Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Medicinas Complementares
Métodos Terapêuticos e Terapias MTCI
Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Plant Dis ; 105(11): 3496-3502, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34032488

RESUMO

Phytophthora crown rot, caused mainly by Phytophthora cactorum but also by P. nicotianae, reported in 2018, is an important disease in the Florida strawberry annual production system. Mefenoxam is the most effective and widely used fungicide to manage this disease. However, because of pathogen resistance, alternatives to chemical control are needed. Phytophthora spp. were rarely recovered during the summer from soil of commercial farms where the disease was observed during the season. In a more detailed survey on research plots, neither of the two species was recovered 1 month after the crop was terminated and water was shut off. Therefore, Phytophthora spp. does not seem to survive in the soil over summer in Florida. In a field trial, asymptomatic nursery transplants harboring quiescent infections were confirmed as the major source of inoculum for these pathogens in Florida. Heat treatment of P. cactorum zoospores at 44°C for as little as 5 min was effective in inhibiting germination and colony formation; however, oospore germination was not inhibited by any of the tested temperatures in vitro. In the field, thermotherapy treatment of inoculated plants was shown to have great potential to serve as a nonchemical approach for managing Phytophthora crown rot in production fields and reducing mefenoxam-resistant populations in nursery transplants.


Assuntos
Fragaria , Hipertermia Induzida , Phytophthora , Gerenciamento Clínico , Florida , Doenças das Plantas
2.
J Exp Bot ; 71(22): 7103-7117, 2020 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-32856699

RESUMO

To disentangle the role of polygalacturonase (PG) genes in strawberry softening, the two PG genes most expressed in ripe receptacles, FaPG1 and FaPG2, were down-regulated. Transgenic ripe fruits were firmer than those of the wild type when PG genes were silenced individually. Simultaneous silencing of both PG genes by transgene stacking did not result in an additional increase in firmness. Cell walls from ripe fruits were characterized by a carbohydrate microarray. Higher signals of homogalacturonan and rhamnogalacturonan I pectin epitopes in polysaccharide fractions tightly bound to the cell wall were observed in the transgenic genotypes, suggesting a lower pectin solubilization. At the transcriptomic level, the suppression of FaPG1 or FaPG2 alone induced few transcriptomic changes in the ripe receptacle, but the amount of differentially expressed genes increased notably when both genes were silenced. Many genes encoding cell wall-modifying enzymes were down-regulated. The expression of a putative high affinity potassium transporter was induced in all transgenic genotypes, indicating that cell wall weakening and loss of cell turgor could be linked. These results suggest that, besides the disassembly of pectins tightly linked to the cell wall, PGs could play other roles in strawberry softening, such as the release of oligogalacturonides exerting a positive feedback in softening.


Assuntos
Fragaria , Parede Celular/metabolismo , Fragaria/genética , Fragaria/metabolismo , Frutas/genética , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Pectinas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Poligalacturonase/genética , Poligalacturonase/metabolismo
3.
Food Res Int ; 121: 453-462, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31108769

RESUMO

The polyphenolic profiles by HPLC-TOF-MS of strawberry 'San Andreas' and blackberry 'Black Satin' crude extracts (CE) were analyzed. Anthocyanin-enriched fractions (AEFs) and proanthocyanidin-enriched fractions (PEFs) were prepared, and all samples were probed for in vitro anti-inflammatory and wound healing effects in a LPS-stimulated RAW 264.7 macrophage model and in a skin fibroblast migration and proliferation assay, respectively. Blackberry samples exhibited higher ROS reduction than strawberry's (up to 50% ROS suppression). Berries CEs exhibited 20% inhibition in Cox-2 gene expression, while AEFs and PEFs were inactive at the same concentration. Strawberry AEF and PEF were more active against IL-1ß and IL-6 gene expressions than the similar fractions from blackberry, where PEF was more active than AEF (75% suppression by strawberry PEF). Moreover, berry PEFs were the active polyphenol fraction against iNOS gene expression (50% and 65% gen suppression by strawberry and blackberry PEF, respectively), mirroring results of NO synthesis suppression. The cell migration potential of berry polyphenolics was associated with anthocyanins. AEFs showed fibroblast migration around 50% of that registered for the positive control. Results obtained in this work highlight the anti-inflammatory properties of berry polyphenolics, especially due to proanthocyanidins. Moreover, promising results were obtained about the effects of berry anthocyanins on wound healing.


Assuntos
Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Frutas/química , Extratos Vegetais/farmacologia , Polifenóis/farmacologia , Cicatrização/efeitos dos fármacos , Animais , Antocianinas/análise , Antocianinas/farmacologia , Anti-Inflamatórios/análise , Antioxidantes/análise , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Fragaria/química , Camundongos , Compostos Fitoquímicos/análise , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/análise , Polifenóis/análise , Proantocianidinas/análise , Proantocianidinas/farmacologia , Células RAW 264.7 , Espécies Reativas de Oxigênio/metabolismo , Rubus/química
4.
Biosci Rep ; 38(6)2018 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-30291211

RESUMO

Cadmium (Cd) is a common environmental toxicant that has harmful effects on plants, animals, and humans. The present study evaluated the protective effects of Fragaria ananassa methanolic extract (SME) on cadmium chloride (CdCl2)-induced neuronal toxicity in rats. Male albino rats were intraperitoneally (i.p) injected with CdCl2 (6.5 mg/kg) for 5 days with or without the SME (250 mg/kg). We measured the levels of Cd, lipid peroxidation (LPO), nitric oxide, glutathione (GSH), and oxidative enzymes such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase, and glutathione reductase (GR) in the whole brain homogenate. Compared with the control group, the Cd-intoxicated group showed a marked increase in the brain levels of Cd, LPO, and nitric oxide and a decrease in the levels of GSH and all tested antioxidant enzymes. Compared with Cd-intoxicated rats, the rats pretreated with SME showed restoration of oxidative balance in the brain tissue. While the expression of brain SOD2, CAT, glutathione peroxidase 1, and GR was down-regulated in the Cd-treated group, the expression of these enzymes was up-regulated in rats pretreated with SME. In addition, administration of SME before CdCl2 increased the Bcl-2 expression, but significantly decreased the expression of Bax. Immunohistochemical analysis showed that compared with Cd-intoxicated rats, rats pretreated with SME showed a decrease in the protein expression of tumor necrosis factor α (TNF-α). Our findings indicate that SME protects the brain tissue from Cd-induced neuronal toxicity by improving the antioxidant system and increasing antiapoptotic and anti-inflammatory activities.


Assuntos
Cloreto de Cádmio/toxicidade , Fragaria/química , Neurônios/efeitos dos fármacos , Extratos Vegetais/administração & dosagem , Animais , Antioxidantes/administração & dosagem , Antioxidantes/química , Apoptose/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Peroxidação de Lipídeos/efeitos dos fármacos , Neurônios/patologia , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/química , Substâncias Protetoras/administração & dosagem , Substâncias Protetoras/química , Ratos , Fator de Necrose Tumoral alfa/genética
5.
Food Chem ; 262: 142-149, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-29751902

RESUMO

The antifungal effect of chitosan edible coatings (ChEC) functionalized with cinnamon essential oil and aqueous extract of Roselle calyces on Colletotrichum fragariae growth and physical-chemical, physiological and nutraceutical features of strawberries at 5 and 20 °C were evaluated. ChEC was characterized with respect to its water vapor permeability (WVP) and mechanical properties. Results indicated that C. fragariae grew from the third day in strawberries stored at 20 °C, whilst at 5 °C disease symptoms were observed after 10 days in fruit inoculated and treated with ChEC after 24 h. The weight loss was reduced 15 times and firmness was higher by 33% in fruit treated with ChEC and stored at 5 °C. The antioxidant capacity of strawberries increased at the end of the storage only in control group. In conclusion, ChEC can be an effective technology for preserving quality strawberries for 17 days at 5 °C.


Assuntos
Antioxidantes/análise , Quitosana/farmacologia , Colletotrichum/efeitos dos fármacos , Fragaria/microbiologia , Óleos de Plantas/farmacologia , Cinnamomum zeylanicum/química , Fragaria/química , Frutas/química , Frutas/microbiologia
6.
Biol Trace Elem Res ; 181(2): 378-387, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28567583

RESUMO

For experiments of cadmium toxicity in animal models, cadmium (II) chloride is often used due to its solubility in water and its ability to produce high concentrations of cadmium at the target site. The present study was designed to investigate the potential inhibitory effect of the Fragaria ananassa fruit extract on cadmium (II) chloride-induced renal toxicity in rats. Tested animals were pretreated with the extract of F. ananassa and injected with cadmium (II) chloride (6.5-mg/kg body weight) for 5 days. Cadmium (II) chloride significantly increased kidney cadmium concentration, kidney weight, lipid peroxidation, and nitric oxide production. Plasma uric acid, urea, and creatinine levels also increased significantly, indicative of kidney dysfunction. These effects were accompanied by significantly decreased levels of nonenzymatic and enzymatic antioxidant molecules (i.e., glutathione content and the activities of superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase). Moreover, messenger RNA (mRNA) expression of the antiapoptotic protein, Bcl-2, and the antioxidant proteins, superoxide dismutase 2 and glutathione reductase, were downregulated markedly, whereas mRNA expression of tumor necrosis factor-α was upregulated significantly in kidney tissues of cadmium-treated rats. Histology of kidney tissue demonstrated severe, adverse changes that reflected cadmium-induced tissue damage. Pretreatment of rats with the extract of F. ananassa ameliorated all aforementioned cadmium (II) chloride-induced changes. In conclusion, the present study showed acute renal toxicity in rats treated with cadmium (II) chloride. The study also revealed that pretreatment with the extract of F. ananassa could protect the kidney against cadmium (II) chloride-induced acute renal toxicity.


Assuntos
Cloreto de Cádmio/antagonistas & inibidores , Fragaria/química , Extratos Vegetais/farmacologia , Substâncias Protetoras/farmacologia , Insuficiência Renal/prevenção & controle , Animais , Cloreto de Cádmio/toxicidade , Imuno-Histoquímica , Masculino , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Substâncias Protetoras/química , Substâncias Protetoras/isolamento & purificação , Ratos , Insuficiência Renal/induzido quimicamente , Insuficiência Renal/patologia
7.
Plant Physiol Biochem ; 118: 55-63, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28618373

RESUMO

Strawberry (Fragaria × anannasa Duch.) is one of the most important soft fruit. Rapid loss of firmness occurs during the ripening process, resulting in a short shelf life and high economic losses. To get insight into the role of pectin matrix in the softening process, cell walls from strawberry fruit at two developmental stages, unripe-green and ripe-red, were extracted and sequentially fractionated with different solvents to obtain fractions enriched in a specific component. The yield of cell wall material as well as the per fresh weight contents of the different fractions decreased in ripe fruit. The largest reduction was observed in the pectic fractions extracted with a chelating agent (trans-1,2- diaminocyclohexane-N,N,N'N'-tetraacetic acid, CDTA fraction) and those covalently bound to the wall (extracted with Na2CO3). Uronic acid content of these two fractions also decreased significantly during ripening, but the amount of soluble pectins extracted with phenol:acetic acid:water (PAW) and water increased in ripe fruit. Fourier transform infrared spectroscopy of the different fractions showed that the degree of esterification decreased in CDTA pectins but increased in soluble fractions at ripen stage. The chromatographic analysis of pectin fractions by gel filtration revealed that CDTA, water and, mainly PAW polyuronides were depolymerised in ripe fruit. By contrast, the size of Na2CO3 pectins was not modified. The nanostructural characteristics of CDTA and Na2CO3 pectins were analysed by atomic force microscopy (AFM). Isolated pectic chains present in the CDTA fractions were significantly longer and more branched in samples from green fruit than those from red fruit. No differences in contour length were observed in Na2CO3 strands between samples of both stages. However, the percentage of branched chains decreased from 19.7% in unripe samples to 3.4% in ripe fruit. The number of pectin aggregates was higher in green fruit samples of both fractions. These results show that the nanostructural complexity of pectins present in CDTA and Na2CO3 fractions diminishes during fruit development, and this correlates with the solubilisation of pectins and the softening of the fruit.


Assuntos
Parede Celular/metabolismo , Fragaria/crescimento & desenvolvimento , Frutas/crescimento & desenvolvimento , Pectinas/metabolismo
8.
Int J Mol Sci ; 18(5)2017 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-28475120

RESUMO

Cadmium is a deleterious environmental pollutant that threats both animals and human health. Oxidative stress and elevated levels of reactive oxygen species (ROS) have recently been reported to be the main cause of cellular damage as a result of cadmium exposure. We investigate, here, the protective effect of strawberry crude extracts on cadmium-induced oxidative damage of testes in rats. Four groups (n = 8) of 32 adult male Wistar rats weighing 160-180 g were used. The control group received 0.9% saline solution all over the experimental period (5 days). Group 2 was intraperitoneally injected with 6.5 mg/kg CdCl2. Group 3 was provided only with an oral administration of strawberry methanolic extract (SME) at a dose of 250 mg/kg. Group 4 was treated with SME before cadmium injection with the same mentioned doses. It was shown that cadmium exposure results in a significant decrease in both relative testicular weight and serum testosterone level. Analyzing the oxidative damaging effect of cadmium on the testicular tissue revealed the induction of oxidative stress markers represented in the elevated level of lipid peroxidation (LPO), nitric oxide (NO), and a decrease in the reduced glutathione (GSH) content. Considering cadmium toxicity, the level of the antioxidant enzyme activities including catalase (CAT), superoxide dismutase (SOD2), glutathione peroxidase (GPx1), and glutathione reductase (GR) were markedly decreased. Moreover, gene expression analysis indicated significant upregulation of the pro-apoptotic proteins, bcl-2-associated-X-protein (BAX), and tumor necrosis factor-α (TNFA) in response to cadmium intoxication, while significant downregulation of the anti-apoptotic, B-cell lymphoma 2 (BCL2) gene was detected. Immunohistochemistry of the testicular tissue possessed positive immunostaining for the increased level of TNF-α, but decreased number of proliferating cell nuclear antigen (PCNA) stained cells. Administration of SME debilitated the deleterious effect of cadmium via reduction of both LPO and NO levels followed by a significant enhancement in the gene expression level of CAT, SOD2, GPX1, GR, nuclear factor-erythroid 2-related factor 2 (NFE2L2), heme oxygenase-1 (HMOX1), Bcl-2, and PCNA. In addition, the SME treated group revealed a significant increase in the level of testosterone and GSH accompanied by a marked decrease in the gene expression level of Bax and TNF-α. In terms of the summarized results, the SME of Fragaria ananassa has a protective effect against cadmium-induced oxidative damage of testes.


Assuntos
Antioxidantes/farmacologia , Apoptose , Cádmio/toxicidade , Fragaria/química , Peroxidação de Lipídeos , Extratos Vegetais/farmacologia , Testículo/efeitos dos fármacos , Animais , Catalase/metabolismo , Glutationa Peroxidase/metabolismo , Heme Oxigenase (Desciclizante)/metabolismo , Masculino , Fator 2 Relacionado a NF-E2/metabolismo , Óxido Nítrico/metabolismo , Ratos , Ratos Wistar , Superóxido Dismutase/metabolismo , Testículo/metabolismo
9.
Plant Physiol Biochem ; 116: 80-90, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28551419

RESUMO

Preharvest ultraviolet-C (UV-C) treatment of strawberry is a very new approach, and little information is available on the effect of this treatment on plant growth regulators. In this study, the effect of preharvest UV-C irradiations at three different doses on strawberry yield, fruit quality parameters and endogenous phytohormones was investigated simultaneously. The overall marketable yield of strawberry was not affected by the preharvest UV-C treatments, although more aborted and misshapen fruits were found in UV-C treated groups than in the untreated control. The fruits in the high dose group were firmer and had approximately 20% higher sucrose content and 15% higher ascorbic acid content than the control, while fruits from the middle and low dose groups showed no significant changes in these parameters. The lower abscisic acid (ABA) content found in the fruits in the high UV-C group may be associated with those quality changes. The citric acid content decreased only in the low dose group (reduction of 5.8%), with a concomitant 37% reduction in jasmonic acid (JA) content, compared to the control. The antioxidant status of fruits that received preharvest UV-C treatment was considered enhanced based on their oxygen radical absorbance capacity (ORAC) and malondialdehyde (MDA) content. In terms of aroma, three volatile alcohols differed significantly among the various treatments with obvious activation of alcohol acyltransferase (AAT) activity. The observed synchronous influence on physiological indexes and related phytohormones suggests that preharvest UV-C might affect fruit quality via the action of plant hormones.


Assuntos
Fragaria/química , Frutas/química , Compostos Fitoquímicos/química , Raios Ultravioleta , Ácido Abscísico/química , Fragaria/efeitos da radiação , Frutas/efeitos da radiação , Malondialdeído/química
10.
Food Chem ; 224: 270-279, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28159266

RESUMO

Pectins analysed by AFM are visualized as individual chains, branched or unbranched, and aggregates. To investigate the nature of these structures, sodium carbonate soluble pectins from strawberry fruits were digested with endo-polygalacturonase M2 from Aspergillus aculeatus and visualized by AFM. A gradual decrease in the length of chains was observed as result of the treatment, reaching a minimum LN value of 22nm. The branches were not visible after 2h of enzymatic incubation. The size of complexes also diminished significantly with the enzymatic digestion. A treatment to hydrolyse rhamnogalacturonan II borate diester bonds neither affected chains length or branching nor complex size but reduced the density of aggregates. These results suggest that chains are formed by a mixture of homogalacturonan and more complex molecules composed by a homogalacturonan unit linked to an endo-PG resistant unit. Homogalacturonan is a structural component of the complexes and rhamnogalacturonan II could be involved in their formation.


Assuntos
Fragaria , Frutas/química , Microscopia de Força Atômica/métodos , Nanoestruturas/química , Pectinas/química , Poligalacturonase/metabolismo , Ácidos Hexurônicos/análise , Hidrólise , Pectinas/metabolismo
11.
Toxicol Mech Methods ; 27(5): 335-345, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28110594

RESUMO

This study investigated the protective effect of Fragaria ananassa methanolic extract on cadmium chloride (CdCl2)-induced hepatotoxicity in rats. CdCl2 was intraperitoneally injected at a dose of 6.5 mg/kg of body weight for 5 d with or without methanol extract of Fragaria ananassa (250 mg/kg). The hepatic cadmium concentration, lipid peroxidation, nitric oxide, glutathione (GSH) content, and antioxidant enzyme activities, including superoxide dismutase, catalase (CAT), GSH peroxidase, and GSH reductase, were estimated. CdCl2 injection induced a significant elevation in cadmium concentration, lipid peroxidation, and nitric oxide and caused a significant depletion in GSH content compared to controls, along with a remarkable decrease in antioxidant enzymes. Oxidative stress induction and cadmium accumulation in the liver were successfully ameliorated by F. ananassa (strawberry) pre-administration. In addition, the pre-administration of strawberry decreased the elevated gene expression of the pro-apoptotic Bax gene as well as the protein expression of caspases-3 in the liver of CdCl2-injected rats. In addition, the reduced gene expression of anti-apoptotic Bcl-2 was increased. Our results show an increase in the expression of tumor necrosis factor α in the liver of rats treated with cadmium. In sum, our results suggested that F. ananassa successfully prevented deleterious effects on liver function by reinforcing the antioxidant defense system, inhibiting oxidative stress and reducing apoptosis.


Assuntos
Cloreto de Cádmio/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Fragaria/química , Extratos Vegetais/uso terapêutico , Substâncias Protetoras/uso terapêutico , Animais , Cloreto de Cádmio/farmacocinética , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Modelos Animais de Doenças , Frutas/química , Imuno-Histoquímica , Fígado/efeitos dos fármacos , Fígado/enzimologia , Fígado/patologia , Testes de Função Hepática , Masculino , Metanol/química , Extratos Vegetais/administração & dosagem , Extratos Vegetais/isolamento & purificação , Substâncias Protetoras/administração & dosagem , Substâncias Protetoras/isolamento & purificação , Ratos Wistar
12.
J Sci Food Agric ; 97(1): 230-235, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26992053

RESUMO

BACKGROUND: Iodine deficiency is an environmental health problem affecting one-third of the global population. An iodine biofortification hydroponic experiment was conducted to explore the iodide and iodate uptake characteristics of strawberry plants, to measure the dosage effects of iodine on plant growth and to evaluate the influence of I- or IO3- application on fruit quality. RESULTS: After biofortification, the iodine contents of the fresh strawberry fruits were 600-4000 µg kg-1 , covering the WHO dietary iodine allowance of 150 µg · day-1 for adults. The iodine uptake of the strawberry plants increased with increasing I- or IO3- concentration of the culture solution. At the same iodine concentration, the iodate uptakes of various plant organs under I- treatments were apparently more than those under IO3- treatments. Low-level exogenous iodine (I- ≤ 0.25 mg L-1 or IO3- ≤ 0.50 mg L-1 ) not only promoted plant growth and increased biomass per plant, but also improved fruit quality by enhancing the vitamin C and soluble sugar contents of the strawberry fruits. Nevertheless, excessive exogenous iodine inhibited plant growth and reduced biomass per plant. IO3- uptake apparently increased the total acidity and nitrate content of the fruits, reducing the quality of the strawberry fruits. Conversely, I- uptake obviously decreased the total acidity and nitrate content of the strawberry fruits, improving the fruit quality. CONCLUSION: The strawberry can be used as a target crop for iodine biofortification. Furthermore, applying an appropriate dose of KI can improve the fruit quality of the strawberry plants. © 2016 Society of Chemical Industry.


Assuntos
Fragaria/crescimento & desenvolvimento , Frutas/química , Frutas/crescimento & desenvolvimento , Iodatos/administração & dosagem , Iodetos/administração & dosagem , Biomassa , Relação Dose-Resposta a Droga , Qualidade dos Alimentos , Alimentos Fortificados , Fragaria/efeitos dos fármacos , Fragaria/metabolismo , Frutas/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Hidroponia , Iodatos/metabolismo , Iodetos/metabolismo , Iodo/administração & dosagem , Iodo/efeitos adversos , Nitratos/análise , Recomendações Nutricionais
13.
Carbohydr Polym ; 132: 134-45, 2015 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-26256334

RESUMO

To ascertain the role of pectin disassembly in fruit softening, chelated- (CSP) and sodium carbonate-soluble (SSP) pectins from plants with a pectate lyase, FaplC, or a polygalacturonase, FaPG1, downregulated by antisense transformation were characterized at the nanostructural level. Fruits from transgenic plants were firmer than the control, although FaPG1 suppression had a greater effect on firmness. Size exclusion chromatography showed that the average molecular masses of both transgenic pectins were higher than that of the control. Atomic force microscopy analysis of pectins confirmed the higher degree of polymerization as result of pectinase silencing. The mean length values for CSP chains increased from 84 nm in the control to 95.5 and 101 nm, in antisense FaplC and antisense FaPG1 samples, respectively. Similarly, SSP polyuronides were longer in transgenic fruits (61, 67.5 and 71 nm, in the control, antisense FaplC and antisense FaPG1 samples, respectively). Transgenic pectins showed a more complex structure, with a higher percentage of branched chains than the control, especially in the case of FaPG1 silenced fruits. Supramolecular pectin aggregates, supposedly formed by homogalacturonan and rhamnogalacturonan I, were more frequently observed in antisense FaPG1 samples. The larger modifications in the nanostructure of pectins in FaPG1 silenced fruits when compared with antisense pectate lyase plants correlate with the higher impact of polygalacturonase silencing on reducing strawberry fruit softening.


Assuntos
Fragaria/metabolismo , Pectinas/metabolismo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Poligalacturonase/metabolismo , Polissacarídeo-Liases/metabolismo , Fragaria/química , Fragaria/genética , Fragaria/ultraestrutura , Inativação Gênica , Pectinas/química , Pectinas/ultraestrutura , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/química , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/ultraestrutura , Poligalacturonase/genética , Polissacarídeo-Liases/genética
14.
J Exp Bot ; 66(20): 6483-95, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26188206

RESUMO

Strawberries are a very popular fruit among berries, for both their commercial and economic importance, but especially for their beneficial effects for human health. However, their bioactive compound content is strictly related to the nutritional status of the plant and might be affected if nutritional disorders (e.g. Fe or P shortage) occur. To overcome nutrient shortages, plants evolved different mechanisms, which often involve the release of root exudates. The biochemical and molecular mechanisms underlying root exudation and its regulation are as yet still poorly known, in particular in woody crop species. The aim of this work was therefore to characterize the pattern of root exudation of strawberry plants grown in either P or Fe deficiency, by investigating metabolomic changes of root tissues and the expression of genes putatively involved in exudate extrusion. Although P and Fe deficiencies differentially affected the total metabolism, some metabolites (e.g. raffinose and galactose) accumulated in roots similarly under both conditions. Moreover, P deficiency specifically affected the content of galactaric acid, malic acid, lysine, proline, and sorbitol-6-phosphate, whereas Fe deficiency specifically affected the content of sucrose, dehydroascorbic acid, galactonate, and ferulic acid. At the same time, the citrate content did not change in roots under both nutrient deficiencies with respect to the control. However, a strong release of citrate was observed, and it increased significantly with time, being +250% and +300% higher in Fe- and P-deficient plants, respectively, compared with the control. Moreover, concomitantly, a significant acidification of the growth medium was observed in both treatments. Gene expression analyses highlighted for the first time that at least two members of the multidrug and toxic compound extrusion (MATE) transporter family and one member of the plasma membrane H(+)-ATPase family are involved in the response to both P and Fe starvation in strawberry plants.


Assuntos
Fragaria/metabolismo , Deficiências de Ferro , Metaboloma , Fósforo/deficiência , Proteínas de Plantas/metabolismo , Fragaria/crescimento & desenvolvimento , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo
15.
J Food Sci ; 79(4): S685-92, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24592970

RESUMO

Postharvest treatment with high-pressure CO2 helps to control decay and increase firmness in strawberries. Increases in firmness occurred through modification of calcium binding to cell wall. However, the mechanism(s) involved in Ca(2+) migration to pectic polymers and other physiological events associated with the maintenance of increased firmness are not clearly understood. The focus of this study was to find potential mechanism(s) that are associated with calcium movement, increases in firmness, or maintenance of firmness in strawberry fruit after high-pressure CO2 treatment. An increase in firmness was induced by high-pressure CO2 treatment, but not by high-pressure N2 treatment. This indicates that CO2 stimulates a change in firmness. The increase in firmness induced by high-pressure CO2 seems to involve calcium efflux. Using membrane Ca(2+) -dependent ATPase inhibitors sodium vanadate (250 µM) and erythrosin B (100 µM) delayed both the increase in firmness and calcium binding to wall polymers. Exogenous application of CaCl2 (10 mM) enhanced the firmness increase of fruit slices only when they were exposed to high-pressure CO2 . The activity of pectate lyase was downregulated by CO2 treatment, but ß-galactosidase activity was not affected. The increase in strawberry firmness induced by high-pressure CO2 treatment primarily involves the efflux of calcium ions and their binding to wall polymers. These physiological changes are not induced by an anaerobic environment. The downregulation of wall-modifying enzymes, such as pectate lyase, appeared to contribute to the maintenance of firmness that was induced by high-pressure CO2 treatment.


Assuntos
Cálcio/metabolismo , Dióxido de Carbono/farmacologia , Parede Celular/metabolismo , Fragaria/enzimologia , Frutas/enzimologia , Dureza , Polissacarídeo-Liases/metabolismo , Cálcio/farmacologia , Cloreto de Cálcio/metabolismo , Cloreto de Cálcio/farmacologia , Fragaria/metabolismo , Frutas/metabolismo , Humanos , Íons/metabolismo , Pressão
16.
New Phytol ; 201(2): 440-451, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24117941

RESUMO

Strawberry (Fragaria × ananassa) is a fruit crop with a distinct biphasic flavonoid biosynthesis. Whereas, in the immature receptacle, high levels of proanthocyanidins accumulate, which are associated with herbivore deterrence and pathogen defense, the prominent color-giving anthocyanins are primarily produced in ripe 'fruits' helping to attract herbivores for seed dispersal. Here, constitutive experimental down-regulation of one branch of proanthocyanidin biosynthesis was performed. As a result, the proportion of epicatechin monomeric units within the proanthocyanidin polymer chains was reduced, but this was not the case for the epicatechin starter unit. Shortened chain lengths of proanthocyanidins were also observed. All enzymatic activities for the production of color-giving anthocyanins were already present in unripe fruits at levels allowing a striking red anthocyanin phenotype in unripe fruits of the RNAi silencing lines. An immediately recognizable phenotype was also observed for the stigmata of flowers, which is another epicatechin-forming tissue. Thus, the down-regulation of anthocyanidin reductase (ANR) induced a redirection of the proanthocyanidin pathway, leading to premature and ectopic anthocyanin biosynthesis via enzymatic glycosylation as the alternative pathway. This redirection is also seen in flavonol biosynthesis, which is paralleled by higher pollen viability in silencing lines. ANRi transgenic lines of strawberry provide a versatile tool for the study of the biological functions of proanthocyanidins.


Assuntos
Fragaria/metabolismo , Proantocianidinas/biossíntese , Regulação para Baixo , Flavonoides/biossíntese , Fragaria/genética , Frutas/genética , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Oxirredutases/genética , Oxirredutases/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pólen/genética , Pólen/fisiologia
17.
J Exp Bot ; 64(12): 3803-15, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23873994

RESUMO

Antisense-mediated down-regulation of the fruit-specific polygalacturonase (PG) gene FaPG1 in strawberries (Fragaria×ananassa Duch.) has been previously demonstrated to reduce fruit softening and to extend post-harvest shelf life, despite the low PG activity detected in this fruit. The improved fruit traits were suggested to be attributable to a reduced cell wall disassembly due to FaPG1 silencing. This research provides empirical evidence that supports this assumption at the biochemical, cellular, and tissue levels. Cell wall modifications of two independent transgenic antisense lines that demonstrated a >90% reduction in FaPG1 transcript levels were analysed. Sequential extraction of cell wall fractions from control and ripe fruits exhibited a 42% decrease in pectin solubilization in transgenic fruits. A detailed chromatographic analysis of the gel filtration pectin profiles of the different cell wall fractions revealed a diminished depolymerization of the more tightly bound pectins in transgenic fruits, which were solubilized with both a chelating agent and sodium carbonate. The cell wall extracts from antisense FaPG1 fruits also displayed less severe in vitro swelling. A histological analysis revealed more extended cell-cell adhesion areas and an enhanced tissue integrity in transgenic ripe fruits. An immunohistological analysis of fruit sections using the JIM5 antibody against low methyl-esterified pectins demonstrated a higher labelling in transgenic fruit sections, whereas minor differences were observed with JIM7, an antibody that recognizes highly methyl-esterified pectins. These results support that the increased firmness of transgenic antisense FaPG1 strawberry fruits is predominantly due to a decrease in pectin solubilization and depolymerization that correlates with more tightly attached cell wall-bound pectins. This limited disassembly in the transgenic lines indicates that these pectin fractions could play a key role in tissue integrity maintenance that results in firmer ripe fruit.


Assuntos
Fragaria/genética , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Poligalacturonase/genética , Parede Celular/genética , Parede Celular/metabolismo , Parede Celular/ultraestrutura , Cromatografia em Gel , Regulação para Baixo , Eletroforese em Gel de Poliacrilamida , Fragaria/metabolismo , Fragaria/ultraestrutura , Frutas/genética , Frutas/metabolismo , Frutas/ultraestrutura , Inativação Gênica , Microscopia Eletrônica de Varredura , Pectinas/metabolismo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/ultraestrutura , Poligalacturonase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA