Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros

Medicinas Complementares
Métodos Terapêuticos e Terapias MTCI
Tipo de documento
Intervalo de ano de publicação
1.
Antonie Van Leeuwenhoek ; 117(1): 7, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38170394

RESUMO

Edible oil is used in humans' daily lives, and the degradation of edible oil is a key process in sewage water treatment and in compost production from food wastes. In this study, a mixed microbial strain EN00, which showed high edible plant oil (EPO)-consumption activity, was obtained from soil via enrichment cultivation. A fungal strain EN01 was isolated from EN00 and relegated to Fusarium keratoplasticum, based on the nucleotide sequences of the TEF1-α gene. Strain EN01 eliminated more than 90% of hydrophobic compounds from the medium containing 1.0% (w/v) EPO within 10 days at 30 °C. The rate of consumption of EPO by EN01 was comparable with that of EN00, suggesting that EN01 was the main microorganism involved in the EPO-consumption ability of EN00. Strain EN01 efficiently utilized EPO as a sole carbon source. The EPO-consumption rate of EN01 was highest among six tested strains of Fusarium solani species complex (FSSC), while two FSSC strains of F. mori and F. cuneirostrum, whose phylogenetic relationships were relatively distant from EN01, had little EPO-eliminating activity. This data implies that the potent EPO-eliminating activity is not general in FSSC strains but is restricted to selected members of this complex. EN01 showed good growth at 25-30 °C, in media with an initial pH of 4-10, and in the presence of 0-3% (w/v) sodium chloride. Although the safety including pathogenicity must be strictly evaluated, some FSSC strains including EN01 have potentials for use in the degradation and elimination of edible oil.


Assuntos
Fusarium , Humanos , Plantas Comestíveis , Filogenia , Alimentos
2.
J Nanobiotechnology ; 22(1): 28, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38216982

RESUMO

Incorporating green chemistry concepts into nanotechnology is an important focus area in nanoscience. The demand for green metal oxide nanoparticle production has grown in recent years. The beneficial effects of using nanoparticles in agriculture have already been established. Here, we highlight some potential antifungal properties of Zizyphus spina leaf extract-derived copper oxide nanoparticles (CuO-Zs-NPs), produced with a spherical shape and defined a 13-30 nm particle size. Three different dosages of CuO-Zs-NPs were utilized and showed promising antifungal efficacy in vitro and in vivo against the selected fungal strain of F. solani causes tomato root rot disease, which was molecularly identified with accession number (OP824846). In vivo  results indicated that, for all CuO-Zs-NPs concentrations, a significant reduction in Fusarium root rot disease occurred between 72.0 to 88.6% compared to 80.5% disease severity in the infected control. Although treatments with either the chemical fungicide (Kocide 2000) showed a better disease reduction and incidence with (18.33% and 6.67%) values, respectively, than CuO-Zs-NPs at conc. 50 mg/l, however CuO-Zs-NPs at 250 mg/l conc. showed the highest disease reduction (9.17 ± 2.89%) and lowest disease incidence (4.17 ± 3.80%). On the other hand, CuO-Zs-NPs at varied values elevated the beneficial effects of tomato seedling vigor at the initial stages and plant growth development compared to either treatment with the commercial fungicide or Trichoderma Biocide. Additionally, CuO-Zs-NPs treatments introduced beneficial results for tomato seedling development, with a significant increase in chlorophyll pigments and enzymatic activity for CuO-Zs-NPs treatments. Additionally, treatment with low concentrations of CuO-Zs-NPs led to a rise in the number of mature pollen grains compared to the immature ones.  however the data showed that CuO-Zs-NPs have a unique antifungal mechanism against F. solani, they  subsequently imply that CuO-Zs-NPs might be a useful environmentally friendly controlling agent for the Fusarium root rot disease that affects tomato plants.


Assuntos
Fungicidas Industriais , Fusarium , Nanopartículas Metálicas , Nanopartículas , Solanum lycopersicum , Ziziphus , Cobre/farmacologia , Cobre/química , Antifúngicos/farmacologia , Fungicidas Industriais/farmacologia , Nanopartículas Metálicas/química , Óxidos/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/química
3.
Indian J Microbiol ; 63(4): 596-603, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38031615

RESUMO

Endophytic fungi are known as an alternative promising source of anticancer drug, paclitaxel, however fungi inhabiting in medicinal plant Podocarpus pilgeri and their paclitaxel production have not been reported to date. In the present study, a total of 15 culturable fungi classified into 5 genera, were successfully recovered from P. pilgeri collected in Vietnam. Screening fungal dichloromethane extracts for anticancer activity revealed that only PQF9 extract displayed potent inhibitory effects on A549 and MCF7 cancer cell lines with IC50 values of 33.9 ± 2.3 µg/mL and 43.5 ± 1.7 µg/mL, respectively. Through PCR-based molecular screening, the isolate PQF9 was found to possess 3 key genes involved in paclitaxel biosynthesis. Importantly, high-performance liquid chromatography quantification showed that fungal isolate PQF9 was able to produce 18.2 µg/L paclitaxel. The paclitaxel-producing fungus was identified as Fusarium solani PQF9 based on morphological and molecular phylogenetic analysis. Intensive investigations by chromatographic methods and spectroscopic analyses confirmed the presence of paclitaxel along with tyrosol and uracil. The pure paclitaxel had an IC50 value of 80.8 ± 9.4 and 67.9 ± 7.0 nM by using cell viability assay on A549 lung and MCF7 breast cancer cells. In addition, tyrosol exhibited strong antioxidant activity by scavenging 2, 2-diphenyl-picrylhydrazyl (DPPH) (IC50 5.1 ± 0.2 mM) and hydroxyl radical (IC50 3.6 ± 0.1 mM). In contrast, no biological activity was observed for uracil. Thus, the paclitaxel-producing fungus F. solani PQF9 could serve as a new material for large-scale production and deciphering paclitaxel biosynthesis. Supplementary Information: The online version contains supplementary material available at 10.1007/s12088-023-01119-z.

4.
Plant Dis ; 2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37682226

RESUMO

Bletilla striata, a member of the family Orchidaceae, is a perennial herbaceous plant used in Chinese medicine. It is a commonly cultivated economic crop in the Yangtze River Basin provinces of China, as its roots are used to treat bleeding and inflammation. In Zhejiang province, Bletilla striata has a planting area of 1400 hectares with a total production of approximately 2.6×106 kg. In October 2021, over 40% of B. striata plants showed severe wilt in a traditional Chinese medicine plantation (ca. 10 ha) in Xianju City, Zhejiang Province, China. In July, leaf curling, crinkling, and leaf-edge browning of the diseased plants were first noticed in the field. Then, necrotic streaks gradually spread to the roots. Stems displayed chlorosis and withering and when they were cut vertically, symptoms such as vascular bundle discoloration, appeared. After October, the individual plants slowly wilted and died, their aboveground parts became filamentous, and the epidermis detached from the corm's fibrous roots. Diseased plants were easily removed as the corm root had fractured. White mycelia were clearly seen in the stem. Three symptomatic leaves and three stems were cut, their surfaces disinfected, and plated on potato dextrose agar (PDA). Six strains were subsequently isolated from all samples. Fungal colonies with white to cream-colored mycelia from all tissues appeared after 3 d of incubation at 26 °C. Pure cultures obtained after monospore isolation were examined for their morphological characteristics. The colonies grew rapidly, were fluffy and appressed, and had cottony white to pale cream coloration. Microconidia were hyaline, oval to reniform, with zero or one-septate (4.0-12.0 × 1.0-5.5 µm), and usually formed on elongated monophialidic conidiogenous cells. Macroconidia were wide, fusiform, or slightly curved with one or three septa (23.0-36.0 × 4.5-7.0 µm). Chlamydospores were spherical and were abundant on carrot agar (CA) medium within 2 wk. Fresh mycelia and conidia that grew at 26 ℃ for 7 d were collected from PDA plates. Next, DNA was extracted using the Ezup Column Fungi Genomic DNA Purification kit (Sangon Biotech, Shanghai, China). We amplified a portion of RNA polymerase II second largest subunit gene (RPB2) using primers 5f2/7cr (O'Donnell et al. 2010), the internal transcribed spacer (ITS) region using primers ITS1F/ITS4 (White et al. 1990), and the partial translation elongation factor-1α gene using primers EF1/ EF2 (O'Donnell et al. 1998) from the genomic DNA and sent the PCR amplicons for sequencing at Tsingke Biotechnology Co., Ltd., Wuhan, China. A BLAST search of the obtained sequences (GenBank accessions OP743920, OP913183, and OP913180) showed 99-100% homology with the respective sequences of the Fusarium solani reference isolate NRRL46702 (O'Donnell et al. 2008). Based on the morphological and molecular characteristics and BLAST search, the fungus was identified as F. solani (Leslie and Summerell 2006). Pathogenicity of the purified F. solani isolate was assessed by inoculateing a F. solani spore suspension of 1×106 conidia/mL (20 mL per seedling) on corm wounds made with a toothpick. Four inoculated and three non-inoculated seedlings (sterilized water as a negative control) were grown in a greenhouse at 26 °C under natural sunlight and covered with plastic bags to maintain humidity for 72 h. After 15 d, leaf browning on leaf edges, new leaf bases, and corm epidermis was observed. Symptoms, similar to those detected in the original sample, developed on the inoculated leaves, whereas the controls remained asymptomatic. Fusarium solani was successfully re-isolated from all four inoculated seedlings, and their identity confirmed by generating partial Tef1 and RPB2 sequences, thereby fulfilling the Koch's postulate. To our knowledge, F. solani has not been previously reported as a pathogen of B. striata.

5.
AMB Express ; 13(1): 96, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37702815

RESUMO

L-asparaginase is an antileukemic enzyme that hydrolyzes L-asparagine into L-aspartic acid and ammonia, causing cell starvation and apoptosis in susceptible leukemic cell populations. Currently, L-asparaginase obtained from bacterial sources is constrained by several issues, including lesser productivity, stability, selectivity, and higher toxicity. The goal of this study is to provide fungal L-asparaginase with in-vitro effectiveness towards different human carcinomas. L-asparaginase from endophytic Fusarium solani (Gene Bank accession number MW209717) isolated from the roots of the medicinal plant Hedera helix L. was characterized and optimized experimentally for maximum L-asparaginase production in addition to evaluating its subsequent cytotoxicity towards acute monocytic leukemia and human skin fibroblast cell lines. The enzyme production was maximized using potato dextrose media (15.44 IU/ml/hr) at the 5th and 6th days of fermentation with incubation temperature 30 °C, 3% asparagine, 150-180 rpm agitation rate and a 250 ml flask. Enzyme characterization studies revealed that the enzyme maintained its thermal stability with temperatures up to 60 °C. However, its optimal activity was achieved at 35 °C. On measuring the enzymatic activity at various temperatures and different pH, maximum enzyme activity was recorded at 40 °C and pH 8 using 0.1 M asparagine concentration. Results also revealed promising cytotoxic activity against acute monocytic leukemia with IC50 = 3.66 µg/ml and low cytotoxicity against tested normal human skin fibroblast cell line which suggested that it might have selective toxicity, and consequently it could be used as a less toxic alternative to the current formulations.

6.
Artigo em Inglês | MEDLINE | ID: mdl-37610512

RESUMO

Medicinal plants are hosts to an infinite number of microorganisms, commonly referred to as endophytes which are rich in bioactive metabolites yielding favorable biological activities. The endophytes are known to have a profound impact on their host plant by promoting the accumulation of secondary metabolites which are beneficial to humankind. In the present study, the fungal endophyte, Fusarium solani (ABR4) from the medicinal plant Tinospora cordifolia, was assessed for its bioactive secondary metabolites employing fermentation on a solid rice medium. The crude ABR4 fungal extract was sequentially purified using the solvent extraction method and characterized using different spectroscopic and analytical techniques namely TLC, UV spectroscopic analysis, HRESI-MS, FTIR, and GC-MS analysis. The GC-MS analysis revealed the presence of pyridine, benzoic acid, 4-[(trimethylsilyl)oxy]-trimethylsilyl ester, hexadecanoic acid trimethylsilyl ester, and oleic acid trimethylsilyl ester. The cytotoxic ability of ABR4 was evaluated by MTT assay against lung cancer (A549) and breast cancer (MCF-7) cell lines. The compounds did not exhibit significant cytotoxicity against the tested cell lines. The endophytic ABR4 extract was evaluated for its antimicrobial potential against human pathogens (S. aureus, B. cereus, E. coli, S. typhimurium, P. aeruginosa, and C. albicans) by recording 47 to 54% inhibition. Taken together, the endophytic fungal strain ABR4 demonstrated a remarkable antimicrobial activity against the tested pathogens. Furthermore, the functional metabolites isolated from the endophytic strain ABR4 reveal its broader usage as antimicrobial agents for newer drug development in the pharmaceutical industry.

7.
BMC Plant Biol ; 23(1): 362, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37460949

RESUMO

BACKGROUND: Panax notoginseng (Burk) F. H. Chen is a valuable traditional Chinese medicinal plant, but its commercial production is seriously affected by root rot caused by some pathogenic fungi, including Fusarium solani. Nevertheless, the genetic breeding for disease resistance of P. notoginseng remains limited. The WRKY transcription factors have been revealed to play important roles in plant defense responses, which might provide an inspiration for resistance improvement in P. notoginseng. RESULTS: In this study, the regulatory mechanism of transcription factor PnWRKY15 on P. notoginseng resistance to F. solani infection was revealed. The suppressed expression of PnWRKY15 via RNA interference increased the sensitivity of P. notoginseng to F. solani and decreased the expression levels of some defense-related genes, including PnOLP1, which encodes an osmotin-like protein that confers resistance to F. solani. Ectopic expression of PnWRKY15 in the model plant tobacco significantly enhanced the resistance to F. solani. Moreover, the transcriptome sequencing analysis discovered that some pathogenesis-related genes were expressed at higher levels in the PnWRKY15-overexpressing tobacco than that in the wild-type tobacco. In addition, the jasmonic acid (JA) and salicylic acid (SA) signaling pathways were evidently induced by PnWRKY15-overexpression, that was evidenced by that the JA and SA contents were significantly higher in the PnWRKY15-overexpressing tobacco than that in the wild-type. Furthermore, PnWRKY15, which was localized in the nucleus, can trans-activate and up-regulate PnOLP1 expression according to the EMSA, yeast one-hybrid and co-expression assays. CONCLUSIONS: PnWRKY15 contributes to P. notoginseng resistance to F. solani by up-regulating the expression of resistance-related gene PnOLP1 and activating JA/SA signaling pathways. These findings will help to further elucidate the transcriptional regulatory mechanism associated with the P. notoginseng defense response to F. solani.


Assuntos
Fusarium , Panax notoginseng , Ácido Salicílico/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Panax notoginseng/genética , Melhoramento Vegetal , Transdução de Sinais , Fusarium/metabolismo , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Regulação da Expressão Gênica de Plantas
8.
Microorganisms ; 11(6)2023 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-37375057

RESUMO

Cnidium officinale Makino, a perennial crop in the Umbeliperae family, is one of Korea's representative forest medicinal plants. However, the growing area of C. officinale has been reduced by plant disease and soil sickness caused by fusarium wilt. This study isolated rhizosphere bacteria from C. officinale, and their antagonistic activity was evaluated against Fusarium solani. Particularly, four isolated strains, namely, PT1, ST7, ST8, and SP4, showed a significant antagonistic activity against F. solani. An in planta test showed that the mortality rates of shoots were significantly low in the PT1-inoculated group. The fresh and dry weights of the inoculated plants were also higher than that of the other groups. The 16S rRNA gene sequencing identified the strain PT1 as Leclercia adecarboxylata, and downstream studies confirmed the production of antagonism-related enzymes such as siderophore and N-acetyl-ß-glucosaminidase. The phosphorous solubilizing ability and secretion of related enzymes were also analyzed. The results showed that PT1 strain could be utilized as promising plant growth-promoting rhizobacteria (PGPR) and biocontrol agents (BCAs).

9.
Int J Mol Sci ; 24(5)2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36901977

RESUMO

Gastrodia elata is a valuable traditional Chinese medicinal plant. However, G. elata crops are affected by major diseases, such as brown rot. Previous studies have shown that brown rot is caused by Fusarium oxysporum and F. solani. To further understand the disease, we studied the biological and genome characteristics of these pathogenic fungi. Here, we found that the optimum growth temperature and pH of F. oxysporum (strain QK8) and F. solani (strain SX13) were 28 °C and pH 7, and 30 °C and pH 9, respectively. An indoor virulence test showed that oxime tebuconazole, tebuconazole, and tetramycin had significant bacteriostatic effects on the two Fusarium species. The genomes of QK8 and SX13 were assembled, and it was found that there was a certain gap in the size of the two fungi. The size of strain QK8 was 51,204,719 bp and that of strain SX13 was 55,171,989 bp. Afterwards, through phylogenetic analysis, it was found that strain QK8 was closely related to F. oxysporum, while strain SX13 was closely related to F. solani. Compared with the published whole-genome data for these two Fusarium strains, the genome information obtained here is more complete; the assembly and splicing reach the chromosome level. The biological characteristics and genomic information we provide here lay the foundation for further research on G. elata brown rot.


Assuntos
Fusarium , Gastrodia , Filogenia , Doenças das Plantas/microbiologia , Fungos
10.
Environ Sci Pollut Res Int ; 30(5): 13508-13520, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36136193

RESUMO

Hexavalent chromium pollution is one of the most serious types of site pollution. In this study, a microorganism was screened to remove most hexavalent chromium from soil by leaching in 24 h. After ITS sequencing, the microorganism was identified as belonging to the genus Fusarium solani. The optimization experiment of leaching conditions determined that the removal rate reached the maximum 80% when the rotation speed was 200 rpm, the liquid-soil ratio was 15:1, the temperature was 35℃, and the pH was 7. The study has also shown that tea saponin can effectively strengthen the leaching of Fusarium solani to remove hexavalent chromium from the soil. Compared with tea saponin, the strengthening effect of glucose and rhamnolipid was relatively small. The removal rate of hexavalent chromium reached 85% when the added amount of tea saponin was 0.02 g/mL. The leaching solution destroyed part of the iron-manganese nodule structure of the soil, and its hydroxyl, carboxyl, and other groups complexed metal ions into the solution to achieve the purpose of removing hexavalent chromium. However, since the main crystal of the soil was SiO2, there was no obvious change in the XRD of the soil. Toxicity test showed that after leaching, the content of hexavalent chromium leached was 0.28 mg/L (< 1.5 mg/L), which meet the entry standard of the landfill site.


Assuntos
Poluentes do Solo , Solo , Solo/química , Dióxido de Silício , Poluentes do Solo/análise , Cromo/química , Chá
11.
Antonie Van Leeuwenhoek ; 115(8): 1085-1100, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35789442

RESUMO

A number of studies have demonstrated that endophytic fungi have the potential to produce antitumor active substances with novel structures and significant activities. In our previous studies, we isolated a Fusarium strain from the stem of the medicinal plant Nothapodytes pittosporoides (Oliv.). In this study, we identified this strain as Fusarium solani and found that its crude extract has significant antitumor activity against human alveolar adenocarcinoma cells (A549). We overexpressed the global regulatory factor VeA in F. solani (VeAOE), resulting in a significant increase in antitumor activity. The MTT assay results showed that the inhibition rate of the VeAOE mutant extract on A549 cancer cells was significantly higher than that of the WT extract, as the IC50 decreased from 369.22 to 285.89 µg/mL, and the apoptosis ratio was significantly increased by approximately 4.86-fold. In VeAOE, accumulation of alkaloids, terpenoids, carboxylic acid derivatives, phenols and flavonoid metabolites with potential antitumor activity was significantly increased compared with WT based on metabolomic analysis. Additionally, transcriptome analysis found that the expression patterns of 48 genes related to antitumor activity were significantly changed in VeAOE, mainly involving glycosyl hydrolases, the Zn(2)-Cys(6) class, cytochrome P450 monooxygenase, 3-isopropylmalate dehydratase, and polyketide synthases. These results suggested that VeA mediated the antitumor activity of the metabolites in F. solani HB1-J1 by regulating multiple metabolic pathways.


Assuntos
Fusarium , Plantas Medicinais , Fungos , Fusarium/química , Humanos , Plantas Medicinais/microbiologia
12.
Plant Dis ; 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35442056

RESUMO

Magnolia denudata (Lilytree or Yulan magnolia) is an important ornamental species of the genus Magnolia. It has considerable economical value because of its beautiful fragrant flowers and excellent tree structure (Wang et al. 2010). In Beijing, nurseries cultivate M. denudata as an ornamental plant and traditional medicine. In May 2020, patches of root rotted plants were observed in a field in Beijing, China, with an estimated incidence of approximately 31%. Early symptoms comprised leaves melanocratic shrunken, and the vascular tissue of roots turned brown. Progressively, the roots rotted and the whole plant died (Fig. 1 a-d). Infected roots tissue was surface disinfested and plated on potato dextrose agar (PDA) medium at 25±2 °C and incubated in the dark for 7 days. Pure cultures were obtained by hyphal tip excision (strain MFR1215.4). Fungal colonies were entire margins, and the aerial mycelium was copious, early white, and gradually developed into cream white. Colonies developed to 45.1 mm in 4 days at 25±2 °C on PDA media. On Spezieller Nährstoffarmer Agar (SNA) medium at 25±2 °C for 10 days. The morphological characteristics including macroconidia, microconidia, and chlamydospores were shown in Fig.1 (i-p). These morphological characteristics of the isolate corresponded to the description given for Fusarium solani sensu lato (Nelson et al. 1983, Summerell, 2003). Molecular identification was confirmed via amplification of translation elongation factor 1α (EF-1α), RNA polymerase I beta subunit gene (RPB1), and RNA polymerase II beta subunit gene (RPB2) regions using EF1/EF2, RPB1-Fa/G2R, RPB2-5f2/7cR, and RPB2-7cF/11aR primers (O'Donnell, 2010). Sequences were registered in GenBank. In the Fusarium-ID database, the EF-1α, RPB1, and RPB2 sequences showed 100% (677/677 bp), 99.8% (1568/1571 bp), and 100% (1457/1457 bp) identity with the F. solani species complex (FSSC). The same species-level identification was also found using Fusarium MLST. A best maximum likelihood tree was constructed using PhyloSuite v1.2.2 (Zhang et al. 2020), and the sequences of the MFR1215.4 isolation showed the same homology with FSSC 6. Pathogenicity tests were conducted on healthy one-year-old M. denudata potted seedlings. 200 ml spore suspension (1×106 spores/ml) was poured over the roots of twenty seedlings, and sterile distilled water was irrigated into twenty seedlings as controls in a greenhouse with 25/15°C day/night temperature and 80% relative humidity. The experiment was repeated three times. All inoculated seedlings showed similar symptoms to those in the field after 65 days, whereas the controls remained symptomless. The reisolating pathogens from symptomatic tissues were identical to the original isolates by morphology and EF-1α sequence identification. Based on morphological, molecular, and pathogenic characterization, the isolated pathogen was identified as FSSC 6. Fusarium species have been recorded in various places of the world and are known to be harmful to numerous plants (Trabelsi et al. 2017). It has been reported that FSSC has infected soybeans (Coleman, 2016, Nelson et al. 1989), oil palm (Hafizi et al. 2013), tobacco (Yang et al. 2020), resulting in sudden death syndrome, crown disease, and root rot. To our knowledge, this is the first report of FSSC-induced root rot in M. denudata in China. This research may contribute to the development of epidemiology and management strategies for root rot caused by FSSC on M. denudata.

13.
PeerJ ; 10: e12939, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35282281

RESUMO

American ginseng (Panax quinquefolius L.) is a perennial medicinal plant that has a long usage history in China. However, root rot, which is mainly caused by Fusarium solani can severely reduce the yield and quality of American ginseng, but no disease-resistant variety of American ginseng exists, and the resistance against this disease is not yet well understood. Thus, it is very urgent to analyze the interaction mechanism regulating the interactions between American ginseng and F. solani to mine disease resistance genes. Using transcriptome data and quantitative polymerase chain reaction (qPCR), we screened the transcription factor PqbZIP1 in response to induction by chitin. Yeast self-activation and subcellular localization experiments proved that PqbZIP1 showed transcriptional activity and was localized in the plant nucleus. In addition, qPCR showed that the highest relative expression level was in the roots, wherein chitin and F. solani inhibited and activated the expression of PqbZIP1, respectively, in American ginseng. Additionally, PqbZIP1 significantly inhibited the growth of the Pseudomonas syringae pv. tomato D36E strain in Nicotiana benthamiana, where expressing PqbZIP1 in N. benthamiana increased the jasmonic acid, salicylic acid, and abscisic acid content. Furthermore, PqbZIP1 expression was continually increased upon inoculation with F. solani. Hence, this study revealed that the PqbZIP1 transcription factor might mediate multiple hormonal signaling pathway to modulate root rot disease resistance in American ginseng, and provided important information to breed disease-resistant American ginseng.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica , Panax , Fatores de Transcrição de Zíper de Leucina Básica/genética , Resistência à Doença/genética , Melhoramento Vegetal , Panax/genética , Transcriptoma , Saccharomyces cerevisiae/genética
14.
Lasers Med Sci ; 37(3): 1651-1665, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35094176

RESUMO

The eye is a light-receiving organ and has anatomical advantages to accept phototherapy. Fungi colonizing on the eyes, which cause ocular mycoses, are affected by daily blue light and could easily accept additional light irritation. Ocular mycoses are recalcitrant and blindness-causing eye diseases, and antifungal agent treatments are insufficient. Our team previously found that blue light could inhibit Fusarium solani hyphal growth but promote conidiation. Here, we investigated the antifungal susceptibilities and biological characteristics of the passaged conidia. Twelve Fusarium solani strains (11 ocular-derived strains and 1 standard laboratory strain) were inoculated under blue light (0.5 mW/cm2) and darkness conditions, respectively, to obtain the passaged conidia of blue light group (n = 12) and darkness group (n = 12). Two groups were tested to determine the growth abilities and in vitro antifungal susceptibilities to five antifungal drugs (voriconazole (VRC), amphotericin B (AMB), terbinafine (TRB), caspofungin (CAS), and 5-flucytosine (5FC)), which were examined by microscopy for morphological observation and spectrophotometry for turbidity analysis. The results showed that blue light group passaged conidia were more sensitive to antifungal drugs (AMB, VRC, TRB, and CAS) compared to darkness group. The MIC50 of VRC significantly decreased after blue light treatment (P < 0.05). The fungal inhibition rate significantly increased for VRC, AMB, and TRB in the low concentration range (P < 0.05 or P < 0.01). Blue light did not affect germination or hyphal extension of passaged conidia. These results suggested that blue light could facilitate fungal inhibition effect of AMB, VRC, TRB, and CAS and may improve the therapeutic efficiency in VRC and AMB clinical applications. Blue light phototherapy may provide a new adjuvant approach for the treatment of ocular mycosis.


Assuntos
Antifúngicos , Fusarium , Antifúngicos/farmacologia , Testes de Sensibilidade Microbiana , Esporos Fúngicos
15.
Appl Biochem Biotechnol ; 194(5): 2036-2046, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35015218

RESUMO

Due to the presence of antibiotic-resistant genes, treatment options of clinical isolates are exceedingly limited. This study was aimed to fabricate, optimize, characterize, and evaluate the action of silver nanoparticles (AgNPs) against a clinical isolate of Enterococcus faecalis. A combination of cell-free supernatant (C-FS) of the filamentous fungus Fusarium solani and Gram-negative Comamonas aquatica for AgNP formation was proposed; the antigrowth and antibiofilm of AgNPs against E. faecalis harboring blaTEM and blaCTX-M genes were assessed. The ratio of 1:2 v/v (C-FS:AgNO3) at pH 9.0 for 72 h in 1 mM AgNO3 were the optimal conditions for AgNP formation. UV-vis absorption peak appeared at 425 nm and the crystalline nature of synthesized particles was verified by X-ray diffraction (XRD). Fourier transform infrared spectroscopy (FTIR) analysis confirmed the interaction of protein molecules with the AgNPs. Transmission electron microscopy (TEM) analysis demonstrated that fabricated AgNPs were relatively monodispersed, approximately spherical, and of size 2-7.5 nm. blaTEM and blaCTX-M were detected in E. faecalis; the growth and biofilm of E. faecalis were significantly decreased by the action of 12.5 µg/mL AgNPs. This is the first study proposing alternative sources to form AgNPs via synergistic metabolites of F. solani and C. aquatica. The results here offer a foundation for developing an effective therapy using AgNPs against clinical pathogens.


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Antibacterianos/química , Antibacterianos/farmacologia , Biofilmes , Enterococcus faecalis , Nanopartículas Metálicas/química , Testes de Sensibilidade Microbiana , Extratos Vegetais/química , Prata/química , Prata/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , beta-Lactamases
16.
Plant Dis ; 2021 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-34372681

RESUMO

Gastrodia elata, a traditional and important medicinal plant in China, it is used to numerous medical reasons. It is widely planted in Shaxi, Guizhou Province, China. G. elata grown in Guizhou is of high quality and an important source of income for the region. However, a root rot disease has been reported on G. elata in Guizhou in recent years, with an incidence rate of approximately 25%; this disease has markedly affected the plant growth and development. It causes what is referred to as a "rotten nest" and "empty nest", significantly reducing the yield and medicinal value of G. elata. Eighty diseased G. elata samples were collected from August to December 2020 in Shaxi. Tissue dissection was used to isolate the pathogen on an ultra-clean workbench. In short, thew surface of G. elata was wiped with 75% alcohol for 30 s and then rinsed three to four times with sterile water. After the surface had dried, the skin from an infected area of the plant was cut into a net shape using a sterile scalpel. Eighty diseased tissue samples were placed on PDA (potato dextrose agar) medium using a sterile medical syringe needle and placed in an incubator at 25 °C for 7 days, and 61 fungal isolates with the same morphological characteristics were obtained from the diseased samples. Pure cultures of a putative fungal pathogen designated SX13 were obtained using the single-spore isolation and cultured on PDA medioum for identification and analysis. The colony grew in a circular shape, and the early hyphae were compact and white. A light-yellow ring appeared in the outer circle of the hyphae, and could be seen on both sides of the plate. The upper side of the colony turned white subsequently, and the lower side was light yellow. Identification of SX13 as Fusarium solani was primarily done based on morphological characteristics (Chitrampalam et al., 2018). Colonies produced macroconidia, which were sickle-shaped with two to five septa; most of them had three septa (length by width: 17.28 to 36.23 µm by 4.33 to 6.43 µm). Smaller conidia were fusiform, renal, or oblong, with no or one septum (length by width: 5.56 to 14.35 µm by 2.93 to 5.76 µm). Chlamydospore were also observed with diameters of ranging from 3.43 to 13.12 µm. Identification of SX13 was verified through DNA sequencing. Genomic DNA was extracted using the Biomiga Fungal gDNA Kit. The internal transcribed spacer (ITS) region (primers ITS5/ITS4) (Schoch et al., 2012), ß-tubulin (primers T1/T2) (O'Donnell and Cigelnik, 1997), and actin gene (ACT) region (primers ACT-512F/ACT-783R) (Carbone and Kohn, 1999) were PCR amplified, sequenced, and subjected to NCBI BLASTn homology matching analyses (GenBank Accession Nos. MW888340, MW892976 and MZ440809). High levels of sequence homology were observed with a F. solani reference sequence (Accession Nos. MT560378, ITS=100%; KU938955, ß-tubulin=100%; KM231197, ACT=99%). To complete Koch's postulates, a conidial suspension (106 spores/mlcollected from isolate SX13 was inoculated onto nine G. elata root samples. Sterile water was used as a negative control, and the pathogenicity assay was repeated three times. Following inoculation, plants were kept under high relative humidity in the dark at 25 °C for 7 days. Symptoms similar to the original outbreak were observed on all inoculated plants. In contrast, the negative control plants were healthy and unaffected. The SX13 was re-isolated successfully from the diseased tissues and verified based on morphology and sequencing as described above. To the best of our knowledge, this is the first report of F. solani causing root rot disease on G. elata in China. These findings provide a basis for further research on the management of this disease.

17.
3 Biotech ; 11(6): 290, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34109093

RESUMO

The use of chitosan as an alternative for fungicides has received more attention worldwide. Hence, this study aimed to evaluate in vitro and in vivo antifungal activity of chitosan against Fusarium solani causing root rot in fenugreek. Chitosan treatments ranged from 0.1 to 2gL-1 were tested against F. solani on to potato dextrose agar and in potato dextrose broth. The results revealed that increase in concentrations of chitosan significantly reduced growth, dried biomass, sporulation and spore germination of F. solani. The hyphal swellings and distortion of F. solani mycelia were induced by chitosan. Fenugreek seeds treated with chitosan at 2 gL-1 and 0.5 gL-1 showed reduced F. solani infection and increased seed germination, respectively. In pot and field studies, fenugreek seeds treated with chitosan at 2.0 gL-1 greatly reduced root rot disease severity and also enhanced yield parameters. The activity of defence enzymes, such as chitinase, ß-1, 3-glucanase and total phenol were increased in chitosan treated in fenugreek plants. This increased activity offered protection to fenugreek plants against F. solani to a greater extent. The results showed that chitosan could be used as inducer of defense response and has the potential of controlling fenugreek root rot disease.

18.
Plant Biol (Stuttg) ; 23(3): 497-507, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33320971

RESUMO

One of the most drastic diseases causing economic losses in sunflower crops is fusarium root rot caused by Fusarium solani. Plant extracts and ionizing radiation provide alternative environmentally safe control agents that have a significant role in controlling and overcoming this fungal plant pathogen. In the present study, the effect of different concentrations of aqueous Chenopodium album extract (2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5 and 6.0%) and gamma radiation at a dose of 6 Gy were examined for their efficacy in inducing resistance of sunflower plants against fusarium root rot caused by F. solani MG-3 by evaluation of some physiological and biochemical parameters of infected and healthy plants under greenhouse conditions. The pre-treatment of sunflower seeds with 6% C. album extract and 6 Gy gamma radiation reduced fusarium incidence from 47.49% to 28.25%. Also, nucleic acid content, ascorbic acid, α-tocopherol, anthocyanin, total flavonoids, proline, glycine betaine and lipid components significantly increased in irradiated infected plants treated with C. album extract, while H2 O2 content and lipid peroxidation markedly decreased as compared with healthy control plants. Moreover, treatment with gamma radiation reduced the amount of unsaturated fatty acids through accumulation of saturated fatty acids compared with non-irradiated plants; treatment with C. album extract also enhanced the content of unsaturated fatty acids, with a noticeable decrease in saturated fatty acid content. Hence, C. album extract and gamma radiation can be used to enhance biological control of fusarium root rot of sunflower plants.


Assuntos
Chenopodium album , Fusarium , Helianthus , Animais , Galinhas , Feminino , Extratos Vegetais/farmacologia
19.
J Appl Microbiol ; 130(1): 165-178, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32639629

RESUMO

AIMS: We aimed to purify an antimicrobial protein from Bacillus amyloliquefaciens FS6 culture supernatant, verify its antimicrobial activity against Fusarium solani and evaluate its biocontrol potential for ginseng root rot. METHODS AND RESULTS: The antimicrobial protein was purified from FS6 culture supernatant using ammonium sulphate precipitation, anion exchange and gel chromatography. Based on mass spectrometry results, the purified protein was identified as an antimicrobial protein of the LCI family and was designated APC2 . The APC2 recombinant protein expressed in Escherichia coli (BL21) significantly inhibited F. solani and decreased the infection and spread of F. solani in ginseng root. An overexpressing APC2 strain FS6-APC2 was constructed and shown to have enhanced antimicrobial activity compared to the wild-type strain FS6. CONCLUSIONS: The APC2 protein shows strong antimicrobial activity against F. solani, reduces the incidence and severity of ginseng root rot caused by F. solani and exhibits a great biocontrol potential. SIGNIFICANCE AND IMPACT OF THE STUDY: This study reports the inhibitory activity of APC2 protein (LCI family) against F. solani and its protective efficacy on ginseng root rot. These findings provide a scientific basis for future research on the biocontrol mechanism, as well as the development and application of FS6.


Assuntos
Antifúngicos/farmacologia , Proteínas de Bactérias/farmacologia , Agentes de Controle Biológico/farmacologia , Fusarium/efeitos dos fármacos , Panax/microbiologia , Antifúngicos/metabolismo , Bacillus amyloliquefaciens/genética , Bacillus amyloliquefaciens/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Agentes de Controle Biológico/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Raízes de Plantas/microbiologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia
20.
Plant Dis ; 2020 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-32915116

RESUMO

Coptis chinensis Franchet, is a perennial herb used as a traditional Chinese medicine. Annual production of Coptis is about 3000 tons in Shizhu, Chongqing. In recent years, root rot has become a serious and widespread disease on Coptis in Shizhu with an average incidence of 40%, and yield losses up to 67%. Infected plants were easy to pull from the soil, and most of the fibrous roots and main roots were brown or black compared to healthy roots that were yellow. Severely infected plants were wilted and necrotic. In October 2019, 33 diseased roots were collected from Shizhu (30°18'N, 108°30'E), and small samples (0.5 cm in length) were cut from the border between diseased and healthy tissue, successively sterilized with 75% ethanol and 2% sodium hypochlorite, rinsed 3 times with sterilized water, dried on sterilized filter paper, and transferred onto PDA, and incubated at 25°C for 7 days in dark. Eighteen distinct fungal isolates (H1-H18) were isolated and Koch's postulates were conducted to verify the pathogenicity of individual isolates. The rhizosphere soil of healthy 2-year-old Coptis plants was inoculated by pouring 5 mL of conidial suspension (106 conidia/mL) scraped from a culture of each isolate on PDA. Sterilized water was used to mock inoculate. For each isolate, 6 plants were inoculated. After 20 days, the roots of all plants inoculated with H15 or H18 were dark brown and rotten, while mock inoculated plants were healthy. The isolates H15 and H18 were re-isolated from symptomatic plants. Isolate H15 formed abundant white mycelium on PDA and produced rose pigment in the agar. Conidia were long and slender, straight to slightly curved, with 1-3 septate. The apical cells were tapering and bent, and the foot cells were distinctly notched. Conidiogenous cells were monophialides and polyphialides. No chlamydospores were observed (Figure S1). Isolate H18 formed white sparse mycelium on PDA and produced no pigment in the agar. Conidia were relatively wide, straight and stout, with 3-5 septate. The apical cells were blunt and rounded, and the foot cells were barely notched. Conidiogenous cells were long monophialides. Chlamydospores were formed intercalary in the hyphae (Figure S2). For further identification, the internal transcribed spacer (ITS), ß-tubulin, translation elongation factor 1ɑ (EF1ɑ) and RNA polymerase second largest subunit (RPB2) gene regions were amplified with ITS1/ITS4, Bt2a/Bt2b, EF1/EF2 and 5f2/7cr (White et al. 1990; Glass and Donaldson, 1995; O'Donnell et al. 2010). GenBank accession numbers of H15 and H18 were MT463390 and MT463389 for the ITS region, MT465656 and MT465654 for ß-tubulin, MT653321 and MT465651 for EF1ɑ, and MT653323 and MT653322 for RPB2. BLAST results showed the ITS, ß-tubulin, EF1ɑ, and RPB2 sequences revealed 100% (533/533 base pairs), 100% (265/265 base pairs), 98% (622/632 base pairs), and 99% (936/947 base pairs) homology respectively with those of Fusarium avenaceum (MN186746.1, MH791368.1, KU238140.1, and MK185027.1), and 100% (537/537 base pairs), 100% (227/227 base pairs), 100% (688/688 base pairs), and 99.03% (918/927 base pairs) with F. solani in GenBank (MH857319.1, MN692929.1, KP674211.1, and MH300549.1), respectively. Thus, H15 and H18 were identified as F. avenaceum and F. solani based on its morphological and molecular characteristics. To our knowledge, F. solani has been previously reported as a pathogen on Coptis (Luo et al. 2014), and this is the first report of root rot on Coptis caused by F. avenaceum in the world. Identification of the pathogens is important for effective disease management and control.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA