Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 348
Filtrar
Mais filtros

Medicinas Complementares
Intervalo de ano de publicação
1.
Mol Biol Rep ; 51(1): 489, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578370

RESUMO

BACKGROUND: The determination of genome size is a fundamental step which provides a basis to initiate studies aimed at deciphering the genetic similarity of a species and to carry out other genomics based investigations. Fenugreek (Trigonella spp.) is an important spice crop which has numerous health promoting phytochemicals. Many species within this genus are known for their various health benefits owing to the presence of a wide diversity of important phytochemicals like diosgenin, trigonelline, fenugreekine, galactomannan, 4-hydroxy isoleucine, etc. It is a multipurpose crop being cultivated for food, animal feed and industrial purposes. Despite its importance, research on the genomics aspect of fenugreek remains scant. In the absence of sufficient genomic information, crop improvement in fenugreek is severely lagging. METHODS AND RESULTS: Estimation of genome size of a species is the preliminary step for initiation of any genomic studies and therefore in the present study we have estimated the genome size for fenugreek. Here, we have determined the genome sizes of three different Trigonella spp. namely T. foenum-graecum, T. corniculata and T. caerulea through flow cytometry (FC). The 2 C DNA content values were found to be 6.05 pg (T. foenum-graecum), 1.83 pg (T. corniculata) and 1.96 pg (T. caerulea). The genome size of T. foenum-graecum is approximately three times the genome size of T. corniculata and T. caerulea. This variation in genome size of more than three-fold indicates the level of genetic divergence among the three species, though within the same genus. CONCLUSIONS: The differences observed in the genome sizes of the three species provide conclusive evidence of their genetic divergence. Additionally, the information about the genome size would provide an impetus to the structural and functional genomics-based research in this crop.


Assuntos
Trigonella , Animais , Trigonella/genética , Trigonella/química , Tamanho do Genoma , Citometria de Fluxo , Extratos Vegetais , Evolução Biológica
2.
Heliyon ; 10(6): e27280, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38496893

RESUMO

Background: To investigate the mechanism of vitamin D level on the regulation of peripheral blood lymphocyte subsets and serum Th1/Th2 cytokines in patients with unexplained recurrent spontaneous abortion (URSA). Methods: Eighty female patients with URSA attending Sichuan Jinxin Xinan Women's and Children's Hospital from January 2020 to May 2021 were selected as the study group, and 30 age-matched women with a history of healthy deliveries were chosen as the control group, and peripheral blood lymphocyte subpopulations and serum Th1/Th2 cytokines of people with different levels of vitamin D were detected in the study group by flow cytometry, respectively. The results of immune factors before and after supplementation were analyzed in 40 of these patients with low vitamin D levels. The results of lymphoid subpopulations and Th1/Th2 cytokines in 19 patients with normal pregnancy before and after vitamin D supplementation and after normal pregnancy were also analyzed comparatively. Results: (1) Serum 25(OH)D in the study group was lower than in the control group; peripheral blood Th cells, B cells and NK cells in the study group were higher than in the control group; IL-2, TNF-α, IFN-γ and IL-6 in the study group were higher than in the control group, while IL-4 and IL-10 in the study group were lower than in the control group (P < 0.05). (2) Th cells, B cells and NK cells of URSA patients in the vitamin D low level group were higher than those in the vitamin D normal group; serum cytokines IL-2, TNF-α and IFN-γ of patients in the vitamin D low level group were higher than those in the vitamin D normal group (P < 0.05); (3) Th cells, B cells and NK cells in URSA patients after vitamin D supplementation were lower than before vitamin D supplementation; serum cytokines IL-2, TNF-α and IFN-γ after vitamin D supplementation were lower than before vitamin D supplementation, IL-4 and IL-10 after vitamin D supplementation were higher than before vitamin D supplementation (P < 0.05), and there was no significant difference in IL-6 before and after vitamin D supplementation. (4) Th cells, B cells and NK cells in patients with normal pregnancy after vitamin D supplementation and after pregnancy were lower than those before vitamin D supplementation; serum cytokines IL-2, TNF-α and IFN-γ after vitamin D supplementation and after pregnancy were lower than those before vitamin D supplementation, and serum cytokines IL-4 and IL-10 after vitamin D supplementation and after pregnancy were higher than those before vitamin D supplementation, TNF -α, IFN-γ after pregnancy were lower than after vitamin D supplementation (P < 0.05), IL-6 was not significantly different before and after vitamin D supplementation and after pregnancy. Conclusion: Vitamin D deficiency rate was high in URSA patients. Th、B、NK cells and IL-2, TNF-α, IFN-γ, IL-6 cytokines were high, while IL-6 and IL-10 were low in URSA patients. IL-2, TNF-α, IFN-γ cytokines and Th, B, NK cells were increased in vitamin D deficient URSA patients, and Vitamin D deficiency may be an important cause or aggravating factor of immune dysfunction in URSA patients. Vitamin D has an immunomodulatory effect on URSA patients, promoting successful pregnancy by down-regulating peripheral blood Th, B, and NK cells and IL-2, TNF-α, and IFN-γ cytokines, while up-regulating IL-4 and IL-10.

3.
J Hazard Mater ; 470: 134137, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38555671

RESUMO

Petroleum hydrocarbons pose a significant threat to human health and the environment. Biochar has increasingly been utilized for soil remediation. This study investigated the potential of biochar immobilization using Serratia sp. F4 OR414381 for the remediation of petroleum-contaminated soil through a pot experiment conducted over 90 days. The treatments in this study, denoted as IMs (maize straw biochar-immobilized Serratia sp. F4), degraded 82.5% of the total petroleum hydrocarbons (TPH), 59.23% of the aromatic, and 90.1% of the saturated hydrocarbon fractions in the loess soils. During remediation, the soil pH values decreased from 8.76 to 7.33, and the oxidation-reduction potential (ORP) increased from 156 to 229 mV. The treatment-maintained soil nutrients of the IMs were 138.94 mg/kg of NO3- -N and 92.47 mg/kg of available phosphorus (AP), as well as 11.29% of moisture content. The activities of soil dehydrogenase (SDHA) and catalase (CAT) respectively increased by 14% and 15 times compared to the CK treatment. Three key petroleum hydrocarbon degradation genes, including CYP450, AJ025, and xylX were upregulated following IMs treatment. Microbial community analysis revealed that a substantial microbial population of 1.01E+ 09 cells/g soil and oil-degrading bacteria such as Salinimicrobium, Saccharibacteria_genera_incertae_sedis, and Brevundimonas were the dominant genera in IMs treatment. This suggests that the biochar immobilized on Serratia sp. F4 OR414381 improves soil physicochemical properties and enhances interactions among microbial populations, presenting a promising and environmentally friendly approach for the stable and efficient remediation of petroleum-contaminated loess soil.


Assuntos
Biodegradação Ambiental , Carvão Vegetal , Hidrocarbonetos , Petróleo , Serratia , Microbiologia do Solo , Poluentes do Solo , Serratia/metabolismo , Serratia/genética , Poluentes do Solo/metabolismo , Carvão Vegetal/química , Petróleo/metabolismo , Hidrocarbonetos/metabolismo , Poluição por Petróleo , Solo/química
4.
Molecules ; 29(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38338429

RESUMO

Photodynamic inactivation (PDI) is a highly effective treatment that can eliminate harmful microorganisms in a variety of settings. This study explored the efficacy of a curcumin-rich extract, Curcuma L., (Cur)- and essential oil component, trans-cinnamaldehyde, (Ca)-mediated PDI against Listeria monocytogenes ATCC 15313 (Lm) including planktonic cells and established biofilms on silicone rubber (Si), polytetrafluoroethylene (PTFE), stainless steel 316 (SS), and polyethylene terephthalate (PET). Applying Ca- and Cur-mediated PDI resulted in planktonic cell reductions of 2.7 and 6.4 log CFU/cm2, respectively. Flow cytometric measurements (FCMs) coupled with CFDA/PI and TOTO®-1 staining evidenced that Ca- doubled and Cur-mediated PDI quadrupled the cell damage. Moreover, the enzymatic activity of Lm cells was considerably reduced by Cur-mediated PDI, indicating its superior efficacy. Photosensitization also affected Lm biofilms, but their reduction did not exceed 3.7 log CFU/cm2. Cur-mediated PDI effectively impaired cells on PET and PTFE, while Ca-mediated PDI caused no (TOTO®-1) or only slight (PI) cell damage, sparing the activity of cells. In turn, applying Ca-mediate PDI to Si largely diminished the enzymatic activity in Lm. SS contained 20% dead cells, suggesting that SS itself impacts Lm viability. In addition, the efficacy of Ca-mediated PDI was enhanced on the SS, leading to increased damage to the cells. The weakened viability of Lm on Si and SS could be linked to unfavorable interactions with the surfaces, resulting in a better effect of Ca against Lm. In conclusion, Cur demonstrated excellent photosensitizing properties against Lm in both planktonic and biofilm states. The efficacy of Ca was lower than that of Cur. However, Ca bears potent antibiofilm effects, which vary depending on the surface on which Lm resides. Therefore, this study may help identify more effective plant-based compounds to combat L. monocytogenes in an environmentally sustainable manner.


Assuntos
Acroleína/análogos & derivados , Listeria monocytogenes , Compostos de Quinolínio , Tiazóis , Curcuma , Antibacterianos/farmacologia , Biofilmes , Politetrafluoretileno
5.
Int J Mol Sci ; 25(4)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38396682

RESUMO

Leukemic stem cells (LSCs) possess similar characteristics to normal hematopoietic stem cells, including self-renewal capacity, quiescence, ability to initiate leukemia, and drug resistance. These cells play a significant role in leukemia relapse, persisting even after apparent remission. LSCs were first described in 1994 by Lapidot et al. Although they have been extensively studied in acute leukemia, more LSC research is still needed in chronic lymphocytic leukemia (CLL) to understand if reduced apoptosis in mature cells should still be considered as the major cause of this disease. Here, we provide new evidence suggesting the existence of stem-like cell populations in CLL, which may help to understand the disease as well as to develop effective treatments. In this study, we identified a potential leukemic stem cell subpopulation using the tetraploid CLL cell line I83. This subpopulation is characterized by diploid cells that were capable of generating the I83 tetraploid population. Furthermore, we adapted a novel flow cytometry analysis protocol to detect CLL subpopulations with stem cell properties in peripheral blood samples and primary cultures from CLL patients. These cells were identified by their co-expression of CD19 and CD5, characteristic markers of CLL cells. As previously described, increased alkaline phosphatase (ALP) activity is indicative of stemness and pluripotency. Moreover, we used this method to investigate the potential synergistic effect of curcumin in combination with fludarabine and ibrutinib to deplete this subpopulation. Our results confirmed the effectiveness of this ALP-based analysis protocol in detecting and monitoring leukemic stem-like cells in CLL. This analysis also identified limitations in eradicating these populations using in vitro testing. Furthermore, our findings demonstrated that curcumin significantly enhanced the effects of fludarabine and ibrutinib on the leukemic fraction, exhibiting synergistic effects (combination drug index, CDI 0.97 and 0.37, respectively). Our results lend support to the existence of potential stem-like populations in CLL cell lines, and to the idea that curcumin could serve as an effective adjuvant in therapies aimed at eliminating these populations and improving treatment efficacy.


Assuntos
Adenina/análogos & derivados , Curcumina , Leucemia Linfocítica Crônica de Células B , Piperidinas , Vidarabina/análogos & derivados , Humanos , Leucemia Linfocítica Crônica de Células B/metabolismo , Curcumina/farmacologia , Curcumina/uso terapêutico , Tetraploidia
6.
Vet Immunol Immunopathol ; 269: 110728, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38340536

RESUMO

This work aims to: (1) elucidate the immune response exhibited by CD4 + and CD8 + T lymphocyte cells in response to various infectious agents in calves suffering with neonatal diarrhea; and (2) determine and investigate the association between serum selenium levels and T lymphocyte subtypes in neonatal calves afflicted with neonatal diarrhea and infected with various infectious agents. The study encompassed a cohort of 50 calves, encompassing both sexes and various breeds, within the neonatal age range (1-28 days old). Subdivided into distinct groups, the calves were categorized based on the causative agents of neonatal diarrhea, including Rotavirus (n = 10), Cryptosporidium parvum (C.parvum) (n = 10), Coronavirus (n = 5), Rotavirus+C.parvum (n = 5), and a Control group (n = 20). Blood samples were meticulously obtained from the vena jugularis of all animals utilizing specific techniques-8 ml in tubes devoid of anticoagulant and 3 ml in blood collection tubes containing EDTA. Serum selenium levels were analyzed by ICP-MS. Flow Cytometry device was used to determine CD4 + and CD8 +T lymphocyte levels. In this study, although there was no statistically significant difference in serum selenium levels between all study groups, it was found that the selenium level in the control group was not sufficient. CD4 T lymphocyte levels, the rotavirus+C.parvum group exhibited a statistically significant elevation compared to the coronavirus group. Regarding CD8 + T lymphocyte levels, the coronavirus group demonstrated a statistically significant increase when compared to the control group. In intragroup analyses of CD8 + T lymphocyte levels, the coronavirus group exhibited a significant elevation compared to the rotavirus group, C.parvum group, and the C.parvum + Rotavirus group. A significant negative correlation was detected between selenium levels and CD4 + T lymphocytes, while no correlation was found between CD8 + T lymphocytes. Fibrinogen concentration exhibited statistical significance, being higher in the Rotavirus group (p < 0.008) compared to the control group, in the C.parvum group (p < 0.004) compared to the control group, and in the Coronavirus group (p < 0.001) compared to the control group. The leukocyte count demonstrated statistical significance, being higher in the Rotavirus group compared to the control group (p < 0.001), in the Rotavirus+C.parvum group compared to the control group (p < 0.002), and in the Coronavirus group compared to the control group (p < 0.011). In conclusion, the data derived from this study illuminate discernible disparities in CD4 + and CD8 + T lymphocyte immune responses, contingent upon the specific etiological agent associated with neonatal diarrhea. Furthermore, the study underscores the importance of considering selenium deficiency as a relevant factor in calves affected by neonatal diarrhea.


Assuntos
Doenças dos Bovinos , Criptosporidiose , Cryptosporidium parvum , Cryptosporidium , Selênio , Humanos , Masculino , Feminino , Animais , Bovinos , Imunofenotipagem/veterinária , Diarreia/veterinária , Linfócitos T CD4-Positivos , Fezes
7.
Environ Sci Technol ; 58(6): 2902-2911, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38294202

RESUMO

Conventional biological nutrient removal processes rely on external aeration and produce significant carbon dioxide (CO2) emissions. This study constructed a phototrophic simultaneous nitrification-denitrification phosphorus removal (P-SNDPR) system to treat low carbon to nitrogen (C/N) ratios wastewater and investigated the impact of sludge retention time (SRT) on nutrient removal performance, nitrogen conversion pathway, and microbial structure. Results showed that the P-SNDPR system at SRT of 15 days had the highest nutrient removal capacity, achieving over 85% and 98% removal of nitrogen and phosphorus, respectively, meanwhile maintaining minimal CO2 emissions. Nitrogen removal was mainly through assimilation at SRTs of 5 and 10 days, and nitrification-denitrification at SRTs of 15 and 20 days. Stable partial nitrification was facilitated by photoinhibition and low DO levels. Flow cytometry sorting technique results revealed SRT drove community structural changes in translational activity (BONCAT+) microbes, where BONCAT+ microbes were mainly simultaneous nitrogen and phosphorus removal bacteria (Candidatus Accumulibacter), denitrifying bacteria (Candidatus Competibacter and Plasticicumulans), ammonia-oxidizing bacteria (Nitrosomonas), and microalgae (Chlorella and Dictyosphaerium). The P-SNDPR system represents a novel, carbon-neutral process for efficient nutrient removal from low C/N ratio wastewater without aeration and external carbon source additions.


Assuntos
Chlorella , Águas Residuárias , Nitrificação , Desnitrificação , Fósforo/metabolismo , Nitrogênio/química , Nitrogênio/metabolismo , Dióxido de Carbono , Chlorella/metabolismo , Eliminação de Resíduos Líquidos/métodos , Reatores Biológicos/microbiologia , Esgotos/microbiologia
8.
Mol Biol Rep ; 51(1): 62, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38170277

RESUMO

BACKGROUND: Breast carcinoma is the second leading cause of cancer related-deaths among women. Given its high incidence and mortality rates, searching for innovative treatments represents a formidable challenge within the medical and pharmaceutical industries. This study delves into the preparation, characterization, and anticancer properties of silver chloride nanoparticles (AgCLNPs) as a novel therapeutic approach for breast cancer cells, employing a biological synthesis method. METHODS: This investigation, utilized spirulina platensis extract to synthesize silver chloride nanoparticles (AgCLNPs-SP). The formation, size, and structure of the nanoparticles were characterized by Transmission Electron Microscopy (TEM), Scanning Electron Microscope (SEM), X-ray crystallography (XRD), and Energy-dispersive X-ray spectroscopy (EDS) analysis. Additionally, the apoptotic and anticancer properties of AgCLNPs-SP were thoroughly examined. RESULTS: The results, revealed AgCLNPs-SP to exhibit a spherical, morphology with a size range of 40-70 nm, primarily silver and chlorine. The dose-dependent response of AgCLNP-SP against MDA-MB231 cells was ascertained using the MTT Assay, with an IC50 value of 34 µg/mL. Furthermore, the Annexin V-FITC/ PI apoptosis assay demonstrated a significant proportion of early apoptosis (43.67%) in MDA-MB231 cells. This apoptosis process was substantiated by up-regulation in mRNA expression levels of P53, CAD, and Bax genes, alongside a down-regulation of the of bcl2 gene expression. Additionally, an augmented production of reactive oxygen species (ROS), cell cycle analysis, Hoechst staining assay, and evaluated levels of Caspase - 3, -8 and - 9 were observed in AgCLNPs-SP-treated MDA_MB231 cancer cells. CONCLUSIONS: In conclusion, the results suggest that AgCLNPs-SP may be a promising agent for treating breast cancer.


Assuntos
Neoplasias da Mama , Nanopartículas Metálicas , Microalgas , Feminino , Humanos , Nanopartículas Metálicas/química , Células MCF-7 , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Cloretos , Extratos Vegetais/farmacologia , Extratos Vegetais/química
9.
Biopreserv Biobank ; 22(1): 82-87, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37466468

RESUMO

Despite the vital role of seminal plasma (SP) in maintaining sperm function and aiding gamete interaction in many species, SP is usually removed before cryopreservation of stallion sperm to improve cryosurvival of sperm. The present study assessed if the vital sperm functional parameters of genetically superior stallions producing poor quality semen can be enhanced by the supplementation of heterologous SP from the stallion producing high quality semen. Spermatozoa from poor quality semen producing stallions were divided into three aliquots: two aliquots were supplemented with SP obtained from good quality semen producing stallions at the rate of 20% and 30%, respectively, whereas the third aliquot remained as control (0% SP) and incubated at 37°C for 30 minutes. Sperm membrane integrity, mitochondrial membrane potential (MMP), mitochondrial superoxide (mtROS) generation, and intracellular calcium status were assessed at different time intervals during incubation by flow cytometry. It was observed that the dead sperm population increased (p < 0.01) during incubation in both the 20% and 30% SP-supplemented groups. However, no significant changes were observed in MMP in both the control and treatment groups at different time intervals. Interestingly, it was found that sperm mtROS production increased (p < 0.01) during incubation in the SP-supplemented groups compared with the control group. The proportion of live spermatozoa with high intracellular calcium was reduced (p < 0.01) during incubation in the SP-incubated groups. Collectively, heterologous SP addition could not repair the damages caused by the cryopreservation and further resulted in deterioration of semen quality as observed in our study by reducing viability, increasing reactive oxygen species (ROS) production possibly due to high proportion of dead cells, or some factors (yet to be identified) that are inducive of oxidative stress in stallion spermatozoa.


Assuntos
Preservação do Sêmen , Sêmen , Masculino , Cavalos , Animais , Análise do Sêmen , Cálcio , Preservação do Sêmen/veterinária , Preservação do Sêmen/métodos , Espermatozoides , Criopreservação/métodos
10.
J Biomol Struct Dyn ; 42(1): 528-549, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37087726

RESUMO

Multidrug resistance episodes in malaria increased from 3.9% to 20% from 2015 to 2019. Synchronizing the clinical manifestation in chronological sequence led to a unique impression on glucose demand (increased up to 100-fold) by the parasite-infected RBCs. Hence, restriction in the glucose uptake to parasite-infected RBCs could be an alternative approach to conquer the global burden of malaria to a greater extent. A C28 steroidal lactone Withaferin A (WS-3) isolated from Withania somnifera leave extract shows better thermodynamically stable interactions with the glucose transporters (GLUT-1 and PfHT) to standard drugs metformin and lopinavir. MD simulations for a trajectory period of 100 ns reflect stable interactions with the interactive amino acid residues such as Pro141, Gln161, Gln282, Gln283, Trp388, Phe389, and Phe40, Asn48, Phe85, His168, Gln169, Asn311 which potentiating inhibitory activity of WS-3 against GLUT-1 and PfHT respectively. WS-3 was non-hemotoxic (%hemolysis <5%) for a high concentration of up to 1 mg/ml in the physiological milieu. However, the %hemolysis significantly increased up to 30.55 ± 0.929% in a parasitophorous simulated environment (pH 5.0). Increased hemolysis of WS-3 could be due to the production of ROS in an acidic environment. Further, the inhibitory activity of WS-3 against both glucose transporters was supported with flow cytometry-based analysis of parasite-infected RBCs. Results show that WS-3 has low mean fluorescence intensities for both target proteins compared to conventional drugs, suggesting a potential sugar transporter inhibitor against GLUT-1 and PfHT for managing malaria. Communicated by Ramaswamy H. Sarma.


Assuntos
Malária , Withania , Withania/química , Hemólise , Citometria de Fluxo , Malária/tratamento farmacológico , Extratos Vegetais/farmacologia , Glucose/metabolismo
11.
Front Pharmacol ; 14: 1325498, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38125886

RESUMO

Introduction: Cancer contributes to a high mortality rate worldwide spanning its diversity from genetics to resistant therapeutic response. To date emerging strategies to combat and manage cancer are particularly focused on the development of targeted therapies as conventional treatments account for the destruction of normal cells as well. In this regard, medicinal plant-based therapies are quite promising in imposing minimal side effects; however, limitations like poor bioavailability and stability of bioactive phytochemicals are associated with them. In parallel, nanotechnology provides nominal solution to deliver particular therapeutic agent without compromising its stability. Methods: In this study, Solanum nigrum, an effective medicinal plant, loaded arabinoxylan cross-linked ß-cyclodextrin nanosponges (SN-AXCDNS) were designed to evaluate antitumor activity against breast cancer. Therefore, SN-AXCDNS were prepared by using cross-linker melt method and characterized by physicochemical and pharmacological parameters. Results: Hydrodynamic size, zeta potential and entrapment efficiency (EE%) were estimated as 226 ± 4 nm, -29.15 ± 5.71 mV and 93%, respectively. Surface morphology of nanocomposites showed spherical, smooth, and porous form. Antitumor pharmacological characterization showed that SN loaded nanosponge demonstrated higher cytotoxicity (22.67 ± 6.11 µg/mL), by inducing DNA damage as compared to void SN extract. Flow cytometry analysis reported that encapsulated extract promoted cell cycle arrest at sub-G1 (9.51%). Moreover, in vivo analysis demonstrates the reduction in tumor weight and 85% survival chances in nanosponge treated mice featuring its effectiveness. In addition, in silico analysis revealed that ß-cyclodextrin potentially inhibits MELK in breast cancer cell lines (B.E = -10.1 Kcal/mol). Conclusion: Therefore, findings of current study elucidated the therapeutic potential of ß-cyclodextrin based nanosponges to be an alternative approach regarding the delivery and solubilization of antitumor drugs.

12.
Int J Mol Sci ; 24(21)2023 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-37958947

RESUMO

Ionizing radiation (IR) and reactive oxygen species (ROS)-induced oxidative stress can cause damage to cellular biomolecules, including DNA, proteins, and lipids. These harmful effects can compromise essential cellular functions and significantly raise the risk of metabolic dysfunction, accumulation of harmful mutations, genome instability, cancer, accelerated cellular senescence, and even death. Here, we present an investigation of HeLa cancer cells' early response to gamma IR (γ-IR) and oxidative stress after preincubation of the cells with natural extracts of the resurrection plant Haberlea rhodopensis. In light of the superior protection offered by plant extracts against radiation and oxidative stress, we investigated the cellular defence mechanisms involved in such protection. Specifically, we sought to evaluate the molecular effects of H. rhodopensis extract (HRE) on cells subjected to genotoxic stress by examining the components of the redox pathway and quantifying the transcription levels of several critical genes associated with DNA repair, cell cycle regulation, and apoptosis. The influence of HRE on genome integrity and the cell cycle was also studied via comet assay and flow cytometry. Our findings demonstrate that HREs can effectively modulate the cellular response to genotoxic and oxidative stress within the first two hours following exposure, thereby reducing the severity of such stress. Furthermore, we observed the specificity of genoprotective HRE doses depending on the source of the applied genotoxic stress.


Assuntos
Lamiales , Oxirredução , Estresse Oxidativo , Extratos Vegetais/farmacologia , Dano ao DNA , Expressão Gênica , Espécies Reativas de Oxigênio
13.
Pak J Biol Sci ; 26(8): 427-433, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37937336

RESUMO

<b>Background and Objective:</b> Safflower (<i>Carthamus tinctorius</i> Linn.) is one of the medicinal plants that contain secondary metabolites that have the potential to as anti-cancer by inducing apoptosis. This study aims to determine the content of secondary metabolite compounds and the induction activity of apoptosis from ethanol extract of safflower in the T47D breast cancer cell line. <b>Materials and Methods:</b> Safflower was extracted using 96% ethanol and assayed for phytochemical screening, cytotoxic tests by cell counting kit-8 to determine inhibitory concentration and apoptosis induction activity by flow cytometry to determine the ability of samples induce the programmed cell cancer in death. The data collected was analyzed with the PRISM GraphPad version. <b>Results:</b> The ethanol extract of safflower contains flavonoid compounds, alkaloids, saponins, tannins and terpenoids. The results of the anticancer activity test showed an IC<sub>50</sub> value of 479 µg mL<sup>1</sup> and the best percentage of apoptosis at a concentration of 200 µg mL<sup>1</sup> was 16.61% at the beginning of apoptosis and 10.52% at the end of apoptosis. <b>Conclusion:</b> The safflower can be developed as a breast anticancer agent that works through the induction of apoptosis to improve the effectiveness of breast cancer treatment.


Assuntos
Carthamus tinctorius , Neoplasias , Humanos , Proliferação de Células , Etanol , Células MCF-7 , Extratos Vegetais/farmacologia
14.
Med Oncol ; 41(1): 4, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38019336

RESUMO

Cancer is considered most detrimental due to high mortality worldwide. Among them, skin cancers play a major part by affecting one in three cancer patients globally. About 2-3 million cancer cases were reported to be non-melanoma and melanoma skin cancers, respectively. Although chemotherapeutic drugs act on cancer cells but results in long-lasting morbidities which affects one's quality of life and also works only in the initial stage of the cancer. Hence, an idea of traditional medicine to cure the disease efficiently with less side effects was pursued by the researchers. We have assessed the combination effect of p-coumaric acid and naringin in exerting anticancer activity using A431 (epidermoid carcinoma) cells. The MTT analysis of the combination on A431 cells showed the least IC50 concentration of 41 µg/ml which is effective than the standard drug imiquimod with IC50 concentration of 52 µg/ml. Further, flow cytometric analysis was carried out to identify the molecular mechanism behind the anticancer effects of the combination. The results revealed that the combination arrested the A431 cell cycle at S phase, induced apoptosis as indicated by more early and late apoptotic cells when compared with the control, and further altered reactive oxygen species (ROS) and mitochondrial membrane potential in A431 cells. Hence, the results suggest the potential anticancer effects of p-coumaric acid and naringin combination against the skin cancer (A431) cell line. The observed effects may be additive or synergistic effects in inducing ROS generation and apoptosis, and reducing the viability of A431 cells.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Cutâneas , Humanos , Qualidade de Vida , Espécies Reativas de Oxigênio , Carcinoma de Células Escamosas/tratamento farmacológico , Neoplasias Cutâneas/tratamento farmacológico , Linhagem Celular
15.
Ecotoxicol Environ Saf ; 266: 115582, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37862747

RESUMO

Standardised tests are often used to determine the ecotoxicity of chemicals and focus mainly on one or a few generic endpoints (e.g. mortality, growth), but information on the sub-cellular processes leading to these effects remain usually partial or missing. Flow cytometry (FCM) can be a practical tool to study the physiological responses of individual cells (such as microalgae) exposed to a stress via the use of fluorochromes and their morphology and natural autofluorescence. This work aimed to assess the effects of five chlorine-based disinfection by-products (DBPs) taken individually on growth and sub-cellular endpoints of the green microalgae Raphidocelis subcapitata. These five DBPs, characteristic of a chlorinated effluent, are the following monochloroacetic acid (MCAA), dichloroacetic acid (DCAA), trichloroacetic acid (TCAA), bromochloroacetic acid (BCAA) and 1,1-dichloropropan-2-one (1,1-DCP). Results showed that 1,1-DCP had the strongest effect on growth inhibition (EC50 = 1.8 mg.L-1), followed by MCAA, TCAA, BCAA and DCAA (EC50 of 10.1, 15.7, 27.3 and 64.5 mg.L-1 respectively). Neutral lipid content, reactive oxygen species (ROS) formation, red autofluorescence, green autofluorescence, size and intracellular complexity were significantly affected by the exposure to the five DBPs. Only mitochondrial membrane potential did not show any variation. Important cellular damages (>10%) were observed for only two of the chemicals (BCAA and 1,1-DCP) and were probably due to ROS formation. The most sensitive and informative sub-lethal parameter studied was metabolic activity (esterase activity), for which three types of response were observed. Combining all this information, an adverse outcome pathways framework was proposed to explain the effect of the targeted chemicals on R. subcapitata. Based on these results, both FCM sub-cellular analysis and conventional endpoint of algal toxicity were found to be complementary approaches.


Assuntos
Rotas de Resultados Adversos , Microalgas , Desinfecção/métodos , Citometria de Fluxo , Espécies Reativas de Oxigênio , Ácido Tricloroacético/análise , Ácido Tricloroacético/toxicidade , Ácido Dicloroacético/análise
16.
Environ Sci Pollut Res Int ; 30(52): 112117-112131, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37824048

RESUMO

In this study, we investigate the toxicity of commercial formulations based on glyphosate, 2,4-D, imidacloprid, and iprodione, in isolation and mixed, on Allium cepa. The mixtures consisted of combinations in the lowest (M1), intermediate (M2), and highest concentrations (M3) of each pesticide. We measured physiological (germination rate, germination speed, and radicular length) and cyto-genotoxic (mitotic index and frequency of aberrant cells) parameters. In addition, we analyzed the cell cycle progression and cell death induction by flow cytometry. When applied in isolation, the pesticides changed the parameters evaluated. M1 and M2 inhibited root length and increased the frequency of aberrant cells. Their genotoxic effect was equivalent to that of pesticides applied in isolation. Furthermore, M1 and M2 caused cell death and M2 changed the cell cycle progression. M3 had the greatest deleterious effect on A. cepa. This mixture inhibited root length and promoted an additive or synergistic effect on the mitotic index. In addition, M3 changed all parameters analyzed by flow cytometry. This research clearly demonstrates that the pesticides tested, and their mixtures, may pose a risk to non-target organisms.


Assuntos
Praguicidas , Toxinas Biológicas , Praguicidas/toxicidade , Cebolas , Índice Mitótico , Raízes de Plantas , Dano ao DNA , Aberrações Cromossômicas
17.
Water Res ; 246: 120742, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37857010

RESUMO

Partial nitrification (PN) and high glycogen accumulating metabolism (GAM) activity are the basis for efficient nitrogen (N) and phosphorus (P) removal in simultaneous nitrification endogenous denitrification and phosphorus removal (SNDPR) systems. However, achieving these processes in practical operations is challenging. This study proposes that light irradiation is a novel strategy to enhance the nutrient removal performance of the SNDPR system with low carbon to nitrogen ratios (C/N of 3.3-4.1) domestic wastewater. Light energy densities (Es) of 55-135 J/g VSS were found to promote the activity of ammonia-oxidizing bacteria (AOB) and GAM, while inhibiting the activity of nitrite-oxidizing bacteria (NOB) and polyphosphate accumulating metabolism (PAM). Long-term exposure to different light patterns at Es of 55-135 J/g VSS revealed that continuous light rapidly achieved PN by inhibiting NOB activity and promoted the growth of glycogen accumulating organisms (GAOs), allowing the removal of above 82 % N and below 80 % P. Intermittent light maintained stable PN by inhibiting the activity and growth of NOB and promoted the growth of polyphosphate accumulating organisms (PAOs) with high GAM activity (Accmulibacer IIC-ii and IIC-iii), allowing the removal of above 82 % N and 95 % P. Flow cytometry and enzyme activity assays showed that light promoted GAM-related enzyme activity and the metabolic activity of partial Accmulibacer II over other endogenous denitrifying bacteria, while inhibiting NOB translation activity. These findings provide a new approach for enhancing nutrient removal, especially for achieving PN and promoting GAM activity, in SNDPR systems treating low C/N ratio domestic wastewater using light irradiation.


Assuntos
Nitrificação , Águas Residuárias , Desnitrificação , Fósforo/metabolismo , Eliminação de Resíduos Líquidos , Reatores Biológicos/microbiologia , Nitrogênio/metabolismo , Bactérias/metabolismo , Glicogênio/metabolismo , Nitritos/metabolismo , Polifosfatos/metabolismo , Esgotos
18.
New Phytol ; 240(3): 1305-1326, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37678361

RESUMO

Pollen and tracheophyte spores are ubiquitous environmental indicators at local and global scales. Palynology is typically performed manually by microscopic analysis; a specialised and time-consuming task limited in taxonomical precision and sampling frequency, therefore restricting data quality used to inform climate change and pollen forecasting models. We build on the growing work using AI (artificial intelligence) for automated pollen classification to design a flexible network that can deal with the uncertainty of broad-scale environmental applications. We combined imaging flow cytometry with Guided Deep Learning to identify and accurately categorise pollen in environmental samples; here, pollen grains captured within c. 5500 Cal yr BP old lake sediments. Our network discriminates not only pollen included in training libraries to the species level but, depending on the sample, can classify previously unseen pollen to the likely phylogenetic order, family and even genus. Our approach offers valuable insights into the development of a widely transferable, rapid and accurate exploratory tool for pollen classification in 'real-world' environmental samples with improved accuracy over pure deep learning techniques. This work has the potential to revolutionise many aspects of palynology, allowing a more detailed spatial and temporal understanding of pollen in the environment with improved taxonomical resolution.


Assuntos
Aprendizado Profundo , Inteligência Artificial , Citometria de Fluxo , Filogenia , Pólen
19.
Adv Biomed Res ; 12: 200, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37694244

RESUMO

Background: Renal cell carcinoma (RCC) is among the top death-causing cancers. Medicinal herbs can also have beneficial effects on RCC treatment. In this project, we aimed to study the antitumor effect of dichloromethane and N-butanol fractions of hydroalcoholic extract of Nigella sativa (N. sativa) on the morphology, viability, and apoptosis of ACHN (human renal adenocarcinoma) and GP-293 (normal renal epithelial) cell lines. Materials and Methods: In this experimental study, N-butanol and dichloromethane fractions of N. sativa were obtained, and ACHN and GP293 cell lines were treated with various concentrations of dichloromethane (0-100 µg/mL) and N-butanol (0-12.5 µg/mL) fractions for 24, 48, and 72 hours. Then, morphological changes, viability, and apoptosis were investigated. Results: Our results indicated that dichloromethane and N-butanol fractions cause morphological changes and significant decreases in the percentage of live cells in the ACHN cell line, in a dose- and time-dependent manner. In the GP-293 cell line, however, a lower toxicity was observed in comparison with that found for ACHN. The results of flow cytometry showed an apoptotic effect of dichloromethane and N-butanol fractions on the ACHN cell line but a higher rate of apoptosis induction for the total extract compared to the two fractions in the renal cancer cell line compared to the normal cell line. Conclusion: Our findings demonstrated that these two fractions of N. sativa induce inhibitory effects on the ACHN cell line morphology and viability. These effects were lower than those induced by the total extract. In addition, the two fractions caused more marked effects in the renal cancer cell line compared with the GP-293 cell line.

20.
Harmful Algae ; 127: 102483, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37544668

RESUMO

Many harmful algae are mixoplanktonic, i.e. they combine phototrophy and phagotrophy, and this ability may explain their ecological success, especially when environmental conditions are not optimal for autotrophic growth. In this study, laboratory experiments were conducted with the mixotrophic and ichthyotoxic haptophyte Prymnesium parvum (strain CCAP 946/6) to test the effects of phosphorus (P) sufficiency and deficiency on its growth rate, phagotrophic and lytic activities. P-deficient P. parvum cultures were grown without or with addition of P in the form of inorganic phosphorus (nutrients) and/or living algal prey (i.e. the cryptophyte Teleaulax amphioxeia). The ingestion rate of P. parvum and prey mortality rate were calculated using flow cytometry measurements based on pigment-derived-fluorescence to distinguish between prey, predators and digesting predators. The first aim of the study was to develop a method taking into account the rate of digestion, allowing the calculation of ingestion rates over a two-week period. Growth rates of P. parvum were higher in the treatments with live prey, irrespective of the concentration of inorganic P, and maximum growth rates were found when both inorganic and organic P in form of prey were added (0.79 ± 0.07 d-1). In addition, the mortality rate of T. amphioxeia induced by lytic compounds was 0.2 ± 0.02 d-1 in the P-deficient treatment, while no mortality was observed under P-sufficiency in the present experiments. This study also revealed the mortality due to cell lysis exceeded that of prey ingestion. Therefore, additional experiments were conducted with lysed prey cells. When grown with debris from prey cells, the mean growth rate of P. parvum was similar to monocultures without additions of prey debris (0.30 ± 0.1 vs. 0.38 ± 0.03 d-1), suggesting that P. parvum is able to grow on prey debris, but not as fast as with live prey. These results provide the first quantitative evidence over two weeks of experiment that ingestion of organic P in the form of living prey and/or debris of prey plays an important role in P. parvum growth and may explain its ecological success in a nutrient-limited environments.


Assuntos
Haptófitas , Fósforo/farmacologia , Criptófitas , Processos Autotróficos , Processos Fototróficos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA