Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
J Neurooncol ; 166(3): 419-430, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38277015

RESUMO

BACKGROUND: Glioblastoma (GBM) is the most common primary brain tumor in adults. Despite extensive research and clinical trials, median survival post-treatment remains at 15 months. Thus, all opportunities to optimize current treatments and improve patient outcomes should be considered. A recent retrospective clinical study found that taking TMZ in the morning compared to the evening was associated with a 6-month increase in median survival in patients with MGMT-methylated GBM. Here, we hypothesized that TMZ efficacy depends on time-of-day and O6-Methylguanine-DNA Methyltransferase (MGMT) activity in murine and human models of GBM. METHODS AND RESULTS: In vitro recordings using real-time bioluminescence reporters revealed that GBM cells have intrinsic circadian rhythms in the expression of the core circadian clock genes Bmal1 and Per2, as well as in the DNA repair enzyme, MGMT. Independent measures of MGMT transcript levels and promoter methylation also showed daily rhythms intrinsic to GBM cells. These cells were more susceptible to TMZ when delivered at the daily peak of Bmal1 transcription. We found that in vivo morning administration of TMZ also decreased tumor size and increased body weight compared to evening drug delivery in mice bearing GBM xenografts. Finally, inhibition of MGMT activity with O6-Benzylguanine abrogated the daily rhythm in sensitivity to TMZ in vitro by increasing sensitivity at both the peak and trough of Bmal1 expression. CONCLUSION: We conclude that chemotherapy with TMZ can be dramatically enhanced by delivering at the daily maximum of tumor Bmal1 expression and minimum of MGMT activity and that scoring MGMT methylation status requires controlling for time of day of biopsy.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Animais , Camundongos , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/patologia , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Dacarbazina/uso terapêutico , Antineoplásicos Alquilantes/farmacologia , Antineoplásicos Alquilantes/uso terapêutico , O(6)-Metilguanina-DNA Metiltransferase/genética , Estudos Retrospectivos , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Metilação , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Metilases de Modificação do DNA/genética , Metilases de Modificação do DNA/metabolismo , Metilação de DNA , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
2.
Artigo em Inglês | MEDLINE | ID: mdl-37957904

RESUMO

Despite intense research in the field of glioblastoma multiforme (GBM) therapeutics, the resistance against approved therapy remains an issue of concern. The resistance against the therapy is widely reported due to factors like clonal selection, involvement of multiple developmental pathways, and majorly defective mismatch repair (MMR) mediated by O6- methylguanine DNA methyltransferase (MGMT). Phytotherapy is one of the most effective alternatives to overcome resistance. It involves plant-based compounds, divided into several classes: alkaloids; phenols; terpenes; organosulfur compounds. The phytocompounds comprised in these classes are extracted or processed from certain plant sources. They can target various proteins of molecular pathways associated with the progression and survival of GBM. Phytocompounds have also shown promise as immunomodulatory agents and are being explored for immune checkpoint inhibition. Therefore, research and innovations are required to understand the mechanism of action of such phytocompounds against GBM to develop efficacious treatments for the same. This review gives insight into the potential of phytochemical-based therapeutic options for GBM treatment.

3.
J Neural Eng ; 20(6)2023 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-37988746

RESUMO

Objective.Glioblastoma (GBM) is the most common and lethal type of high-grade adult brain cancer. The World Health Organization have classed GBM as an incurable disease because standard treatments have yielded little improvement with life-expectancy being 6-15 months after diagnosis. Different approaches are now crucial to discover new knowledge about GBM communication/function in order to establish alternative therapies for such an aggressive adult brain cancer. Calcium (Ca2+) is a fundamental cell molecular messenger employed in GBM being involved in a wide dynamic range of cellular processes. Understanding how the movement of Ca2+behaves and modulates activity in GBM at the single-cell level is relatively unexplored but holds the potential to yield opportunities for new therapeutic strategies and approaches for cancer treatment.Approach.In this article we establish a spatially and temporally precise method for stimulating Ca2+transients in three patient-derived GBM cell-lines (FPW1, RN1, and RKI1) such that Ca2+communication can be studied from single-cell to larger network scales. We demonstrate that this is possible by administering a single optimized ultra-violet (UV) nanosecond laser pulse to trigger GBM Ca2+transients.Main results.We determine that 1.58µJµm-2is the optimal UV nanosecond laser pulse energy density necessary to elicit a single Ca2+transient in the GBM cell-lines whilst maintaining viability, functionality, the ability to be stimulated many times in an experiment, and to trigger further Ca2+communication in a larger network of GBM cells.Significance.Using adult patient-derived mesenchymal GBM brain cancer cell-lines, the most aggressive form of GBM cancer, this work is the first of its kind as it provides a new effective modality of which to stimulate GBM cells at the single-cell level in an accurate, repeatable, and reliable manner; and is a first step toward Ca2+communication in GBM brain cancer cells and their networks being more effectively studied.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/tratamento farmacológico , Cálcio , Linhagem Celular , Neoplasias Encefálicas/tratamento farmacológico , Lasers , Linhagem Celular Tumoral
4.
Curr Issues Mol Biol ; 45(10): 8309-8320, 2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37886967

RESUMO

Glioblastoma multiforme (GBM) is the most common and deadliest primary brain tumor in adults. Despite the advances in GBM treatment, outcomes remain poor, with a 2-year survival rate of less than 5%. Hyperbaric oxygen (HBO) therapy is an intermittent, high-concentration, short-term oxygen therapy used to increase cellular oxygen content. In this study, we evaluated the effects of HBO therapy, alone or combined with other treatment modalities, on GBM in vitro and in vivo. In the in vitro analysis, we used a 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay to assess the effects of HBO therapy alone, a colony formation assay to analyze the effects of HBO therapy combined with radiotherapy and with temozolomide (TMZ), and a neurosphere assay to assess GBM stemness. In the in vivo analysis, we used immunohistochemical staining and in vivo bioluminescence imaging to assess GBM stemness and the therapeutic effect of HBO therapy alone or combined with TMZ or radiotherapy, respectively. HBO therapy did not affect GBM cell viability, but it did reduce the analyzed tumors' ability to form cancer stem cells. In addition, HBO therapy increased GBM sensitivity to TMZ and radiotherapy both in vitro and in vivo. HBO therapy did not enhance tumor growth and exhibited adjuvant effects to chemotherapy and radiotherapy through inhibiting GBM stemness. In conclusion, HBO therapy shows promise as an adjuvant treatment for GBM by reducing cancer stem cell formation and enhancing sensitivity to chemotherapy and radiotherapy.

5.
bioRxiv ; 2023 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-37745358

RESUMO

Background: Glioblastoma (GBM) is the most common primary brain tumor in adults. Despite extensive research and clinical trials, median survival post-treatment remains at 15 months. Thus, all opportunities to optimize current treatments and improve patient outcomes should be considered. A recent retrospective clinical study found that taking TMZ in the morning compared to the evening was associated with a 6-month increase in median survival in patients with MGMT-methylated GBM. Here, we hypothesized that TMZ efficacy depends on time-of-day and O6-Methylguanine-DNA Methyltransferase (MGMT) activity in murine and human models of GBM. Methods and Results: In vitro recordings using real-time bioluminescence reporters revealed that GBM cells have intrinsic circadian rhythms in the expression of the core circadian clock genes Bmal1 and Per2, as well as in the DNA repair enzyme, MGMT. Independent measures of MGMT transcript levels and promoter methylation also showed daily rhythms intrinsic to GBM cells. These cells were more susceptible to TMZ when delivered at the daily peak of Bmal1 transcription. We found that in vivo morning administration of TMZ also decreased tumor size and increased body weight compared to evening drug delivery in mice bearing GBM xenografts. Finally, inhibition of MGMT activity with O6-Benzylguanine abrogated the daily rhythm in sensitivity to TMZ in vitro by increasing sensitivity at both the peak and trough of Bmal1 expression. Conclusion: We conclude that chemotherapy with TMZ can be dramatically enhanced by delivering at the daily maximum of tumor Bmal1 expression and minimum of MGMT activity.

6.
Chin Clin Oncol ; 12(3): 23, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37417289

RESUMO

BACKGROUND: Glioblastoma (GBM) is the most common primary malignant brain tumor in adults. Despite enormous research efforts, GBM remains a deadly disease. The standard-of-care treatment for patients with newly diagnosed with GBM as per the National Cancer Comprehensive Cancer Network (NCCN) is maximal safe surgical resection followed by concurrent chemoradiation and maintenance temozolomide (TMZ) with adjuvant tumor treating fields (TTF). TTF is a non-pharmacological intervention that delivers low-intensity, intermediate frequency alternating electric fields that arrests cell proliferation by disrupting the mitotic spindle. TTF have been shown in a large clinical trial to improve patient outcomes when added to radiation and chemotherapy. The SPARE trail (Scalp-sparing radiation with concurrent temozolomide and tumor treating fields) evaluated adding TTF concomitantly to radiation and chemotherapy. METHODS: This study is an exploratory analysis of the SPARE trial looking at the prognostic significance of common GBM molecular alterations, namely MGMT, EGFR, TP53, PTEN and telomerase reverse transcriptase (TERT), in this cohort of patients treated with concomitant TTF with radiation and chemotherapy. RESULTS: As expected, MGMT promoter methylation was associated with improved overall survival (OS) and progression-free survival (PFS) in this cohort. In addition, TERT promoter mutation was associated with improved OS and PFS in this cohort as well. CONCLUSIONS: Leveraging the molecular characterization of GBM alongside advancing treatments such as chemoradiation with TTF presents a new opportunity to improve precision oncology and outcomes for GBM patients.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Adulto , Humanos , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Antineoplásicos Alquilantes/uso terapêutico , Dacarbazina/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Medicina de Precisão , Biomarcadores , Metilação de DNA
7.
Int J Mol Sci ; 24(11)2023 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-37298317

RESUMO

Glutamate is excitotoxic to neurons. The entry of glutamine or glutamate from the blood into the brain is limited. To overcome this, branched-chain amino acids (BCAAs) catabolism replenishes the glutamate in brain cells. Branched-chain amino acid transaminase 1 (BCAT1) activity is silenced by epigenetic methylation in IDH mutant gliomas. However, glioblastomas (GBMs) express wild type IDH. Here, we investigated how oxidative stress promotes BCAAs' metabolism to maintain intracellular redox balance and, consequently, the rapid progression of GBMs. We found that reactive oxygen species (ROS) accumulation promoted the nuclear translocation of lactate dehydrogenase A (LDHA), which triggered DOT1L (disruptor of telomeric silencing 1-like)-mediated histone H3K79 hypermethylation and enhanced BCAA catabolism in GBM cells. Glutamate derived from BCAAs catabolism participates in antioxidant thioredoxin (TxN) production. The inhibition of BCAT1 decreased the tumorigenicity of GBM cells in orthotopically transplanted nude mice, and prolonged their survival time. In GBM samples, BCAT1 expression was negatively correlated with the overall survival time (OS) of patients. These findings highlight the role of the non-canonical enzyme activity of LDHA on BCAT1 expression, which links the two major metabolic pathways in GBMs. Glutamate produced by the catabolism of BCAAs was involved in complementary antioxidant TxN synthesis to balance the redox state in tumor cells and promote the progression of GBMs.


Assuntos
Aminoácidos de Cadeia Ramificada , Glioblastoma , Animais , Camundongos , Aminoácidos de Cadeia Ramificada/metabolismo , Antioxidantes , Proliferação de Células , Glioblastoma/genética , Ácido Glutâmico , Lactato Desidrogenase 5 , Camundongos Nus , Tiorredoxinas , Humanos
8.
Eur J Pharmacol ; 948: 175697, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-36997048

RESUMO

BACKGROUND: Platycodin D (PD) is a major bioactive component of Platycodon grandiflorum, a medicinal herb that is widely used in China, and is effective against various human cancers, including glioblastoma multiforme (GBM). S phase kinase-related protein 2 (Skp2) is oncogenic and overexpressed in various human tumors. It is highly expressed in GBM and its expression is correlated with tumor growth, drug resistance and poor prognosis. In this study, we investigated whether inhibition of glioma progression by PD is mediated by decreasing expression of Skp2. METHODS: Cell Counting Kit-8 (CCK-8) and Transwell assays were used to determine the effects of PD on GBM cell proliferation, migration, and invasion in vitro. mRNA and protein expression were determined by real time polymerase chain reaction (RT-PCR) and western blotting, respectively. The U87 xenograft model was used to verify the anti-glioma effect of PD in vivo. Expression levels of Skp2 protein were analyzed by immunofluorescence staining. RESULTS: PD suppressed proliferation and motility of GBM cells in vitro. The expression of Skp2 in U87 and U251 cells was significantly reduced by PD. PD mainly decreased the cytoplasmic expression of Skp2 in glioma cells. Skp2 protein expression was downregulated by PD, resulting in upregulation of its downstream targets, p21and p27. The inhibitory effect of PD was enhanced by Skp2 knockdown in GBM cells and reversed in cells with Skp2 overexpression. CONCLUSION: PD suppresses glioma development by regulation of Skp2 in GBM cells.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Glioblastoma/genética , Proteínas Quinases Associadas a Fase S/genética , Proteínas Quinases Associadas a Fase S/metabolismo , Neoplasias Encefálicas/genética , Glioma/patologia , Proliferação de Células , Linhagem Celular Tumoral , Movimento Celular , Regulação Neoplásica da Expressão Gênica
9.
Support Care Cancer ; 31(2): 122, 2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36653554

RESUMO

PURPOSE: To determine the percentage of and factors associated with unplanned transfer to the acute care service of glioblastoma multiforme acute rehabilitation inpatients. METHODS: Retrospective review of glioblastoma multiforme acute rehabilitation inpatients admitted 4/1/2016-3/31/2020 at a National Cancer Institute Comprehensive Cancer Center. RESULTS: One hundred thirty-nine consecutive admissions of unique glioblastoma multiforme acute rehabilitation inpatients were analyzed. Fifteen patients (10.7%, 95% confidence interval 6.5-17.1%) were transferred to the acute care service for unplanned reasons. The most common reasons for transfer back were neurosurgical complication 6/15(40%), neurologic decline due to mass effect 4/15(26.7%), and pulmonary embolism 2/15(13.3%). Older age (p = 0.010), infection prior to acute inpatient rehabilitation transfer (p = 0.020), and lower activity measure of post-acute care 6-click basic mobility scores (p = 0.048) were significantly associated with transfer to the acute care service. Patients who transferred to the acute care service had significantly lower overall survival than patients who did not transfer off (log-rank test p = 0.001). CONCLUSION: Acute inpatient physiatrists should closely monitor patients for neurosurgical and neurologic complications. The variables significantly associated with transfer to the acute care service may help identify patients at increased risk for medical complications who may require closer observation.


Assuntos
Glioblastoma , Pacientes Internados , Humanos , Hospitalização , Estudos Retrospectivos , Cuidados Críticos , Centros de Reabilitação
10.
Cancers (Basel) ; 14(21)2022 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-36358762

RESUMO

Despite decades of research and the growing emergence of new treatment modalities, Glioblastoma (GBM) frustratingly remains an incurable brain cancer with largely stagnant 5-year survival outcomes of around 5%. Historically, a significant challenge has been the effective delivery of anti-cancer treatment. This review aims to summarize key innovations in the field of medical devices, developed either to improve the delivery of existing treatments, for example that of chemo-radiotherapy, or provide novel treatments using devices, such as sonodynamic therapy, thermotherapy and electric field therapy. It will highlight current as well as emerging device technologies, non-invasive versus invasive approaches, and by doing so provide a detailed summary of evidence from clinical studies and trials undertaken to date. Potential limitations and current challenges are discussed whilst also highlighting the exciting potential of this developing field. It is hoped that this review will serve as a useful primer for clinicians, scientists, and engineers in the field, united by a shared goal to translate medical device innovations to help improve treatment outcomes for patients with this devastating disease.

11.
CNS Oncol ; 11(4): CNS90, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36408899

RESUMO

Glioblastoma (GBM) is the most common malignant adult brain and has a poor prognosis. Routine post-treatment MRI evaluations are required to assess treatment response and disease progression. We present a case of an 83-year-old female who underwent MRI assessment of post-treatment GBM after intravenous iron replacement therapy, ferumoxytol. The brain MRI revealed unintended alteration of MRI signal characteristics from the iron containing agent which confounded diagnostic interpretation and subsequently, the treatment planning. Ferumoxytol injection prior to contrast enhanced MRI must be screened in post-treatment GBM patients to accurately evaluate tumor activity.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Adulto , Feminino , Humanos , Idoso de 80 Anos ou mais , Óxido Ferroso-Férrico , Glioblastoma/diagnóstico por imagem , Glioblastoma/tratamento farmacológico , Meios de Contraste , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/tratamento farmacológico , Imageamento por Ressonância Magnética , Ferro
12.
Front Pharmacol ; 13: 855626, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35656311

RESUMO

Resibufogenin (RB) is a major active ingredient in the traditional Chinese medicine Chansu and has garnered considerable attention for its efficacy in the treatment of cancer. However, the anticancer effects and underlying mechanisms of RB on glioblastoma (GBM) remain unknown. Here, we found that RB induced G2/M phase arrest and inhibited invasion in a primary GBM cell line, P3#GBM, and two GBM cell lines, U251 and A172. Subsequently, we demonstrated that RB-induced G2/M phase arrest occurred through downregulation of CDC25C and upregulation of p21, which was caused by activation of the MAPK/ERK pathway, and that RB inhibited GBM invasion by elevating intercellular Ca2+ to suppress the Src/FAK/Paxillin focal adhesion pathway. Intriguingly, we confirmed that upon RB binding to ATP1A1, Na+-K+-ATPase was activated as a receptor and then triggered the intracellular MAPK/ERK pathway and Ca2+-mediated Src/FAK/Paxillin focal adhesion pathway, which led to G2/M phase arrest and inhibited the invasion of GBM cells. Taken together, our findings reveal the antitumor mechanism of RB by targeting the ATP1A1 signaling cascade and two key signaling pathways and highlight the potential of RB as a new class of promising anticancer agents.

13.
Transl Cancer Res ; 11(5): 1386-1405, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35706800

RESUMO

Background: To analyze the key prognostic genes and potential traditional Chinese medicine targets in glioblastoma (GBM) by bioinformatics and network pharmacology. Methods: GBM datasets were obtained from the Gene Expression Omnibus (GEO) database to clarify the differentially-expressed genes (DEGs) in the carcinoma and paracancerous tissues. The molecular functions (MF) and signaling pathways of enriched DEGs were analyzed by the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. The STRING database and Cytoscape software were used to construct the protein-protein interaction (PPI) network and screen hub genes to focus on genes with greater clinical significance. The transcription expression and prognosis of hub genes were analyzed using the Gene Expression Profiling Interactive Analysis 2 (GEPIA 2) database. The important compounds and target molecules were obtained via the Traditional Chinese Medicine Systems Pharmacology Database (TCMSP) database. We identified the active ingredients by setting the property values of pharmacokinetic attribute values. We constructed the network of "Chinese medicine ingredients-DEGs target" and screened out the target genes and active ingredients with high correlation scores. Finally, molecular docking verification was carried out using AutoDock Tools and PyMOL. Results: We obtained 271 DEGs, including 212 up-regulated genes and 59 down-regulated genes and screened ten hub genes. GO and KEGG analyses suggested that the hub genes were mainly involved in the following biological processes: the cell cycle, cell division, and cell adhesion, as well as extracellular matrix adhesion-related pathways, the p53 signaling pathways, and cadherin binding involved in cell-cell adhesion. We established the interaction network between the components and DEGs to screen out the traditional Chinese medicine active component (luteolin) and target genes (BIRC5 and CCNB1) for the treatment of GBM. The molecular docking results showed that the bindings of protein receptors, BIRC5 and CCNB1, with the compound ligand, luteolin, were stable and formed by hydrogen bonding interaction. Conclusions: In this study, we determined that luteolin potentially inhibits glioblastoma proliferation and migration through key target genes, BIRC5 and CCNB1, via bioinformatics and network pharmacology analysis, and affects the prognosis of GBM patients, providing new ideas for clinical targeted therapy and new drug development.

14.
J Nanobiotechnology ; 20(1): 14, 2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-34983539

RESUMO

BACKGROUND: The outcome of phototherapy, including photothermal therapy (PTT) and photodynamic therapy (PDT) for glioblastoma multiforme (GBM), is disappointing due to insufficient photoconversion efficiency and low targeting rate. The development of phototherapeutic agents that target GBM and generate high heat and potent ROS is important to overcome the weak anti-tumor effect. RESULTS: In this study, nanoconjugates composed of gold nanoparticles (AuNPs) and photosensitizers (PSs) were prepared by disulfide conjugation between Chlorin e6 (Ce6) and glutathione coated-AuNP. The maximum heat dissipation of the nanoconjugate was 64.5 ± 4.5 °C. Moreover, the proximate conjugation of Ce6 on the AuNP surface resulted in plasmonic crossover between Ce6 and AuNP. This improves the intrinsic ROS generating capability of Ce6 by 1.6-fold compared to that of unmodified-Ce6. This process is called generation of metal-enhanced reactive oxygen species (MERos). PEGylated-lactoferrin (Lf-PEG) was incorporated onto the AuNP surface for both oral absorption and GBM targeting of the nanoconjugate (denoted as Ce6-AuNP-Lf). In this study, we explored the mechanism by which Ce6-AuNP-Lf interacts with LfR at the intestinal and blood brain barrier (BBB) and penetrates these barriers with high efficiency. In the orthotopic GBM mice model, the oral bioavailability and GBM targeting amount of Ce6-AuNP-Lf significantly improved to 7.3 ± 1.2% and 11.8 ± 2.1 µg/kg, respectively. The order of laser irradiation, such as applying PDT first and then PTT, was significant for the treatment outcome due to the plasmonic advantages provided by AuNPs to enhance ROS generation capability. As a result, GBM-phototherapy after oral administration of Ce6-AuNP-Lf exhibited an outstanding anti-tumor effect due to GBM targeting and enhanced photoconversion efficiency. CONCLUSIONS: The designed nanoconjugates greatly improved ROS generation by plasmonic crossover between AuNPs and Ce6, enabling sufficient PDT for GBM as well as PTT. In addition, efficient GBM targeting through oral administration was possible by conjugating Lf to the nanoconjugate. These results suggest that Ce6-AuNP-Lf is a potent GBM phototherapeutic nanoconjugate that can be orally administered.


Assuntos
Neoplasias Encefálicas/terapia , Nanopartículas Metálicas , Nanoconjugados , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes , Animais , Clorofilídeos , Ouro , Humanos , Masculino , Camundongos , Camundongos Nus , Ratos , Ratos Sprague-Dawley , Nanomedicina Teranóstica
15.
Acta Pharm Sin B ; 11(11): 3465-3480, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34900530

RESUMO

Glioblastoma multiforme (GBM) in the central nervous system is the most lethal advanced glioma and currently there is no effective treatment for it. Studies of sinomenine, an alkaloid from the Chinese medicinal plant, Sinomenium acutum, showed that it had inhibitory effects on several kinds of cancer. Here, we synthesized a sinomenine derivative, sino-wcj-33 (SW33), tested it for antitumor activity on GBM and explored the underlying mechanism. SW33 significantly inhibited proliferation and colony formation of GBM and reduced migration and invasion of U87 and U251 cells. It also arrested the cell cycle at G2/M phase and induced mitochondria-dependent apoptosis. Differential gene enrichment analysis and pathway validation showed that SW33 exerted anti-GBM effects by regulating PI3K/AKT and AMPK signaling pathways and significantly suppressed tumorigenicity with no obvious adverse effects on the body. SW33 also induced autophagy through the PI3K/AKT/mTOR and AMPK/mTOR pathways. Thus, SW33 appears to be a promising drug for treating GBM effectively and safely.

16.
Life (Basel) ; 11(12)2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34947930

RESUMO

Glioblastoma multiforme (GBM) is the most common form of malignant brain tumor, with poor prognosis; the efficacy of current standard therapy for GBM remains unsatisfactory. Magnolol, an herbal medicine from Magnolia officinalis, exhibited anticancer properties against many types of cancers. However, whether magnolol suppresses GBM progression as well as its underlying mechanism awaits further investigation. In this study, we used the MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide) assay, apoptosis marker analysis, transwell invasion and wound-healing assays to identify the effects of magnolol on GBM cells. We also validated the potential targets of magnolol on GBM with the GEPIA (Gene Expression Profiling Interactive Analysis) and Western blotting assay. Magnolol was found to trigger cytotoxicity and activate extrinsic/intrinsic apoptosis pathways in GBM cells. Both caspase-8 and caspase-9 were activated by magnolol. In addition, GEPIA data indicated the PKCδ (Protein kinase C delta)/STAT3 (Signal transducer and activator of transcription 3) signaling pathway as a potential target of GBM. Magnolol effectively suppressed the phosphorylation and nuclear translocation of STAT3 in GBM cells. Meanwhile, tumor invasion and migration ability and the associated genes, including MMP-9 (Matrix metalloproteinase-9) and uPA (Urokinase-type plasminogen activator), were all diminished by treatment with magnolol. Taken together, our results suggest that magnolol-induced anti-GBM effect may be associated with the inactivation of PKCδ/STAT3 signaling transduction.

17.
Am J Cancer Res ; 11(10): 4919-4930, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34765300

RESUMO

Glioblastoma multiforme (GBM) is the most aggressive and common malignant neoplasm. Nevertheless, a 5-year survival rate of patients with GBM has remained below 5%. Artemisia princeps PAMPANINI, used as a food and traditional medicine, have shown beneficial properties including anti-inflammatory, anti-oxidative, and anti-cancer activities. Thus, this study aimed to investigate biological mechanism of a bioactive compound, jaceosidin (JAC), isolated from A. princeps in human GBM T98G cells. Herein, as a result of analysis in terms of cancer survival and death, we found that JAC significantly reduced cell survival against T98G cells. In addition, JAC increased apoptotic cell death via changes on morphological and molecular phenotypes in T98G cells as evidenced by cellular shapes and DNA fragmentation. The apoptotic cell death was confirmed by the cleavage of caspase-3 and PARP, the downregulation of survivin and Bcl-2. Moreover, JAC decreased the expression of cyclinD1 and Cdks and increased the phosphorylation of EKR, JNK, and p38 MAPKs. Specifically, JAC suppressed the PI3K/AKT signaling and its downstream molecules including p70S6, GSK3ß, and ß-catenin. In addition, as a result of analysis in terms of metastasis using wound healing and Boyden chamber assays, JAC showed anti-migrative and anti-invasive activities. Finally, we analyzed in terms of autophagy and necroptosis that are modes of programmed cell survival and death different from apoptosis in T98G cells. We found that JAC inhibited autophgic regulatory proteins including Beclin-1, Atgs, and LC3A/B, thereby reducing autophagic-mediated cell survival, whereas JAC did not affect phosphorylation of key proteins in necroptosis, especially MLKL. Given these findings, our results provided novel evidences on the biological mechanisms of JAC in T98G cells, suggesting that JAC may be a therapeutic agent for patients with GBM.

18.
Ann Transl Med ; 9(19): 1508, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34805370

RESUMO

Glioblastoma (GBM) is the most common primary central nervous system (CNS) malignancy in adults and is associated with poor prognosis, especially even worse in those with unmethylated MGMT promoter. Currently, maximal safe resection combined with temozolomide (TMZ) concurrent chemoradiotherapy and TMZ adjuvant chemotherapy has been considered the standard treatment for newly diagnosed GBM. The efficacy of drugs other than TMZ is currently undefined. With increasing understanding of the biological characteristics of GBM, more and more studies are being conducted on drug targets, such as specific signaling pathways and microenvironment. Herein, we report the case of a GBM patient with unmethylated MGMT promoter who was intolerant to TMZ, and underwent treatment with the combination of carelizumab, anlotinib, and oxitinib during radiotherapy according to results of whole-exome sequencing (WES) and the patient's condition. The progression-free survival (PFS) and overall survival (OS) for this case were respectively nearly 11 and 18 months, significantly exceeding the historical data and the tolerance of the treatment for this case without sever adverse effects was favorable. Our case provides clinical evidence supporting the efficacy of the above three drugs and radiotherapy, which may translate into novel individualized treatment strategies for GBM patients who are intolerant to TMZ.

19.
Int J Mol Sci ; 22(18)2021 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-34575998

RESUMO

During the last decade, we have persistently addressed the question, "how can the innate immune system be used as a therapeutic tool to eliminate cancer?" A cancerous tumor harbors innate immune cells such as macrophages, which are held in the tumor-promoting M2 state by tumor-cell-released cytokines. We have discovered that these tumor-associated macrophages (TAM) are repolarized into the nitric oxide (NO)-generating tumoricidal M1 state by the dietary agent curcumin (CC), which also causes recruitment of activated natural killer (NK) cells and cytotoxic T (Tc) cells into the tumor, thereby eliminating cancer cells as well as cancer stem cells. Indications are that this process may be NO-dependent. Intriguingly, the maximum blood concentration of CC in mice never exceeds nanomolar levels. Thus, our results submit that even low, transient levels of curcumin in vivo are enough to cause repolarization of the TAM and recruitment NK cells as well as Tc cells to eliminate the tumor. We have observed this phenomenon in two cancer models, glioblastoma and cervical cancer. Therefore, this approach may yield a general strategy to fight cancer. Our mechanistic studies have so far implicated induction of STAT-1 in this M2→M1 switch, but further studies are needed to understand the involvement of other factors such as the lipid metabolites resolvins in the CC-evoked anticancer pathways.


Assuntos
Curcumina/uso terapêutico , Glioblastoma/tratamento farmacológico , Neoplasias Experimentais/tratamento farmacológico , Neoplasias do Colo do Útero/tratamento farmacológico , Animais , Feminino , Glioblastoma/imunologia , Glioblastoma/patologia , Humanos , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/patologia , Camundongos , Neoplasias Experimentais/imunologia , Neoplasias Experimentais/patologia , Óxido Nítrico/imunologia , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/patologia , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/patologia , Neoplasias do Colo do Útero/imunologia , Neoplasias do Colo do Útero/patologia
20.
J Gene Med ; 23(10): e3371, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34105224

RESUMO

BACKGROUND: As the most common and detrimental brain tumor with high invasiveness and poor prognosis, glioblastoma (GBM) has severely threatened people's health globally. Therefore, it is of great importance and necessary to identify the molecular mechanisms involved in tumorigenesis and development, thus contributing to potential therapeutic targets and strategies. METHODS: The level of circ_0001588 was detected in 68 pairs of GBM tissues and adjacent normal tissues and human glioma cell lines via a real-time quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). Then, the effect of circ_0001588 on the proliferation, migration and invasion of glioma cells was evaluated. In addition, potential downstream targets of circ_0001588 were forecasted by circBANK and Starbase. Their interaction was confirmed by introducing luciferase reporter assays. Moreover, sh-circ_0001588 transfected U251 cells were used to form tumors in vivo. Finally, the functional mechanism of circ_0001588 was identified by qRT-PCR, western blotting, xenograft and immunohistochemistry (IHC) assays. RESULTS: The expression of circ_0001588 is markedly up-regulated in GBM tissues and human gliomas cells. Additionally, increased expression of circ_0001588 is positively relevant with poor survival in GBM patients. The down-regulation of circ_0001588 distinctly inhibits the proliferation, migration and invasion of GBM in vitro, as well as tumor growth in vivo. Moreover, knockdown of circ_0001588 reduces the tumor volume and weight, enhances the relative IHC staining index of E-cadherin and decreases the relative IHC staining index of Ki-67, Yin Yang 1 (YY1) and vinmentin in vivo. Mechanistically, circ_0001588 locates in the cytoplasm, which is directly bound with miR-211-5p. Furthermore, circ_0001588 can positively regulate YY1 via sponging miR-211-5p. Moreover, circ_0001588 accelerates the proliferation, migration and invasion of GBM by modulating miR-211-5p/YY1 signaling. CONCLUSIONS: These results illustrate a new circ_0001588/miR-211-5p/YY1 regulatory signaling axis in GBM.


Assuntos
Neoplasias Encefálicas/genética , Regulação Neoplásica da Expressão Gênica/genética , Glioblastoma/genética , MicroRNAs/genética , RNA Circular/genética , Regulação para Cima/genética , Fator de Transcrição YY1/genética , Apoptose/genética , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Progressão da Doença , Regulação para Baixo/genética , Glioblastoma/patologia , Glioma/genética , Glioma/patologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA