Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Eur J Pharmacol ; 949: 175674, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36963651

RESUMO

Inflammatory coagulopathy is resulted from endothelial dysfunction and platelet hyperactivation in inflammatory diseases. In this study, the effects of baicalin, an active component of the traditional Chinese medicine Huangqin, on inflammatory coagulopathy were observed both in vivo and in vitro. In LPS-induced rats, baicalin ameliorated coagulation indexes, inhibited platelet hyperactivation and decreased the expression of thrombospondin-1 (TSP-1) in vessels. In cultured endothelial cells, baicalin decreased the expression of TSP-1 and collagen as well as the TNF-α-induced increase in the levels of TSP-1 and ICAM-1. Baicalin could significantly decrease the platelet adhesion on endothelial cells treated with TNF-α. Baicalin also could inhibit the increase of ROS level and the activation of the NLRP3/Caspase-1/GSDMD pathway in TNF-α-induced endothelial cells. Furin was found to be the direct target of baicalin in HUVECs. Knockdown of Furin using siRNA could ameliorate the effects of baicalin on the activation of TGFß1/Smad3 pathway, TSP-1 expression and the adhesion of platelets on TNF-α-treated endothelial cells. At the same time, baicalin inhibited platelet aggregation induced by collagen or combination of collagen and TSP-1 peptide. Collagen-induced Ca2+ mobilization, ROS level increase, AKT1 phosphorylation, platelet degranulation and TSP-1 release could be all inhibited by baicalin. In all, baicalin ameliorated endothelial dysfunction by inhibiting Furin/TGFß1/Smad3/TSP-1 pathway and also ameliorated platelet activation by inhibiting AKT-related pathway. Both the inhibiting effects of baicalin on endothelial dysfunction and platelet activation might contribute to its ameliorating effects on inflammatory coagulopathy.


Assuntos
Células Endoteliais , Trombospondina 1 , Ratos , Animais , Trombospondina 1/genética , Trombospondina 1/metabolismo , Trombospondina 1/farmacologia , Plaquetas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Furina/metabolismo , Furina/farmacologia
2.
Mol Metab ; 66: 101627, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36374777

RESUMO

OBJECTIVE: The hypothalamus regulates feeding and glucose homeostasis through the balanced action of different neuropeptides, which are cleaved and activated by the proprotein convertases PC1/3 and PC2. However, the recent association of polymorphisms in the proprotein convertase FURIN with type 2 diabetes, metabolic syndrome, and obesity, prompted us to investigate the role of FURIN in hypothalamic neurons controlling glucose and feeding. METHODS: POMC-Cre+/- mice were bred with Furinfl/fl mice to generate conditional knockout mice with Furin-deletion in neurons expressing proopiomelanocortin (POMCFurKO), and Furinfl/fl mice were used as controls. POMCFurKO and controls were periodically monitored on both normal chow diet and high fat diet (HFD) for body weight and glucose tolerance by established in-vivo procedures. Food intake was measured in HFD-fed FurKO and controls. Hypothalamic Pomc mRNA was measured by RT-qPCR. ELISAs quantified POMC protein and resulting peptides in the hypothalamic extracts of POMCFurKO mice and controls. The in-vitro processing of POMC was studied by biochemical techniques in HEK293T and CHO cell lines lacking FURIN. RESULTS: In control mice, Furin mRNA levels were significantly upregulated on HFD feeding, suggesting an increased demand for FURIN activity in obesogenic conditions. Under these conditions, the POMCFurKO mice were hyperphagic and had increased body weight compared to Furinfl/fl mice. Moreover, protein levels of POMC were elevated and ACTH concentrations markedly reduced. Also, the ratio of α-MSH/POMC was decreased in POMCFurKO mice compared to controls. This indicates that POMC processing was significantly reduced in the hypothalami of POMCFurKO mice, highlighting for the first time the involvement of FURIN in the cleavage of POMC. Importantly, we found that in vitro, the first stage in processing where POMC is cleaved into proACTH was achieved by FURIN but not by PC1/3 or the other proprotein convertases in cell lines lacking a regulated secretory pathway. CONCLUSIONS: These results suggest that FURIN processes POMC into proACTH before sorting into the regulated secretory pathway, challenging the dogma that PC1/3 and PC2 are the only convertases responsible for POMC cleavage. Furthermore, its deletion affects feeding behaviors under obesogenic conditions.


Assuntos
Diabetes Mellitus Tipo 2 , Comportamento Alimentar , Furina , Hipotálamo , Pró-Opiomelanocortina , Animais , Humanos , Camundongos , alfa-MSH/metabolismo , Peso Corporal , Dieta Hiperlipídica/efeitos adversos , Comportamento Alimentar/fisiologia , Furina/genética , Furina/metabolismo , Glucose , Células HEK293 , Hipotálamo/metabolismo , Pró-Opiomelanocortina/genética , Pró-Opiomelanocortina/metabolismo , Pró-Proteína Convertase 1/genética , Pró-Proteína Convertase 1/metabolismo , Pró-Proteína Convertase 2/genética , Pró-Proteína Convertase 2/metabolismo , Pró-Proteína Convertases/genética , Pró-Proteína Convertases/metabolismo , RNA Mensageiro/metabolismo , Subtilisinas/genética , Subtilisinas/metabolismo
3.
Molecules ; 27(15)2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35956801

RESUMO

Angiotensin receptor blockers (ARBs) used in the treatment of hypertension and potentially in SARS-CoV-2 infection exhibit inverse agonist effects at angiotensin AR1 receptors, suggesting the receptor may have evolved to accommodate naturally occurring angiotensin 'antipeptides'. Screening of the human genome has identified a peptide (EGVYVHPV) encoded by mRNA, complementary to that encoding ANG II itself, which is an inverse agonist. Thus, opposite strands of DNA encode peptides with opposite effects at AR1 receptors. Agonism and inverse agonism at AR1 receptors can be explained by a receptor 'switching' between an activated state invoking receptor dimerization/G protein coupling and an inverse agonist state mediated by an alternative/second messenger that is slow to reverse. Both receptor states appear to be driven by the formation of the ANG II charge-relay system involving TyrOH-His/imidazole-Carboxylate (analogous to serine proteases). In this system, tyrosinate species formed are essential for activating AT1 and AT2 receptors. ANGII is also known to bind to the zinc-coordinated metalloprotease angiotensin converting enzyme 2 (ACE2) used by the COVID-19 virus to enter cells. Here we report in silico results demonstrating the binding of a new class of anionic biphenyl-tetrazole sartans ('Bisartans') to the active site zinc atom of the endopeptidase Neprilysin (NEP) involved in regulating hypertension, by modulating humoral levels of beneficial vasoactive peptides in the RAS such as vasodilator angiotensin (1-7). In vivo and modeling evidence further suggest Bisartans can inhibit ANG II-induced pulmonary edema and may be useful in combatting SARS-CoV-2 infection by inhibiting ACE2-mediated viral entry to cells.


Assuntos
Tratamento Farmacológico da COVID-19 , Hipertensão , Antagonistas de Receptores de Angiotensina/farmacologia , Antagonistas de Receptores de Angiotensina/uso terapêutico , Enzima de Conversão de Angiotensina 2 , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , Humanos , Hipertensão/tratamento farmacológico , Neprilisina/metabolismo , Peptidil Dipeptidase A/metabolismo , Proto-Oncogene Mas , Receptores de Angiotensina/metabolismo , Sistema Renina-Angiotensina , SARS-CoV-2 , Zinco/farmacologia
4.
Int J Mol Sci ; 23(5)2022 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-35269938

RESUMO

The endogenous protease furin is a key protein in many different diseases, such as cancer and infections. For this reason, a wide range of studies has focused on targeting furin from a therapeutic point of view. Our main objective consisted of identifying new compounds that could enlarge the furin inhibitor arsenal; secondarily, we assayed their adjuvant effect in combination with a known furin inhibitor, CMK, which avoids the SARS-CoV-2 S protein cleavage by means of that inhibition. Virtual screening was carried out to identify potential furin inhibitors. The inhibition of physiological and purified recombinant furin by screening selected compounds, Clexane, and these drugs in combination with CMK was assayed in fluorogenic tests by using a specific furin substrate. The effects of the selected inhibitors from virtual screening on cell viability (293T HEK cell line) were assayed by means of flow cytometry. Through virtual screening, Zeaxanthin and Kukoamine A were selected as the main potential furin inhibitors. In fluorogenic assays, these two compounds and Clexane inhibited both physiological and recombinant furin in a dose-dependent way. In addition, these compounds increased physiological furin inhibition by CMK, showing an adjuvant effect. In conclusion, we identified Kukoamine A, Zeaxanthin, and Clexane as new furin inhibitors. In addition, these drugs were able to increase furin inhibition by CMK, so they could also increase its efficiency when avoiding S protein proteolysis, which is essential for SARS-CoV-2 cell infection.


Assuntos
Clorometilcetonas de Aminoácidos/farmacologia , Enoxaparina/farmacologia , Furina/antagonistas & inibidores , Espermina/análogos & derivados , Zeaxantinas/farmacologia , Clorometilcetonas de Aminoácidos/química , Clorometilcetonas de Aminoácidos/metabolismo , COVID-19/transmissão , COVID-19/virologia , Domínio Catalítico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Enoxaparina/química , Enoxaparina/metabolismo , Furina/química , Furina/metabolismo , Células HEK293 , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Inibidores de Proteases/química , Inibidores de Proteases/metabolismo , Inibidores de Proteases/farmacologia , Proteólise , SARS-CoV-2/metabolismo , SARS-CoV-2/fisiologia , Espermina/química , Espermina/metabolismo , Espermina/farmacologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Internalização do Vírus , Replicação Viral , Zeaxantinas/química , Zeaxantinas/metabolismo
5.
Eur J Microbiol Immunol (Bp) ; 11(4): 87-94, 2022 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-35060921

RESUMO

Despite vaccine availability, the global spread of COVID-19 continues, largely facilitated by emerging SARS-CoV-2 mutations. Our earlier research documented that a specific combination of plant-derived compounds can inhibit SARS-CoV-2 binding to its ACE2 receptor and controlling key cellular mechanisms of viral infectivity. In this study, we evaluated the efficacy of a defined mixture of plant extracts and micronutrients against original SARS-CoV-2 and its Alpha, Beta, Gamma, Delta, Kappa, and Mu variants. The composition containing vitamin C, N-acetylcysteine, resveratrol, theaflavin, curcumin, quercetin, naringenin, baicalin, and broccoli extract demonstrated a highest efficacy by inhibiting the receptor-binding domain (RBD) binding of SARS-CoV-2 to its cellular ACE2 receptor by 90%. In vitro exposure of test pseudo-typed variants to this formula for 1 h before or simultaneously administrated to human pulmonary cells resulted in up to 60% inhibition in their cellular entry. Additionally, this composition significantly inhibited other cellular mechanisms of viral infectivity, including the activity of viral RdRp, furin, and cathepsin L. These findings demonstrate the efficacy of natural compounds against SARS-CoV-2 including its mutated forms through pleiotropic mechanisms. Our results imply that simultaneous inhibition of multiple mechanisms of viral infection of host cells could be an effective strategy to prevent SARS-CoV-2 infection.

6.
J Tradit Complement Med ; 12(1): 69-72, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34545325

RESUMO

The coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has emerged as a pandemic and has caused damage to the lives of the people and economy of countries. However, the therapeutic reagents against SARS-CoV-2 remain unclear. The spike (S) protein of SARS-CoV-2 contains a cleavage motif at the S1/S2 boundary, known to be cleaved by furin. As cleavage is essential for S protein activation and viral entry, furin was selected as the target compound. In this study, we examined the inhibitory effects of two lignans (honokiol and magnolol) on furin-like enzymatic activity using a fluorogenic substrate with whole-cell lysates. Of two compounds tested, honokiol partially inhibited furin-like enzymatic activity. We further examined the anti-SARS-CoV-2 activity of honokiol using VeroE6 cell line, which is stably expressing a transmembrane protease serine 2 (TMPRSS2). It was shown that honokiol exhibited remarkable inhibition of SARS-CoV-2 infection. Therefore, honokiol and crude drugs which contain honokiol such as Magnolia species have a potential therapeutic reagents for SARS-CoV-2.

7.
J Biomol Struct Dyn ; 40(22): 11467-11483, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34370622

RESUMO

Medicinal plants as rich sources of bioactive compounds are now being explored for drug development against COVID-19. 19 medicinal plants known to exhibit antiviral and anti-inflammatory effects were manually curated, procuring a library of 521 metabolites; this was virtually screened against NSP9, including some other viral and host targets and were evaluated for polypharmacological indications. Leads were identified via rigorous scoring thresholds and ADMET filtering. MM-GBSA calculation was deployed to select NSP9-Lead complexes and the complexes were evaluated for their stability and protein-ligand communication via MD simulation. We identified 5 phytochemical leads for NSP9, 23 for Furin, 18 for ORF3a, and 19 for IL-6. Ochnaflavone and Licoflavone B, obtained from Lonicera japonica (Japanese Honeysuckle) and Glycyrrhiza glabra (Licorice), respectively, were identified to have the highest potential polypharmacological properties for the aforementioned targets and may act on multiple pathways simultaneously to inhibit viral entry, replication, and disease progression. Additionally, MD simulation supports the robust stability of Ochnaflavone and Licoflavone B against NSP9 at the active sites via hydrophobic interactions, H-bonding, and H-bonding facilitated by water. This study promotes the initiation of further experimental analysis of natural product-based anti-COVID-19 therapeutics.


Assuntos
COVID-19 , Plantas Medicinais , SARS-CoV-2 , Simulação de Dinâmica Molecular , Polifarmacologia , Antivirais/farmacologia , Simulação de Acoplamento Molecular
8.
Futur J Pharm Sci ; 7(1): 201, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34660817

RESUMO

BACKGROUND: Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) started in 2019 and is still an on-going pandemic. SARS-CoV-2 uses a human protease called furin to aid in cellular entry and its main protease (Mpro) to achieve viral replication. By targeting these proteins, scientists are trying to identify phytoconstituents of medicinal plants as potential therapeutics for COVID-19. Therefore, our study was aimed to identify promising leads as potential inhibitors of SARS-CoV-2 Mpro and furin using the phytocompounds reported to be isolated from Acacia pennata (L.) Willd. RESULTS: A total of 29 phytocompounds were reported to be isolated from A. pennata. Molecular docking simulation studies revealed 9 phytocompounds as having the top 5 binding affinities towards SARS-CoV-2 Mpro and furin. Among these phytocompounds, quercetin-3-O-α-L-rhamnopyranoside (C_18), kaempferol 3-O-α-L-rhamnopyranosyl-(1 → 4)-ß-D-glucopyranoside (C_4), and isovitexin (C_5) have the highest drug score. However, C_18 and C_4 were not selected for further studies due to bioavailability issues and low synthetic accessibility. Based on binding affinity, molecular properties, drug-likeness, toxicity parameters, ligand interactions, bioavailability, synthetic accessibility, structure-activity relationship, and comparative analysis of our experimental findings with other studies, C_5 was identified as the most promising phytocompound. C_5 interacted with the active site residues of SARS-CoV-2 Mpro (GLU166, ARG188, GLN189) and furin (ASN295, ARG298, HIS364, THR365). Many phytocompounds that interacted with these amino acid residues were reported by other studies as potential inhibitors of SARS-CoV-2 Mpro and furin. The oxygen atom at position 18, the -OH group at position 19, and the 6-C-glucoside were identified as the pharmacophores in isovitexin (also known as apigenin-6-C-glucoside). Other in-silico studies reported apigenin as a potential inhibitor of SARS-CoV-2 Mpro and apigenin-o-7-glucuronide was reported to show stable conformation during MD simulations with SARS-CoV-2 Mpro. CONCLUSION: The present study found isovitexin as the most promising phytocompound to potentially inhibit the cellular entry and viral replication of SARS-CoV-2. We also conclude that compounds having oxygen atom at position 18 (C-ring), -OH group at position 19 (A-ring), and 6-C-glucoside attached to the A-ring at position 3 on a C6-C3-C6 flavonoid scaffold could offer the best alternative to develop new leads against SARS-CoV-2.

9.
J Nat Med ; 75(4): 1080-1085, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33928494

RESUMO

The spike (S) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) contains a cleavage motif R-X-X-R for furin-like enzymes at the boundary of the S1/S2 subunits. The cleavage of the site by cellular proteases is essential for S protein activation and virus entry. We screened the inhibitory effects of crude drugs on in vitro furin-like enzymatic activities using a fluorogenic substrate with whole-cell lysates. Of the 124 crude drugs listed in the Japanese Pharmacopeia, aqueous ethanolic extract of Cnidii Monnieris Fructus, which is the dried fruit of Cnidium monnieri Cussion, significantly inhibited the furin-like enzymatic activities. We further fractionated the plant extract and isolated the two active compounds with the inhibitory activity, namely, imperatorin and osthole, whose IC50 values were 1.45 mM and 9.45 µM, respectively. Our results indicated that Cnidii Monnieris Fructus might exert inhibitory effects on furin-like enzymatic activities, and that imperatorin and osthole of the crude drug could be potential inhibitors of the motif cleavage.


Assuntos
Cnidium/química , Avaliação Pré-Clínica de Medicamentos , Ensaios Enzimáticos , Furina/antagonistas & inibidores , Furina/metabolismo , Extratos Vegetais/farmacologia , Células A549 , COVID-19/virologia , Humanos , Concentração Inibidora 50 , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Tratamento Farmacológico da COVID-19
10.
Nutrients ; 13(4)2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33919991

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been responsible for one of the worst pandemics in modern history. Several prevention and treatment strategies have been designed and evaluated in recent months either through the repurposing of existing treatments or the development of new drugs and vaccines. In this study, we show that L-carnitine tartrate supplementation in humans and rodents led to significant decreases of key host dependency factors, notably angiotensin-converting enzyme 2 (ACE2), transmembrane protease serine 2 (TMPRSS2), and Furin, which are responsible for viral attachment, viral spike S-protein cleavage, and priming for viral fusion and entry. Interestingly, pre-treatment of Calu-3, human lung epithelial cells, with L-carnitine tartrate led to a significant and dose-dependent inhibition of the infection by SARS-CoV-2. Infection inhibition coincided with a significant decrease in ACE2 mRNA expression levels. These data suggest that L-carnitine tartrate should be tested with appropriate trials in humans for the possibility to limit SARS-CoV-2 infection.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , Tratamento Farmacológico da COVID-19 , Carnitina/administração & dosagem , Tartaratos/administração & dosagem , Adulto , Idoso , Enzima de Conversão de Angiotensina 2/sangue , Animais , COVID-19/metabolismo , Carnitina/farmacologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Feminino , Furina/sangue , Furina/metabolismo , Humanos , Inflamação/metabolismo , Masculino , Pessoa de Meia-Idade , Ratos , SARS-CoV-2 , Serina Endopeptidases/sangue , Serina Endopeptidases/metabolismo , Tartaratos/farmacologia , Adulto Jovem
11.
Microorganisms ; 9(3)2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33806624

RESUMO

The SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) is a high-risk viral agent involved in the recent pandemic stated worldwide by the World Health Organization. The infection is correlated to a severe systemic and respiratory disease in many cases, which is clinically treated with a multi-drug pharmacological approach. The purpose of this investigation was to evaluate through a literature overview the effect of adjuvant therapies and supplements for the SARS-CoV-2 infection. The research has analyzed the advantage of the EK1C4, by also assessing the studies on the resveratrol, vitamin D, and melatonin as adjuvant supplements for long hauler patients' prognosis. The evaluated substances reported important benefits for the improvement of the immune system and as a potential inhibitor molecules against SARS-CoV-2, highlighting the use of sartans as therapy. The adjuvant supplements seem to create an advantage for the healing of the long hauler patients affected by chronic symptoms of constant chest and heart pain, intestinal disorders, headache, difficulty concentrating, memory loss, and tachycardia.

12.
Biomed Pharmacother ; 137: 111356, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33561649

RESUMO

All the plants and their secondary metabolites used in the present study were obtained from Ayurveda, with historical roots in the Indian subcontinent. The selected secondary metabolites have been experimentally validated and reported as potent antiviral agents against genetically-close human viruses. The plants have also been used as a folk medicine to treat cold, cough, asthma, bronchitis, and severe acute respiratory syndrome in India and across the globe since time immemorial. The present study aimed to assess the repurposing possibility of potent antiviral compounds with SARS-CoV-2 target proteins and also with host-specific receptor and activator protease that facilitates the viral entry into the host body. Molecular docking (MDc) was performed to study molecular affinities of antiviral compounds with aforesaid target proteins. The top-scoring conformations identified through docking analysis were further validated by 100 ns molecular dynamic (MD) simulation run. The stability of the conformation was studied in detail by investigating the binding free energy using MM-PBSA method. Finally, the binding affinities of all the compounds were also compared with a reference ligand, remdesivir, against the target protein RdRp. Additionally, pharmacophore features, 3D structure alignment of potent compounds and Bayesian machine learning model were also used to support the MDc and MD simulation. Overall, the study emphasized that curcumin possesses a strong binding ability with host-specific receptors, furin and ACE2. In contrast, gingerol has shown strong interactions with spike protein, and RdRp and quercetin with main protease (Mpro) of SARS-CoV-2. In fact, all these target proteins play an essential role in mediating viral replication, and therefore, compounds targeting aforesaid target proteins are expected to block the viral replication and transcription. Overall, gingerol, curcumin and quercetin own multitarget binding ability that can be used alone or in combination to enhance therapeutic efficacy against COVID-19. The obtained results encourage further in vitro and in vivo investigations and also support the traditional use of antiviral plants preventively.


Assuntos
Tratamento Farmacológico da COVID-19 , Catecóis/farmacologia , Curcumina/farmacologia , Álcoois Graxos/farmacologia , Ayurveda/métodos , Quercetina/farmacologia , SARS-CoV-2 , Antivirais/farmacologia , Reposicionamento de Medicamentos/métodos , Humanos , Simulação de Acoplamento Molecular , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/fisiologia , Proteínas Virais/antagonistas & inibidores
13.
Phytomedicine ; 85: 153396, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33380375

RESUMO

BACKGROUND: Currently, novel coronavirus disease (Covid-19) outbreak creates global panic across the continents, as people from almost all countries and territories have been affected by this highly contagious viral disease. The scenario is deteriorating due to lack of proper & specific target-oriented pharmacologically safe prophylactic agents or drugs, and or any effective vaccine. drug development is urgently required to back in the normalcy in the community and to combat this pandemic. PURPOSE: Thus, we have proposed two novel drug targets, Furin and TMPRSS2, as Covid-19 treatment strategy. We have highlighted this target-oriented novel drug delivery strategy, based on their pathophysiological implication on SARS-CoV-2 infection, as evident from earlier SARS-CoV-1, MERS, and influenza virus infection via host cell entry, priming, fusion, and endocytosis. STUDY DESIGN &  METHODS: An earlier study suggested that Furin and TMPRSS2 knockout mice had reduced level of viral load and a lower degree of organ damage such as the lung. The present study thus highlights the promise of some selected novel and potential anti-viral Phytopharmaceutical that bind to Furin and TMPRSS2 as target. RESULT: Few of them had shown promising anti-viral response in both preclinical and clinical study with acceptable therapeutic safety-index. CONCLUSION: Hence, this strategy may limit life-threatening Covid-19 infection and its mortality rate through nano-suspension based intra-nasal or oral nebulizer spray, to treat mild to moderate SARS-COV-2 infection when Furin and TMPRSS2 receptor may initiate to express and activate for processing the virus to cause cellular infection by replication within the host cell and blocking of host-viral interaction.


Assuntos
Tratamento Farmacológico da COVID-19 , Furina/antagonistas & inibidores , Compostos Fitoquímicos/farmacologia , Receptores Virais/antagonistas & inibidores , Serina Endopeptidases/metabolismo , Inibidores de Serina Proteinase/farmacologia , Enzima de Conversão de Angiotensina 2/antagonistas & inibidores , Animais , Furina/metabolismo , Humanos , Camundongos , Camundongos Knockout , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/metabolismo
14.
Obes Med ; 19: 100281, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32835124

RESUMO

Furin, a cleavage enzyme, is increasingly recognized in the pathogenesis of metabolic syndrome. Its cleavage action is an essential activation step for the endothelial pathogenicity of several viruses including SARS-CoV-2. This Furin-mediated endothelial tropism seems to underlie the multi-organ system involvement of COVID-19; which is a feature that was not recognized in the older versions of coronaviridae. Obese and diabetic patients, males, and the elderly, have increased serum levels of Furin, with its increased cellular activity; this might explain why these subgroups are at an increased risk of COVID-19 related complications and deaths. In contrast, smoking decreases cellular levels of Furin, this finding may be at the origin of the decreased severity of COVID-19 in smokers. Chinese herbal derived luteolin is suggested to be putative Furin inhibitor, with previous success against Dengue Fever. Additionally, Furin intracellular levels are largely dependent on concentration of intracellular ions, notably sodium, potassium, and magnesium. Consequently, the use of ion channel inhibitors, such as Calcium Channel blockers or Potassium Channel blockers, can prevent cellular transfection early in the course of the illness. Nicotine patches and Colchicine have also been suggested as potential therapies due to Furin mediated inhibition of COVID-19.

15.
Front Pharmacol ; 11: 1062, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32765270

RESUMO

Pregnant women appear to be more susceptible to infectious diseases than women in reproductive age. According to the California Department of Public Health pregnant women were 9.6-folds more likely to be hospitalized during the 2009 influenza outbreak when compared to non-pregnant women in reproductive age. In contrast, it was reported that of 16,749 COVID-19 patients that were hospitalized in the UK, the probability for pregnant women to require in-patient care due to infection by SARS-CoV-2 was 0.95 versus non-pregnant women. Therefore 9.6/0.95 = 10.10, which brings us to the conclusion that pregnant women are 10.10-folds less likely to be hospitalized for a SARS-CoV-2 infection than for the 2009 H1N1 pandemic. Folic acid supplementation during pregnancy could be the factor that is protecting these patients against SARS-CoV-2 infection. Two independent papers that used informatic simulation proved that folic acid reduced the replication of this virus. One of them showed that folic acid inhibits the furin protease which the virus needs in order to enter its host cell, while the other one explained that folic acid inactivates protease 3CL pro , a protein that the virus needs to replicate. Nonetheless the probability that folic acid blocks two different proteins is very low, therefore the mechanism by which folic acid has apparently protected pregnant women during the COVID-19 pandemic has not been determined.

16.
Arterioscler Thromb Vasc Biol ; 39(3): 387-401, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30651003

RESUMO

Objective- Atherosclerotic coronary artery disease is the leading cause of death worldwide, and current treatment options are insufficient. Using systems-level network cluster analyses on a large coronary artery disease case-control cohort, we previously identified PCSK3 (proprotein convertase subtilisin/kexin family member 3; FURIN) as a member of several coronary artery disease-associated pathways. Thus, our objective is to determine the role of FURIN in atherosclerosis. Approach and Results- In vitro, FURIN inhibitor treatment resulted in reduced monocyte migration and reduced macrophage and vascular endothelial cell inflammatory and cytokine gene expression. In vivo, administration of an irreversible inhibitor of FURIN, α-1-PDX (α1-antitrypsin Portland), to hyperlipidemic Ldlr-/- mice resulted in lower atherosclerotic lesion area and a specific reduction in severe lesions. Significantly lower lesional macrophage and collagen area, as well as systemic inflammatory markers, were observed. MMP2 (matrix metallopeptidase 2), an effector of endothelial function and atherosclerotic lesion progression, and a FURIN substrate was significantly reduced in the aorta of inhibitor-treated mice. To determine FURIN's role in vascular endothelial function, we administered α-1-PDX to Apoe-/- mice harboring a wire injury in the common carotid artery. We observed significantly decreased carotid intimal thickness and lower plaque cellularity, smooth muscle cell, macrophage, and inflammatory marker content, suggesting protection against vascular remodeling. Overexpression of FURIN in this model resulted in a significant 67% increase in intimal plaque thickness, confirming that FURIN levels directly correlate with atherosclerosis. Conclusions- We show that systemic inhibition of FURIN in mice decreases vascular remodeling and atherosclerosis. FURIN-mediated modulation of MMP2 activity may contribute to the atheroprotection observed in these mice.


Assuntos
Aterosclerose/prevenção & controle , Furina/antagonistas & inibidores , Placa Aterosclerótica/tratamento farmacológico , alfa 1-Antitripsina/uso terapêutico , Animais , Aorta/enzimologia , Aterosclerose/genética , Aterosclerose/patologia , Artéria Carótida Primitiva , Progressão da Doença , Avaliação Pré-Clínica de Medicamentos , Indução Enzimática/efeitos dos fármacos , Furina/genética , Furina/fisiologia , Regulação da Expressão Gênica/efeitos dos fármacos , Macrófagos/fisiologia , Masculino , Metaloproteinase 2 da Matriz/análise , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/fisiologia , Placa Aterosclerótica/patologia , Receptores de LDL/deficiência , Túnica Íntima/efeitos dos fármacos , Túnica Íntima/patologia , Remodelação Vascular , alfa 1-Antitripsina/farmacologia
17.
Antiviral Res ; 154: 87-96, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29665375

RESUMO

We previously showed that luteolin, a well-known plant-derived component found in the "heat clearing" class of Traditional Chinese Medicine (TCM) herbs, is an uncompetitive inhibitor (Ki 58.6 µM) of the host proprotein convertase furin, an endoprotease that is required for maturation of flaviviruses in the trans-Golgi compartment. Luteolin also weakly inhibited recombinant dengue virus NS2B/NS3 protease (Ki 140.36 µM) non-competitively. In order to further explore the mechanism of inhibition we isolated resistant mutants by continuous passaging of DENV2 in the presence of increasing concentrations of luteolin. Nucleotide sequence analysis of the luteolin-resistant escape mutants revealed nucleotide changes that lead to amino acid substitutions in the prM (T79R) and NS2B (I114M) genes. These mutations were introduced into a DENV2 infectious clone and tested for replication in Huh-7 cells. Interestingly we found that the replication kinetics of prM T19R-NS2B I114M double-mutant (DM) was similar to wild-type virus (WT). On the other hand the prM T79R single mutant (SM1) was attenuated and the NS2B I114M single mutant (SM2) showed enhanced replication. Time of drug addition assay with luteolin showed that the mutant viruses were able to produce more mature virions than WT in the order DM > SM2>SM1>WT. Exogenous addition of furin to purified immature WT or mutant viruses revealed that luteolin blocked the prM cleavage of WT and SM2 at a similar level. On the other hand the SM1 immature virus showed some cleavage while the DM immature virus revealed efficient furin cleavage of prM even in the presence of 50 µM luteolin. Our findings suggest that luteolin inhibition of furin may occur at host/pathogen interface that permits the virus to escape the suppression by mutating key residue that may lead to an altered interface.


Assuntos
Vírus da Dengue/efeitos dos fármacos , Vírus da Dengue/genética , Luteolina/farmacologia , Proteínas do Envelope Viral/genética , Proteínas não Estruturais Virais/genética , Montagem de Vírus/efeitos dos fármacos , Substituição de Aminoácidos , Linhagem Celular Tumoral , Dengue/virologia , Farmacorresistência Viral , Furina/farmacologia , Humanos , Mutação , Nucleotídeos/genética
18.
Antiviral Res ; 143: 176-185, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28389141

RESUMO

In many countries afflicted with dengue fever, traditional medicines are widely used as panaceas for illness, and here we describe the systematic evaluation of a widely known natural product, luteolin, originating from the "heat clearing" class of herbs. We show that luteolin inhibits the replication of all four serotypes of dengue virus, but the selectivity of the inhibition was weak. In addition, ADE-mediated dengue virus infection of human cell lines and primary PBMCs was inhibited. In a time-of-drug-addition study, luteolin was found to reduce infectious virus particle formation, but not viral RNA synthesis, in Huh-7 cells. During the virus life cycle, the host protease furin cleaves the pr moiety from prM protein of immature virus particles in the trans-Golgi network to produce mature virions. Analysis of virus particles from luteolin-treated cells revealed that prM was not cleaved efficiently. Biochemical interrogation of human furin showed that luteolin inhibited the enzyme activity in an uncompetitive manner, with Ki value of 58.6 µM, suggesting that treatment may restrict the virion maturation process. Luteolin also exhibited in vivo antiviral activity in mice infected with DENV, causing reduced viremia. Given the mode of action of luteolin and its widespread source, it is possible that it can be tested in combination with other dengue virus inhibitors.


Assuntos
Antivirais/farmacologia , Vírus da Dengue/efeitos dos fármacos , Furina/metabolismo , Luteolina/antagonistas & inibidores , Pró-Proteína Convertases/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Células A549 , Animais , Antivirais/química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Cricetinae , Replicação do DNA/efeitos dos fármacos , Dengue/tratamento farmacológico , Dengue/virologia , Vírus da Dengue/classificação , Vírus da Dengue/genética , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas/farmacologia , Ativação Enzimática/efeitos dos fármacos , Células HEK293 , Humanos , Cinética , Luteolina/administração & dosagem , Luteolina/química , Masculino , Camundongos , Pró-Proteína Convertases/metabolismo , RNA Viral/efeitos dos fármacos , Viremia/tratamento farmacológico , Vírion/efeitos dos fármacos , Rede trans-Golgi/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA