocidental/genética , Índia/epidemiologia , Mosquitos Vetores , Febre do Nilo Ocidental/epidemiologia , Febre do Nilo Ocidental/veterinária , Aves
2.
Behav Brain Res ; 451: 114519, 2023 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-37263423

RESUMO

Zika virus (ZIKV) infection causes severe neurological consequences in both gestationally-exposed infants and adults. Sensorial gating deficits strongly correlate to the motor, sensorial and cognitive impairments observed in ZIKV-infected patients. However, no startle response or prepulse inhibition (PPI) assessment has been made in patients or animal models. In this study, we identified different outcomes according to the age of infection and sex in mice: neonatally infected animals presented an increase in PPI and delayed startle latency. However, adult-infected male mice presented lower startle amplitude, while a PPI impairment was observed 14 days after infection in both sexes. Our data further the understanding of the functional impacts of ZIKV on the developing and mature nervous system, which could help explain other behavioral and cognitive alterations caused by the virus. With this study, we support the startle reflex testing in ZIKV-exposed patients, especially infants, allowing for early detection of functional neuromotor damage and early intervention.


Assuntos
Infecção por Zika virus , Zika virus , Feminino , Masculino , Animais , Camundongos , Reflexo de Sobressalto/fisiologia , Inibição Pré-Pulso , Infecção por Zika virus/complicações , Estimulação Acústica
4.
Plants (Basel) ; 11(19)2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36235456

RESUMO

Currently, there are no specific therapeutics for flavivirus infections, including dengue virus (DENV) and Zika virus (ZIKV). In this study, we evaluated extracts from the plants Hedyotis diffusa (HD) and Artemisia capillaris (AC) to determine the antiviral activity against DENV, ZIKV, and Japanese encephalitis virus (JEV). HD and AC demonstrated inhibitory activity against JEV, ZIKV, and DENV replication and reduced viral RNA levels in a dose-responsive manner, with non-cytotoxic concentration ranging from 0.1 to 10 mg/mL. HD and AC had low cytotoxicity to Vero cells, with CC50 values of 33.7 ± 1.6 and 30.3 ± 1.7 mg/mL (mean ± SD), respectively. The anti-flavivirus activity of HD and AC was also consistent in human cell lines, including human glioblastoma (T98G), human chronic myeloid leukemia (K562), and human embryonic kidney (HEK-293T) cells. Viral-infected, HD-treated cells demonstrated downregulation of cytokines including CCR1, CCL26, CCL15, CCL5, IL21, and IL17C. In contrast, CCR1, CCL26, and AIMP1 were elevated following AC treatment in viral-infected cells. Overall, HD and AC plant extracts demonstrated flavivirus replication inhibitory activity, and together with immunoregulatory cytokine signatures, these results suggest that HD and AC possess bioactive compounds that may further be refined as promising candidates for clinical applications.

5.
Braz. arch. biol. technol ; 65: e22210032, 2022. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1364475

RESUMO

Abstract Zika fever is a viral infection of great relevance in public health, especially in tropic regions, in which there is a predominance of mosquitoes of the genus Aedes, vectors of the disease. Microcephaly in neonatal children and Guillain-Barré syndrome in adults can be caused by the action of the Zika virus (ZIKV). Non-structural proteins, such as NS2B, NS3 and NS5, are important pharmacological targets, due to their action in the life cycle. The absence of anti-Zika drugs raises new research, including prospecting for natural products. This work investigated the in silico antiviral activity of bixin and six other derived molecules against the Zika viral proteins NS2B-NS3 and NS5. The optimized structure was subjected to molecular docking to characterize the interaction between bixinoids and ZIKV non-structural proteins, where significant interactions were observed with amino acid residues in the catalytic site in each enzyme. These results suggest that bixin and ethyl bixin has the potential to interfere with the enzymatic activity of NS2B, NS3 and NS5, thus being an indication of being a promising anti-Zika agent.


Assuntos
Antivirais/uso terapêutico , Extratos Vegetais/uso terapêutico , Bixa orellana/uso terapêutico , Infecção por Zika virus/tratamento farmacológico , Fitoterapia , Replicação Viral/efeitos dos fármacos
6.
Molecules ; 26(13)2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34206406

RESUMO

Spanish flu, polio epidemics, and the ongoing COVID-19 pandemic are the most profound examples of severe widespread diseases caused by RNA viruses. The coronavirus pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) demands affordable and reliable assays for testing antivirals. To test inhibitors of viral proteases, we have developed an inexpensive high-throughput assay based on fluorescent energy transfer (FRET). We assayed an array of inhibitors for papain-like protease from SARS-CoV-2 and validated it on protease from the tick-borne encephalitis virus to emphasize its versatility. The reaction progress is monitored as loss of FRET signal of the substrate. This robust and reproducible assay can be used for testing the inhibitors in 96- or 384-well plates.


Assuntos
Antivirais/farmacologia , Transferência Ressonante de Energia de Fluorescência/métodos , Ensaios de Triagem em Larga Escala/métodos , Inibidores de Proteases/farmacologia , Vírus de RNA/enzimologia , Proteases Semelhantes à Papaína de Coronavírus/antagonistas & inibidores , Proteases Semelhantes à Papaína de Coronavírus/química , Proteases Semelhantes à Papaína de Coronavírus/genética , Proteases Semelhantes à Papaína de Coronavírus/metabolismo , Avaliação Pré-Clínica de Medicamentos , Vírus da Encefalite Transmitidos por Carrapatos/enzimologia , Corantes Fluorescentes/química , Humanos , RNA Helicases/antagonistas & inibidores , RNA Helicases/química , RNA Helicases/genética , RNA Helicases/metabolismo , SARS-CoV-2/enzimologia , Serina Endopeptidases/química , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Tratamento Farmacológico da COVID-19
7.
Proc Natl Acad Sci U S A ; 117(49): 31365-31375, 2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33229545

RESUMO

When Zika virus emerged as a public health emergency there were no drugs or vaccines approved for its prevention or treatment. We used a high-throughput screen for Zika virus protease inhibitors to identify several inhibitors of Zika virus infection. We expressed the NS2B-NS3 Zika virus protease and conducted a biochemical screen for small-molecule inhibitors. A quantitative structure-activity relationship model was employed to virtually screen ∼138,000 compounds, which increased the identification of active compounds, while decreasing screening time and resources. Candidate inhibitors were validated in several viral infection assays. Small molecules with favorable clinical profiles, especially the five-lipoxygenase-activating protein inhibitor, MK-591, inhibited the Zika virus protease and infection in neural stem cells. Members of the tetracycline family of antibiotics were more potent inhibitors of Zika virus infection than the protease, suggesting they may have multiple mechanisms of action. The most potent tetracycline, methacycline, reduced the amount of Zika virus present in the brain and the severity of Zika virus-induced motor deficits in an immunocompetent mouse model. As Food and Drug Administration-approved drugs, the tetracyclines could be quickly translated to the clinic. The compounds identified through our screening paradigm have the potential to be used as prophylactics for patients traveling to endemic regions or for the treatment of the neurological complications of Zika virus infection.


Assuntos
Antivirais/análise , Antivirais/farmacologia , Avaliação Pré-Clínica de Medicamentos , Ensaios de Triagem em Larga Escala , Inibidores de Proteases/análise , Inibidores de Proteases/farmacologia , Zika virus/efeitos dos fármacos , Animais , Antivirais/uso terapêutico , Inteligência Artificial , Chlorocebus aethiops , Modelos Animais de Doenças , Imunocompetência , Concentração Inibidora 50 , Metaciclina/farmacologia , Camundongos Endogâmicos C57BL , Inibidores de Proteases/uso terapêutico , Relação Quantitativa Estrutura-Atividade , Bibliotecas de Moléculas Pequenas , Células Vero , Infecção por Zika virus/tratamento farmacológico , Infecção por Zika virus/virologia
8.
Microbes Infect ; 22(9): 489-499, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32353601

RESUMO

Zika Virus (ZIKV), an arbovirus that belongs to the Flaviviridae family, has become a global concern since its outbreak in the Americas in 2015. With symptoms similar to other Flavivirus as Dengue and Yellow Fever viruses, infections by ZIKV have also been related to several neurological complications such as microcephaly in newborns and Guillain-Barre syndrome. Considering the high prevalence of ZIKV infection in certain areas, the risks that the virus poses to fetal brain development, and the fact that there is no vaccine or specific prophylaxis available, an effective treatment capable of preventing the infection is of potential interest. Therefore, in the present investigation, the antiviral activity on ZIKV of a group of xanthenodiones and intermediate ketones involved in their synthesis was evaluated for the first time. It was found that the compound 2-(2,6-dichlorobenzylidene)cyclohexane-1,3-dione 27 was able to completely inhibit the viral infection of Vero cells as well as to significantly reduce viral load in the brains of newborn Swiss mice. These effects are related to a direct interaction of the compound with the viral particle, blocking the viral adsorption.


Assuntos
Antivirais/química , Antivirais/farmacologia , Sistema Nervoso Central/virologia , Infecção por Zika virus/tratamento farmacológico , Zika virus/efeitos dos fármacos , Animais , Linhagem Celular , Chlorocebus aethiops , Simulação por Computador , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Cetonas/farmacologia , Camundongos , Simulação de Acoplamento Molecular , Células Vero , Replicação Viral/efeitos dos fármacos
9.
Parasit Vectors ; 13(1): 185, 2020 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-32268924

RESUMO

BACKGROUND: Tick distribution in Sweden has increased in recent years, with the prevalence of ticks predicted to spread towards the northern parts of the country, thus increasing the risk of tick-borne zoonoses in new regions. Tick-borne encephalitis (TBE) is the most significant viral tick-borne zoonotic disease in Europe. The disease is caused by TBE virus (TBEV) infection which often leads to severe encephalitis and myelitis in humans. TBEV is usually transmitted to humans via tick bites; however, the virus can also be excreted in the milk of goats, sheep and cattle and infection may then occur via consumption of unpasteurised dairy products. Virus prevalence in questing ticks is an unreliable indicator of TBE infection risk as viral RNA is rarely detected even in large sample sizes collected at TBE-endemic areas. Hence, there is a need for robust surveillance techniques to identify emerging TBEV risk areas at early stages. METHODS: Milk and colostrum samples were collected from sheep and goats in Örebro County, Sweden. The milk samples were analysed for the presence of TBEV antibodies by ELISA and validated by western blot in which milk samples were used to detect over-expressed TBEV E-protein in crude cell extracts. Neutralising titers were determined by focus reduction neutralisation test (FRNT). The stability of TBEV in milk and colostrum was studied at different temperatures. RESULTS: In this study we have developed a novel strategy to identify new TBEV foci. By monitoring TBEV antibodies in milk, we have identified three previously unknown foci in Örebro County which also overlap with areas of TBE infection reported during 2009-2018. In addition, our data indicates that keeping unpasteurised milk at 4 °C will preserve the infectivity of TBEV for several days. CONCLUSIONS: Altogether, we report a non-invasive surveillance technique for revealing risk areas for TBE in Sweden, by detecting TBEV antibodies in sheep milk. This approach is robust and reliable and can accordingly be used to map TBEV "hotspots". TBEV infectivity in refrigerated milk was preserved, emphasising the importance of pasteurisation (i.e. 72 °C for 15 s) prior to consumption.


Assuntos
Anticorpos Antivirais/análise , Encefalite Transmitida por Carrapatos/imunologia , Encefalite Transmitida por Carrapatos/veterinária , Monitoramento Epidemiológico/veterinária , Leite/imunologia , Animais , Colostro/imunologia , Vírus da Encefalite Transmitidos por Carrapatos , Feminino , Cabras/imunologia , Humanos , Testes de Neutralização , RNA Viral/genética , Ovinos/imunologia , Suécia/epidemiologia , Zoonoses/parasitologia , Zoonoses/transmissão
10.
Curr Drug Discov Technol ; 17(4): 484-497, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31969106

RESUMO

Arboviruses are a diverse group of viruses that are among the major causes of emerging infectious diseases. Arboviruses from the genera flavivirus and alphavirus are the most important human arboviruses from a public health perspective. During recent decades, these viruses have been responsible for millions of infections and deaths around the world. Over the past few years, several investigations have been carried out to identify antiviral agents to treat these arbovirus infections. The use of synthetic antiviral compounds is often unsatisfactory since they may raise the risk of viral mutation; they are costly and possess either side effects or toxicity. One attractive strategy is the use of plants as promising sources of novel antiviral compounds that present significant inhibitory effects on these viruses. In this review, we describe advances in the exploitation of compounds and extracts from natural sources that target the vital proteins and enzymes involved in arbovirus replication.


Assuntos
Infecções por Alphavirus/tratamento farmacológico , Antivirais/farmacologia , Infecções por Flavivirus/tratamento farmacológico , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Alphavirus/efeitos dos fármacos , Alphavirus/genética , Alphavirus/patogenicidade , Infecções por Alphavirus/transmissão , Infecções por Alphavirus/virologia , Animais , Antivirais/uso terapêutico , Reservatórios de Doenças/virologia , Vetores de Doenças , Farmacorresistência Viral/efeitos dos fármacos , Farmacorresistência Viral/genética , Flavivirus/efeitos dos fármacos , Flavivirus/genética , Flavivirus/patogenicidade , Infecções por Flavivirus/transmissão , Infecções por Flavivirus/virologia , Humanos , Mutação , Compostos Fitoquímicos/uso terapêutico , Extratos Vegetais/uso terapêutico , Proteínas Virais/antagonistas & inibidores , Proteínas Virais/metabolismo , Replicação Viral/efeitos dos fármacos
11.
Antiviral Res ; 160: 38-47, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30326204

RESUMO

Zika virus (ZIKV) is a human-pathogenic flavivirus that has recently emerged as a global public health threat. ZIKV infection may be associated with congenital malformations in infected fetuses and severe neurological and systemic complications in infected adults. There are currently limited treatment options for ZIKV infection. AR-12 (OSU-03012) is a celecoxib derivative cellular kinase inhibitor that has broad-spectrum antiviral activities. In this study, we investigated the antiviral activity and mechanism of AR-12 against ZIKV. We evaluated the in vitro anti-ZIKV activity of AR-12, using cell protection and virus yield reduction assays, in multiple clinically relevant cell lines, and the in vivo treatment effects of AR-12 in a lethal mouse model using type I interferon receptor-deficient A129 mice. AR-12 inhibited ZIKV strains belonging to both the African and Asian/American lineages in Huh-7 and/or neuronal cells. AR12's IC50 against ZIKV was consistently <2 µM in these cells. ZIKV-infected A129 mice treated with intraperitoneally or orally administered AR-12 had significantly higher survival rate (50.0%-83.3% vs 0%, P < 0.05), less body weight loss, and lower blood and tissue ZIKV RNA loads than untreated control A129 mice. These anti-ZIKV effects were likely the results of down-regulation of the PI3K/Akt pathway by AR-12. Clinical trials using the clinically available and broad-spectrum AR-12 as an empirical treatment should be considered especially for patients residing in or returning from areas endemic of ZIKV and other arboviral infections who present with an acute undifferentiated febrile illness.


Assuntos
Antivirais/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Pirazóis/farmacologia , Sulfonamidas/farmacologia , Infecção por Zika virus/prevenção & controle , Zika virus/efeitos dos fármacos , Administração Oral , Animais , Antivirais/uso terapêutico , Linhagem Celular , Modelos Animais de Doenças , Humanos , Injeções Intraperitoneais , Camundongos , Testes de Sensibilidade Microbiana , Inibidores de Proteínas Quinases/uso terapêutico , Pirazóis/uso terapêutico , Sulfonamidas/uso terapêutico , Análise de Sobrevida , Resultado do Tratamento , Carga Viral , Zika virus/crescimento & desenvolvimento , Infecção por Zika virus/patologia , Infecção por Zika virus/virologia
12.
Viruses ; 10(7)2018 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-29997331

RESUMO

The baculovirus-insect cell expression system has been widely used for heterologous protein expression and virus-like particles (VLPs) expression. In this study, we established a new method for antiviral screening targeting to glycoprotein E of flaviviruses based on the baculovirus expression system. ZIKV is a mosquito-borne flavivirus and has posed great threat to the public health. It has been reported that ZIKV infection was associated with microcephaly and serious neurological complications. Our study showed that either ZIKV E or prME protein expressed in insect cells can form VLPs and induce membrane fusion between insect cells. Therefore, the E protein, which is responsible for receptor binding, attachment, and virus fusion during viral entry, achieved proper folding and retained its fusogenic ability in VLPs when expressed in this system. The syncytia in insect cells were significantly reduced by the anti-ZIKV-E specific polyclonal antibody in a dose-dependent manner. AMS, a thiol-conjugating reagent, was also shown to have an inhibitory effect on the E protein induced syncytia and inhibited ZIKV infection by blocking viral entry. Indeed the phenomenon of syncytial formation induced by E protein expressed VLPs in insect cells is common among flaviviruses, including Japanese encephalitis virus (JEV), Dengue virus type 2 (DENV-2), and tick-borne encephalitis virus (TBEV). This inhibition effect on syncytial formation can be developed as a novel, safe, and simple antiviral screening approach for inhibitory antibodies, peptides, or small molecules targeting to E protein of ZIKV and other flaviviruses.


Assuntos
Baculoviridae/genética , Infecções por Flavivirus/virologia , Flavivirus/fisiologia , Expressão Gênica , Vetores Genéticos/genética , Células Gigantes/virologia , Animais , Antivirais/farmacologia , Linhagem Celular , Avaliação Pré-Clínica de Medicamentos , Flavivirus/efeitos dos fármacos , Flavivirus/ultraestrutura , Engenharia Genética , Humanos , Transporte Proteico , Ensaio de Placa Viral , Proteínas Virais/metabolismo , Internalização do Vírus/efeitos dos fármacos
13.
Antiviral Res ; 154: 104-109, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29665374

RESUMO

Dengue is a mosquito-borne disease of global public health importance caused by four genetically and serologically related viruses (DENV-1 to DENV-4). Efforts to develop effective vaccines and therapeutics for dengue have been slowed by the paucity of preclinical models that mimic human disease. DENV-2 models in interferon receptor deficient AG129 mice were an important advance but only allowed testing against a single DENV serotype. We have developed complementary AG129 mouse models of severe disseminated dengue infection using strains of the other three DENV serotypes. Here we used the adenosine nucleoside inhibitor NITD-008 to show that these models provide the ability to perform comparative preclinical efficacy testing of candidate antivirals in vivo against the full-spectrum of DENV serotypes. Although NITD-008 was effective in modulating disease caused by all DENV serotypes, the variability in protection among DENV serotypes was greater than expected from differences in activity in in vitro testing studies emphasizing the need to undertake spectrum of activity testing to help in prioritization of candidate compounds for further development.


Assuntos
Antivirais/uso terapêutico , Vírus da Dengue/efeitos dos fármacos , Modelos Animais de Doenças , Inibidores da Síntese de Ácido Nucleico/uso terapêutico , Dengue Grave/tratamento farmacológico , Adenosina/química , Animais , Avaliação Pré-Clínica de Medicamentos , Camundongos , Inibidores da Síntese de Ácido Nucleico/farmacologia , Estudo de Prova de Conceito , Sorogrupo
14.
Vaccine ; 35(49 Pt B): 6898-6904, 2017 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-28899628

RESUMO

The RepliVax® vaccine (RV) platform is based on flavivirus genomes that are rationally attenuated by deletion. These single-cycle RV vaccine candidates targeting flavivirus pathogens have been demonstrated to be safe, highly immunogenic, and efficacious in animal models, including non-human primates. Here we show utility of the technology for delivery of a non-flavivirus immunogen by engineering several West Nile-based RV vectors to express full-length rabies virus G protein. The rabies virus G protein gene was incorporated in place of different West Nile structural protein gene deletions. The resulting RV-RabG constructs were demonstrated to replicate to high titers (8 log10 infectious particles/ml) in complementing helper cells. Following infection of normal cells, they provided efficient rabies virus G protein expression, but did not spread to surrounding cells. Expression of rabies virus G protein was stable and maintained through multiple rounds of in vitro passaging. A sensitive neurovirulence test in 2-3 day old neonatal mice demonstrated that RV-RabG candidates were completely avirulent indicative of high safety. We evaluated the RV-RabG variants in several animal models (mice, dogs, and pigs) and demonstrated that a single dose elicited high titers of rabies virus-neutralizing antibodies and protected animals from live rabies virus challenge (mice and dogs). Importantly, dogs were protected at both one and two years post-immunization, demonstrating durable protective immunity. The data demonstrates the potential of the RepliVax® technology as a potent vector delivery platform for developing vaccine candidates against non-flavivirus targets.


Assuntos
Flavivirus/genética , Vetores Genéticos , Vacina Antirrábica/genética , Vacinas Sintéticas/imunologia , Proteínas do Envelope Viral , Vacinas Virais/imunologia , Animais , Animais Recém-Nascidos , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Modelos Animais de Doenças , Cães , Avaliação Pré-Clínica de Medicamentos , Feminino , Camundongos , Raiva/prevenção & controle , Vacina Antirrábica/administração & dosagem , Vacina Antirrábica/química , Vacina Antirrábica/imunologia , Vírus da Raiva/química , Vírus da Raiva/imunologia , Suínos , Vacinação , Vacinas Atenuadas/imunologia , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Proteínas do Envelope Viral/imunologia , Vacinas Virais/administração & dosagem
15.
Antiviral Res ; 144: 330-339, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28676301

RESUMO

Two highly pathogenic human coronaviruses associated with severe respiratory syndromes emerged since the beginning of the century. The severe acute respiratory syndrome SARS-coronavirus (CoV) spread first in southern China in 2003 with about 8000 infected cases in few months. Then in 2012, the Middle East respiratory syndrome (MERS-CoV) emerged from the Arabian Peninsula giving a still on-going epidemic associated to a high fatality rate. CoVs are thus considered a major health threat. This is especially true as no vaccine nor specific therapeutic are available against either SARS- or MERS-CoV. Therefore, new drugs need to be identified in order to develop antiviral treatments limiting CoV replication. In this study, we focus on the nsp14 protein, which plays a key role in virus replication as it methylates the RNA cap structure at the N7 position of the guanine. We developed a high-throughput N7-MTase assay based on Homogenous Time Resolved Fluorescence (HTRF®) and screened chemical libraries (2000 compounds) on the SARS-CoV nsp14. 20 compounds inhibiting the SARS-CoV nsp14 were further evaluated by IC50 determination and their specificity was assessed toward flavivirus- and human cap N7-MTases. Our results reveal three classes of compounds: 1) molecules inhibiting several MTases as well as the dengue virus polymerase activity unspecifically, 2) pan MTases inhibitors targeting both viral and cellular MTases, and 3) inhibitors targeting one viral MTase more specifically showing however activity against the human cap N7-MTase. These compounds provide a first basis towards the development of more specific inhibitors of viral methyltransferases.


Assuntos
Antivirais/isolamento & purificação , Avaliação Pré-Clínica de Medicamentos/métodos , Exorribonucleases/antagonistas & inibidores , Metiltransferases/antagonistas & inibidores , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/enzimologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Fluorometria , Humanos , Concentração Inibidora 50 , Testes de Sensibilidade Microbiana
16.
EBioMedicine ; 12: 156-160, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27658737

RESUMO

The current epidemic of Zika virus (ZIKV) has underscored the urgency to establish experimental systems for studying viral replication and pathogenesis, and countermeasure development. Here we report two ZIKV replicon systems: a luciferase replicon that can differentiate between viral translation and RNA synthesis; and a stable luciferase replicon carrying cell line that can be used to screen and characterize inhibitors of viral replication. The transient replicon was used to evaluate the effect of an NS5 polymerase mutation on viral RNA synthesis and to analyze a known ZIKV inhibitor. The replicon cell line was developed into a 96-well format for antiviral testing. Compare with virus infection-based assay, the replicon cell line allows antiviral screening without using infectious virus. Collectively, the replicon systems have provided critical tools for both basic and translational research.


Assuntos
Antivirais/farmacologia , Descoberta de Drogas , Replicon , Replicação Viral/efeitos dos fármacos , Zika virus/efeitos dos fármacos , Zika virus/fisiologia , Técnicas de Cultura de Células , Linhagem Celular , Descoberta de Drogas/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Expressão Gênica , Genes Reporter , Genoma Viral , Humanos , Infecção por Zika virus/tratamento farmacológico , Infecção por Zika virus/virologia
17.
Cell Host Microbe ; 19(6): 891-900, 2016 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-27198478

RESUMO

The Asian lineage of Zika virus (ZIKV) has recently caused epidemics and severe disease. Unraveling the mechanisms causing increased viral transmissibility and disease severity requires experimental systems. We report an infectious cDNA clone of ZIKV that was generated using a clinical isolate of the Asian lineage. The cDNA clone-derived RNA is infectious in cells, generating recombinant ZIKV. The recombinant virus is virulent in established ZIKV mouse models, leading to neurological signs relevant to human disease. Additionally, recombinant ZIKV is infectious for Aedes aegypti and thus provides a means to examine virus transmission. The infectious cDNA clone was further used to generate a luciferase ZIKV that exhibited sensitivity to a panflavivirus inhibitor, highlighting its potential utility for antiviral screening. This ZIKV reverse genetic system, together with mouse and mosquito infection models, may help identify viral determinants of human virulence and mosquito transmission as well as inform vaccine and therapeutic strategies.


Assuntos
Antivirais/farmacologia , DNA Complementar/genética , RNA Viral/isolamento & purificação , Infecção por Zika virus/transmissão , Zika virus/genética , Animais , Linhagem Celular , Chlorocebus aethiops , DNA Complementar/isolamento & purificação , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos/métodos , Camundongos , Mosquitos Vetores/virologia , RNA Viral/genética , Análise de Sequência de DNA , Células Vero , Vacinas Virais/farmacologia , Virulência , Zika virus/efeitos dos fármacos , Zika virus/patogenicidade , Infecção por Zika virus/virologia
18.
Vaccine ; 33(50): 7100-11, 2015 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-26475445

RESUMO

Sanofi Pasteur has developed a recombinant, live-attenuated, tetravalent dengue vaccine (CYD-TDV) that is in late-stage development. The present review summarizes the different steps in the development of this dengue vaccine, with a particular focus on the clinical data from three efficacy trials, which includes one proof-of-concept phase IIb (NCT00842530) and two pivotal phase III efficacy trials (NCT01373281 and NCT01374516). Earlier studies showed that the CYD-TDV candidate had a satisfactory safety profile and was immunogenic across the four vaccine serotypes in both in vitro and in vivo preclinical tests, as well as in initial phase I to phase II clinical trials in both flavivirus-naïve and seropositive individuals. Data from the 25 months (after the first injection) active phase of the two pivotal phase III efficacy studies shows that CYD-TDV (administered at 0, 6, and 12 months) is efficacious against virologically-confirmed disease (primary endpoint) and has a good safety profile. Secondary analyses also showed efficacy against all four dengue serotypes and protection against severe disease and hospitalization. The end of the active phases in these studies completes more than a decade of development of CYD-TDV, but considerable activities and efforts remain to address outstanding scientific, clinical, and immunological questions, while preparing for the introduction and use of CYD-TDV. Additional safety observations were recently reported from the first complete year of hospital phase longer term surveillance for two phase 3 studies and the first and second completed years for one phase 2b study, demonstrating the optimal age for intervention from 9 years. Dengue is a complex disease, and both short-term and long-term safety and efficacy will continue to be addressed by ongoing long-term follow-up and future post-licensure studies.


Assuntos
Ensaios Clínicos como Assunto , Vacinas contra Dengue/imunologia , Vacinas contra Dengue/isolamento & purificação , Dengue/prevenção & controle , Animais , Dengue/epidemiologia , Vacinas contra Dengue/efeitos adversos , Descoberta de Drogas/métodos , Avaliação Pré-Clínica de Medicamentos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Humanos , Esquemas de Imunização , Resultado do Tratamento , Vacinas Atenuadas/efeitos adversos , Vacinas Atenuadas/imunologia , Vacinas Atenuadas/isolamento & purificação
19.
Viruses ; 7(5): 2404-27, 2015 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-25984714

RESUMO

Iminosugars are capable of targeting the life cycles of multiple viruses by blocking host endoplasmic reticulum α-glucosidase enzymes that are required for competent replication of a variety of enveloped, glycosylated viruses. Iminosugars as a class are approved for use in humans with diseases such as diabetes and Gaucher's disease, providing evidence for safety of this class of compounds. The in vitro antiviral activity of iminosugars has been described in several publications with a subset of these demonstrating in vivo activity against flaviviruses, herpesviruses, retroviruses and filoviruses. Although there is compelling non-clinical in vivo evidence of antiviral efficacy, the efficacy of iminosugars as antivirals has yet to be demonstrated in humans. In the current study, we report a novel iminosugar, UV-12, which has efficacy against dengue and influenza in mouse models. UV-12 exhibits drug-like properties including oral bioavailability and good safety profile in mice and guinea pigs. UV-12 is an example of an iminosugar with activity against multiple virus families that should be investigated in further safety and efficacy studies and demonstrates potential value of this drug class as antiviral therapeutics.


Assuntos
Antivirais/uso terapêutico , Dengue/tratamento farmacológico , Imino Açúcares/uso terapêutico , Infecções por Orthomyxoviridae/tratamento farmacológico , Animais , Antivirais/farmacologia , Vírus da Dengue/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Cobaias , Imino Açúcares/farmacologia , Masculino , Camundongos , Testes de Sensibilidade Microbiana , Orthomyxoviridae/efeitos dos fármacos , Resultado do Tratamento
20.
J Biol Chem ; 290(4): 2379-94, 2015 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-25488659

RESUMO

Dengue virus multifunctional proteins NS3 protease/helicase and NS5 methyltransferase/RNA-dependent RNA polymerase form part of the viral replication complex and are involved in viral RNA genome synthesis, methylation of the 5'-cap of viral genome, and polyprotein processing among other activities. Previous studies have shown that NS5 residue Lys-330 is required for interaction between NS3 and NS5. Here, we show by competitive NS3-NS5 interaction ELISA that the NS3 peptide spanning residues 566-585 disrupts NS3-NS5 interaction but not the null-peptide bearing the N570A mutation. Small angle x-ray scattering study on NS3(172-618) helicase and covalently linked NS3(172-618)-NS5(320-341) reveals a rigid and compact formation of the latter, indicating that peptide NS5(320-341) engages in specific and discrete interaction with NS3. Significantly, NS3:Asn-570 to alanine mutation introduced into an infectious DENV2 cDNA clone did not yield detectable virus by plaque assay even though intracellular double-stranded RNA was detected by immunofluorescence. Detection of increased negative-strand RNA synthesis by real time RT-PCR for the NS3:N570A mutant suggests that NS3-NS5 interaction plays an important role in the balanced synthesis of positive- and negative-strand RNA for robust viral replication. Dengue virus infection has become a global concern, and the lack of safe vaccines or antiviral treatments urgently needs to be addressed. NS3 and NS5 are highly conserved among the four serotypes, and the protein sequence around the pinpointed amino acids from the NS3 and NS5 regions are also conserved. The identification of the functionally essential interaction between the two proteins by biochemical and reverse genetics methods paves the way for rational drug design efforts to inhibit viral RNA synthesis.


Assuntos
Vírus da Dengue/fisiologia , RNA Viral/química , Serina Endopeptidases/química , Proteínas não Estruturais Virais/química , Replicação Viral , Animais , Antivirais/química , Sítios de Ligação , Linhagem Celular , Linhagem Celular Tumoral , Cricetinae , DNA Complementar/metabolismo , Ensaio de Imunoadsorção Enzimática , Humanos , Lisina/química , Mutagênese Sítio-Dirigida , Mutação , Plasmídeos/metabolismo , Ligação Proteica , Mapeamento de Interação de Proteínas , Estrutura Terciária de Proteína , RNA Polimerase Dependente de RNA , Espalhamento de Radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA