Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
BMC Genomics ; 25(1): 120, 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38280985

RESUMO

To comprehensively understand the characteristics of the GH3 gene family in tea plants (Camellia sinensis), we identified 17 CsGH3 genes and analyzed their physicochemical properties, phylogenetic relationships, gene structures, promoters, and expression patterns in different tissues. The study showed that the 17 CsGH3 genes are distributed on 9 chromosomes, and based on evolutionary analysis, the CsGH3 members were divided into three subgroups. Gene duplication analysis revealed that segmental duplications have a significant impact on the amplification of CsGH3 genes. In addition, we identified and classified cis-elements in the CsGH3 gene promoters and detected elements related to plant hormone responses and non-biotic stress responses. Through expression pattern analysis, we observed tissue-specific expression of CsGH3.3 and CsGH3.10 in flower buds and roots. Moreover, based on predictive analysis of upstream regulatory transcription factors of CsGH3, we identified the potential transcriptional regulatory role of gibberellin response factor CsDELLA in CsGH3.14 and CsGH3.15. In this study, we found that CsGH3 genes are involved in a wide range of activities, such as growth and development, stress response, and transcription. This is the first report on CsGH3 genes and their potential roles in tea plants. In conclusion, these results provide a theoretical basis for elucidating the role of GH3 genes in the development of perennial woody plants and offer new insights into the synergistic effects of multiple hormones on plant growth and development in tea plants.


Assuntos
Camellia sinensis , Camellia sinensis/metabolismo , Filogenia , Reguladores de Crescimento de Plantas/farmacologia , Regiões Promotoras Genéticas , Chá , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo
2.
Int J Mol Sci ; 24(20)2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37894803

RESUMO

As an important hormone response gene, Gretchen Hagen 3 (GH3) maintains hormonal homeostasis by conjugating excess auxin with amino acids during plant stress-related signaling pathways. GH3 genes have been characterized in many plant species, but they are rarely reported in potato. Here, 19 StGH3 genes were isolated and characterized. Phylogenetic analysis indicated that StGH3s were divided into two categories (group I and group III). Analyses of gene structure and motif composition showed that the members of a specific StGH3 subfamily are relatively conserved. Collinearity analysis of StGH3 genes in potato and other plants laid a foundation for further exploring the evolutionary characteristics of the StGH3 genes. Promoter analysis showed that most StGH3 promoters contained hormone and abiotic stress response elements. Multiple transcriptome studies indicated that some StGH3 genes were responsive to ABA, water deficits, and salt treatments. Moreover, qRT-PCR analysis indicated that StGH3 genes could be induced by phytohormones (ABA, SA, and MeJA) and abiotic stresses (water deficit, high salt, and low temperature), although with different patterns. Furthermore, transgenic tobacco with transient overexpression of the StGH3.3 gene showed positive regulation in response to water deficits by increasing proline accumulation and reducing the leaf water loss rate. These results suggested that StGH3 genes may be involved in the response to abiotic stress through hormonal signal pathways. Overall, this study provides useful insights into the evolution and function of StGH3s and lays a foundation for further study on the molecular mechanisms of StGH3s in the regulation of potato drought resistance.


Assuntos
Solanum tuberosum , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Filogenia , Secas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico , Cloreto de Sódio/farmacologia , Água/metabolismo , Hormônios , Regulação da Expressão Gênica de Plantas
3.
New Phytol ; 240(6): 2353-2371, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37823344

RESUMO

Xyloglucan is an abundant polysaccharide in many primary cell walls and in the human diet. Decoration of its α-xylosyl sidechains with further sugars is critical for plant growth, even though the sugars themselves vary considerably between species. Plants in the Ericales order - prevalent in human diets - exhibit ß1,2-linked xylosyl decorations. The biosynthetic enzymes responsible for adding these xylosyl decorations, as well as the hydrolases that remove them in the human gut, are unidentified. GT47 xyloglucan glycosyltransferase candidates were expressed in Arabidopsis and endo-xyloglucanase products from transgenic wall material were analysed by electrophoresis, mass spectrometry, and nuclear magnetic resonance (NMR) spectroscopy. The activities of gut bacterial hydrolases BoGH43A and BoGH43B on synthetic glycosides and xyloglucan oligosaccharides were measured by colorimetry and electrophoresis. CcXBT1 is a xyloglucan ß-xylosyltransferase from coffee that can modify Arabidopsis xyloglucan and restore the growth of galactosyltransferase mutants. Related VmXST1 is a weakly active xyloglucan α-arabinofuranosyltransferase from cranberry. BoGH43A hydrolyses both α-arabinofuranosylated and ß-xylosylated oligosaccharides. CcXBT1's presence in coffee and BoGH43A's promiscuity suggest that ß-xylosylated xyloglucan is not only more widespread than thought, but might also nourish beneficial gut bacteria. The evolutionary instability of transferase specificity and lack of hydrolase specificity hint that, to enzymes, xylosides and arabinofuranosides are closely resemblant.


Assuntos
Arabidopsis , Humanos , Arabidopsis/metabolismo , Café/metabolismo , Xilanos/metabolismo , Oligossacarídeos/metabolismo , Parede Celular/metabolismo , Açúcares/metabolismo
4.
Neurosci Lett ; 806: 137236, 2023 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-37030549

RESUMO

Growth hormone (GH) action in specific neuronal populations regulates neuroendocrine responses, metabolism, and behavior. However, the potential role of central GH action on glial function is less understood. The present study aims to determine how the hypothalamic expression of several neuroglial markers is affected by central GH action in male mice. The dwarf GH- and insulin-like growth factor-1 (IGF-1)-deficient Ghrhrlit/lit mice showed decreased mRNA expression of Nes (Nestin), Gfap, Iba1, Adgre1 (F4/80), and Tnf (TNFα) in the hypothalamus, compared to wild-type animals. In contrast, transgenic overexpression of GH led to high serum GH and IGF-1 levels, and increased hypothalamic expression of Nes, Gfap, Adgre1, Iba1, and Rax. Hepatocyte-specific GH receptor (GHR) knockout mice, which are characterized by high serum GH levels, but reduced IGF-1 secretion, showed increased mRNA expression of Gfap, Iba1, Tnf, and Sox10, demonstrating that the increase in GH levels alters the hypothalamic expression of glial markers associated with neuroinflammation, independently of IGF-1. Conversely, brain-specific GHR knockout mice showed reduced expression of Gfap, Adgre1, and Vim (vimentin), indicating that brain GHR signaling is necessary to mediate GH-induced changes in the expression of several neuroglial markers. In conclusion, the hypothalamic mRNA levels of several neuroglial markers associated with inflammation are directly modulated by GHR signaling in male mice.


Assuntos
Hormônio do Crescimento , Fator de Crescimento Insulin-Like I , Camundongos , Masculino , Animais , Hormônio do Crescimento/genética , Hormônio do Crescimento/metabolismo , Hormônio do Crescimento/farmacologia , Fator de Crescimento Insulin-Like I/farmacologia , Hipotálamo/metabolismo , Camundongos Knockout , RNA Mensageiro/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
5.
J. pediatr. (Rio J.) ; 99(2): 168-173, Mar.-Apr. 2023. tab
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1430703

RESUMO

Abstract Objective: The main growth hormone action is to promote linear growth increasing protein synthesis stimulation and osteoblastic activity. Peak bone mass extends from adolescence to 30 years of age. Several factors may influence this acquisition and prevent fracture risk in adulthood, such as genetic potential, GH, ethnicity, and lifestyle factors. This study aims to compare bone mass and osteometabolic profile of white and Afro-descendant Brazilian adolescents in the transition phase, who were treated with human recombinant growth hormone in childhood. Methods: The authors selected 38 adolescents from the Transition Outpatient Clinic of the University of São Paulo. Lumbar spine and total body bone mineral density (BMD) and bone mineral content (BMC), serum calcium, 25-OH-vitamin D and bone markers were analyzed at the rhGH withdrawal. Results: The mean age was 16.8 ± 1.6 years. There were 21 Afro-descendant and 17 whites. Thirty-four percent of the sample presented vitamin D insufficiency, 66% inadequate calcium intake and 44.7% physical inactivity. The Afro-descendants showed a lower lumbar spine and total body Z scores than those of the whites (p = 0.04 and p = 0.03, respectively), as well as their mean body weight (p = 0.03). There were no differences in the remaining osteometabolic parameters. Conclusion: As most adolescents had vitamin D insufficiency, low calcium intake, and physical inactivity, calcium, and cholecalciferol supplementation and lifestyle changes should be encouraged. The Brazilian Afro-descendant may be a vulnerable group for low bone mass, requiring

6.
J Pediatr (Rio J) ; 99(2): 168-173, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36155741

RESUMO

OBJECTIVE: The main growth hormone action is to promote linear growth increasing protein synthesis stimulation and osteoblastic activity. Peak bone mass extends from adolescence to 30 years of age. Several factors may influence this acquisition and prevent fracture risk in adulthood, such as genetic potential, GH, ethnicity, and lifestyle factors. This study aims to compare bone mass and osteometabolic profile of white and Afro-descendant Brazilian adolescents in the transition phase, who were treated with human recombinant growth hormone in childhood. METHODS: The authors selected 38 adolescents from the Transition Outpatient Clinic of the University of São Paulo. Lumbar spine and total body bone mineral density (BMD) and bone mineral content (BMC), serum calcium, 25-OH-vitamin D and bone markers were analyzed at the rhGH withdrawal. RESULTS: The mean age was 16.8 ± 1.6 years. There were 21 Afro-descendant and 17 whites. Thirty-four percent of the sample presented vitamin D insufficiency, 66% inadequate calcium intake and 44.7% physical inactivity. The Afro-descendants showed a lower lumbar spine and total body Z scores than those of the whites (p = 0.04 and p = 0.03, respectively), as well as their mean body weight (p = 0.03). There were no differences in the remaining osteometabolic parameters. CONCLUSION: As most adolescents had vitamin D insufficiency, low calcium intake, and physical inactivity, calcium, and cholecalciferol supplementation and lifestyle changes should be encouraged. The Brazilian Afro-descendant may be a vulnerable group for low bone mass, requiring special strategies to increase bone accrual and body weight. More studies are necessary to compare ethnic differences in this population.


Assuntos
Hormônio do Crescimento Humano , Deficiência de Vitamina D , Adolescente , Humanos , Densidade Óssea/fisiologia , Cálcio , Brasil , Vitamina D , Vitaminas
7.
Artigo em Inglês | MEDLINE | ID: mdl-36176568

RESUMO

Background and purpose: In this study we want to evaluate the efficacy of yoga practice on dysfunctional stress, inflammation and QOL in breast cancer patients undergoing adjuvant radiotherapy. Patients and methods: Patients with stage 0 to III breast cancer were recruited before starting radiotherapy (XRT) and were randomly assigned to yoga group (YG) two times a week during XRT or control group (CG). Self-report measures of QOL, fatigue and sleep quality, and blood samples were collected at day 1 of treatment, day 15, end of treatment and 1, 3 and 6 months later. Cortisol blood level, IL6, IL10, IL1RA, TNFα and lymphocyte-to-monocyte ratio were analyzed as measures of dysfunctional stress and inflammation. Results: Patients started XRT and yoga classes in October 2019. Due to COVID-19 pandemic we closed the enrollment in March 2020. We analysed 24 patients, 12 YG and 12 CG. The analysis of blood cortisol levels revealed an interaction (p = 0.04) between yoga practice and time, in particular YG had lower cortisol levels at the end of XRT respect to CG (p-adj = 0.02). The analysis of IL-1RA revealed an interaction effect (p = 0.04) suggesting differences between groups at some time points that post-hoc tests were not able to detect. Conclusions: To our knowledge, this is the first study to evaluate the effects of yoga in a cancer population studying inflammation markers, cortisol trend and QOL during and until 6 months after XRT. This study suggests that yoga practice is able to reduce stress and inflammation levels over time. Besides including a larger number of patients to increase the power, future studies should consider other inflammatory or pro inflammatory factors and long-term yoga program to gain more evidence on yoga practice benefits.

8.
Int J Mol Sci ; 23(11)2022 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-35683004

RESUMO

Glycoside hydrolase family 9 (GH9) is a key member of the hydrolase family in the process of cellulose synthesis and hydrolysis, playing important roles in plant growth and development. In this study, we investigated the phenotypic characteristics and gene expression involved in pollen fertility conversion and anther dehiscence from a genomewide level. In total, 74 wheat GH9 genes (TaGH9s) were identified, which were classified into Class A, Class B and Class C and unevenly distributed on chromosomes. We also investigated the gene duplication and reveled that fragments and tandem repeats contributed to the amplification of TaGH9s. TaGH9s had abundant hormone-responsive elements and light-responsive elements, involving JA-ABA crosstalk to regulate anther development. Ten TaGH9s, which highly expressed stamen tissue, were selected to further validate their function in pollen fertility conversion and anther dehiscence. Based on the cell phenotype and the results of the scanning electron microscope at the anther dehiscence period, we found that seven TaGH9s may target miRNAs, including some known miRNAs (miR164 and miR398), regulate the level of cellulose by light and phytohormone and play important roles in pollen fertility and anther dehiscence. Finally, we proposed a hypothesis model to reveal the regulation pathway of TaGH9 on fertility conversion and anther dehiscence. Our study provides valuable insights into the GH9 family in explaining the male sterility mechanism of the wheat photo-thermo-sensitive genetic male sterile (PTGMS) line and generates useful male sterile resources for improving wheat hybrid breeding.


Assuntos
MicroRNAs , Triticum , Celulose/metabolismo , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , MicroRNAs/genética , MicroRNAs/metabolismo , Melhoramento Vegetal , Pólen/metabolismo , Triticum/metabolismo
9.
Nutrients ; 14(3)2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35276860

RESUMO

Several previous investigations have employed betaine supplementation in randomized controlled crossover designs to assess its ostensible ergogenic potential. Nevertheless, prior methodology is predicated on limited pharmacokinetic data and an appropriate betaine-specific washout period is hitherto undescribed. The purpose of the present pilot investigation was therein to determine whether a 28 day washout period was sufficient to return serum betaine concentrations to baseline following a supplementation protocol. Five resistance-trained men (26 ± 6 y) supplemented with 6 g/day betaine anhydrous for 14 days and subsequently visited the lab 10 additional times during a 28 day washout period. Participants underwent venipuncture to assess serum betaine and several other parameters before (PRE) and periodically throughout the washout timeframe (POST0, -4, -7, -10, -13, -16, -19, -22, -25 and -28). All analyses were performed at a significance level of p < 0.05. While analyses failed to detect any differences in any other serum biomarker (p > 0.05), serum betaine was significantly elevated from PRE-to-POST0 (p = 0.047; 2.31 ± 1.05 to 11.1 ± 4.91 µg·mL−1) and was statistically indistinguishable from baseline at POST4 (p = 1.00). Nevertheless, visual data assessment and an inability to assess skeletal muscle concentrations would otherwise suggest that a more conservative 7 day washout period is sufficient to truly return both serum-and-skeletal muscle betaine content to pre-supplementation levels.


Assuntos
Betaína , Suplementos Nutricionais , Biomarcadores , Humanos , Masculino , Músculo Esquelético , Projetos Piloto
10.
Gynecol Endocrinol ; 38(3): 231-237, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34766534

RESUMO

OBJECTIVES: To evaluate the effectiveness of Growth hormone (GH) co-treatment during in vitro fertilization (IVF) cycles in women of different ages who manifest unexplained poor embryonic development. METHOD: This cohort study included a total of 2647 patients with unexplained poor embryonic development in their previous IVF procedures: 872 women received GH co-treatment and 1775 untreated women served as a control group. Patients were divided into 6 groups according to treatment and stratified by age (<35 years of age, A-GH group and A-control group; 35-40 years, B-GH group and B-control group; and ≥40 years, C-GH group and C-control group). The primary outcome was the oocyte-cleavage rate and the clinical pregnancy rate (CPR). RESULTS: The oocyte-cleavage rates among the three age groups were significantly higher in the GH group compared to the same-aged control group. In both group A and group B, there was no significant difference in clinical pregnancy rate between the GH group and controls. However, in patients ≥40 years of age, the clinical pregnancy rate in the GH group was significantly higher than in the control group (31.8% vs. 13.7%, p = 0.019). In the three age groups, there was no significant difference in the live birth rate between the GH group and controls. In the multivariate logistic regression analysis model, in both group A and group B, the number of cleaved embryos was independent predictors for CPR (OR = 1.464, 95% CI: 1.311-1.634; respectively, OR = 1.336, 95% CI: 1.126-1.586); Besides, in both group B and group C, age was independent predictors for CPR (OR = 0.657, 95%CI: 0.555-0.778; respectively, OR = 0.622, 95%CI: 0.391-0.989). However, only in group C, supplementation GH increased CPR as compared with not supplementation GH (OR = 2.339, 95%CI: 1.182-6.670). CONCLUSIONS: For patients with unexplained poor embryonic development, supplementation with GH increased the oocyte-cleavage rates in all three age groups, and the clinical pregnancy rate gradually improved commensurate with increasing age. There was no difference in the clinical pregnancy rate in group A and group B, but group C improved significantly. Therefore, compared with patients under 40 years of age, patients ≥40 may benefit more from GH supplementation.


Assuntos
Desenvolvimento Embrionário , Hormônio do Crescimento , Adulto , Estudos de Coortes , Suplementos Nutricionais , Feminino , Fertilização in vitro , Hormônio do Crescimento/uso terapêutico , Humanos , Nascido Vivo , Oócitos , Gravidez , Taxa de Gravidez , Estudos Retrospectivos
11.
mBio ; 12(5): e0244621, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34579578

RESUMO

Aspergillus fumigatus is a ubiquitous mold that can cause invasive pulmonary infections in immunocompromised patients. Within the lung, A. fumigatus forms biofilms that can enhance resistance to antifungals and immune defenses. Aspergillus biofilm formation requires the production of a cationic matrix exopolysaccharide, galactosaminogalactan (GAG). In this study, recombinant glycoside hydrolases (GH)s that degrade GAG were evaluated as antifungal agents in a mouse model of invasive aspergillosis. Intratracheal GH administration was well tolerated by mice. Pharmacokinetic analysis revealed that although GHs have short half-lives, GH prophylaxis resulted in reduced fungal burden in leukopenic mice and improved survival in neutropenic mice, possibly through augmenting pulmonary neutrophil recruitment. Combining GH prophylaxis with posaconazole treatment resulted in a greater reduction in fungal burden than either agent alone. This study lays the foundation for further exploration of GH therapy in invasive fungal infections. IMPORTANCE The biofilm-forming mold Aspergillus fumigatus is a common causative agent of invasive fungal airway disease in patients with a compromised immune system or chronic airway disease. Treatment of A. fumigatus infection is limited by the few available antifungals to which fungal resistance is becoming increasingly common. The high mortality rate of A. fumigatus-related infection reflects a need for the development of novel therapeutic strategies. The fungal biofilm matrix is in part composed of the adhesive exopolysaccharide galactosaminogalactan, against which antifungals are less effective. Previously, we demonstrated antibiofilm activity with recombinant forms of the glycoside hydrolase enzymes that are involved in galactosaminogalactan biosynthesis. In this study, prophylaxis with glycoside hydrolases alone or in combination with the antifungal posaconazole in a mouse model of experimental aspergillosis improved outcomes. This study offers insight into the therapeutic potential of combining biofilm disruptive agents to leverage the activity of currently available antifungals.


Assuntos
Antifúngicos/administração & dosagem , Aspergillus fumigatus/patogenicidade , Biofilmes/efeitos dos fármacos , Glicosídeo Hidrolases/administração & dosagem , Glicosídeo Hidrolases/genética , Aspergilose Pulmonar Invasiva/prevenção & controle , Animais , Antifúngicos/farmacocinética , Biofilmes/crescimento & desenvolvimento , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Feminino , Glicosídeo Hidrolases/farmacocinética , Aspergilose Pulmonar Invasiva/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Neutropenia , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/genética , Virulência
12.
Int J Mol Sci ; 22(17)2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34502376

RESUMO

Inflammation induces a wide response of the neuroendocrine system, which leads to modifications in all the endocrine axes. The hypothalamic-growth hormone (GH)-insulin-like growth factor-1 (IGF-1) axis is deeply affected by inflammation, its response being characterized by GH resistance and a decrease in circulating levels of IGF-1. The endocrine and metabolic responses to inflammation allow the organism to survive. However, in chronic inflammatory conditions, the inhibition of the hypothalamic-GH-IGF-1 axis contributes to the catabolic process, with skeletal muscle atrophy and cachexia. Here, we review the changes in pituitary GH secretion, IGF-1, and IGF-1 binding protein-3 (IGFBP-3), as well as the mechanism that mediated those responses. The contribution of GH and IGF-1 to muscle wasting during inflammation has also been analyzed.


Assuntos
Caquexia/metabolismo , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Caquexia/fisiopatologia , Hormônio do Crescimento/metabolismo , Hormônio do Crescimento Humano/metabolismo , Humanos , Hipotálamo/metabolismo , Inflamação/fisiopatologia , Insulina/metabolismo , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/fisiologia , Fator de Crescimento Insulin-Like I/fisiologia , Atrofia Muscular/metabolismo , Atrofia Muscular/fisiopatologia
13.
Fish Physiol Biochem ; 47(4): 1313-1327, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34241763

RESUMO

Selenium (Se), an essential component of deiodinases (DIOs), regulates the contents of thyroid hormones and thus improves animal growth. To explore the influences of selenium supplementation on fish growth metabolism, a total of 270 healthy grass carp (Ctenopharyngodon idella) were divided into three groups and feed three graded dietary selenium (0.141, 0.562, and 1.044 mg Se/kg) levels. The results showed that after 60-day feeding, dietary selenium improved the final body weight and specific growth rate (SGR) of grass carp. The hepatic DIO activities in selenium-supplemented groups were higher than those in control group. A significant increase in triiodothyronine (T3), free triiodothyronine (FT3), and thyroid-stimulating hormone (TSH) levels was accompanied by a decrease in the contents of thyroxine (T4) and free thyroxine (FT4) in selenium-supplemented groups. The histopathological observation of thyroid suggested that selenium deficiency resulted in hypertrophy of follicular epithelial cells. Moreover, the gene relative expression levels of dio1, dio2, and dio3 showed an increasing trend with the rising concentration of dietary selenium. The transcription levels of HPT axis-related genes (crh, tsh-ß, ttr, tr-s, tpo, nis) and GH/IGF1-related genes (gh, ghr, igf1, igf1r) were significantly upregulated in selenium-supplemented groups. No significant differences in the above indicators were observed between 0.562 and 1.044 mg Se/kg diet group except T3 content and dio1 relative expression ratio. These results indicate that dietary selenium supplementation improves the hepatic DIO activities and thyroid hormone metabolism and regulates the transcription levels of HPT and GH/IGF axis-related genes, which may be responsible for the growth promotion in grass carp.


Assuntos
Carpas , Suplementos Nutricionais , Selênio/farmacologia , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Carpas/sangue , Carpas/crescimento & desenvolvimento , Carpas/metabolismo , Expressão Gênica/efeitos dos fármacos , Hormônio do Crescimento/genética , Hipotálamo , Fator de Crescimento Insulin-Like I/genética , Iodeto Peroxidase/genética , Fígado/efeitos dos fármacos , Fígado/metabolismo , Hipófise , Receptor IGF Tipo 1/genética , Receptores da Somatotropina/genética , Glândula Tireoide/efeitos dos fármacos , Glândula Tireoide/patologia , Tireotropina/sangue , Tiroxina/sangue , Tri-Iodotironina/sangue
14.
Food Chem ; 365: 130460, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34237573

RESUMO

The ß-d-glucans are abundant cell wall polysaccharides in many cereals and contain both (1,3)- and (1,4)-bonds. The ß-1,3-1,4-glucanases (EC 3.2.1.73) hydrolyze ß-(1,4)-d-glucosidic linkages in glucans, and have applications in both animal and human food industries. A chimera between the family 11 carbohydrate-binding module from Ruminoclostridium (Clostridium)thermocellumcelH (RtCBM11), with the ß-1,3-1,4-glucanase from Bacillus subtilis (BglS) was constructed by end-to-end fusion (RtCBM11-BglS) to evaluate the effects on the catalytic function and its application in barley ß-glucan degradation for the brewing industry. The parental and chimeric BglS presented the same optimum pH (6.0) and temperature (50 °C) for maximum activity. The RtCBM11-BglS showed increased thermal stability and 30% higher hydrolytic efficiency against purified barley ß-glucan, and the rate of hydrolysis of ß-1,3-1,4-glucan in crude barley extracts was significantly increased. The enhanced catalytic performance of the RtCBM11-BglS may be useful for the treatment of crude barley extracts in the brewing industry.


Assuntos
Glucanos , Hordeum , Glicosídeo Hidrolases/metabolismo , Hordeum/genética , Hordeum/metabolismo , Hidrólise , Extratos Vegetais , Especificidade por Substrato
15.
Handb Clin Neurol ; 181: 351-367, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34238470

RESUMO

Prader-Willi syndrome (PWS) is a rare genetic neurodevelopmental disorder linked to the lack of expression of specific maternally imprinted genes located in the chromosomal region 15q11-q13. Impaired hypothalamic development and function explain most of the phenotype that is characterized by a specific trajectory from anorexia at birth to excessive weight gain at later ages, which is accompanied by hyperphagia and early severe obesity, as well as by other hormonal deficiencies, behavioral deficits, and dysautonomia. In almost all patients, their endocrine dysfunction involves growth hormone deficiency and hypogonadism, which originate from a combination of both peripheral and hypothalamic origin, central hypothyroidism in 40%, precocious adrenarche in 30% of the cases, and in rare cases, also adrenocorticotropin deficiency and precocious puberty. In addition, the oxytocin (OXT) and ghrelin systems are impaired in most patients and involved in a poor suckling response at birth, and hyperphagia with food addiction, poor social skills, and emotional dysregulation. Current hormonal replacement treatments are the same as used in classical hormonal deficiencies, and recombinant human GH treatment is registered since 2000 and has dramatically changed the phenotype of these children. OXT and OXT analogue treatments are currently investigated as well as new molecules targeting the ghrelin system. The severe condition of PWS can be seen as a model to improve the fine description and treatments of hypothalamic dysfunction.


Assuntos
Terapia de Reposição Hormonal , Síndrome de Prader-Willi , Grelina , Humanos , Hiperfagia , Hipotálamo , Ocitocina , Síndrome de Prader-Willi/tratamento farmacológico , Síndrome de Prader-Willi/genética
16.
Mol Nutr Food Res ; 65(15): e2001208, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34008920

RESUMO

SCOPE: Dietary intervention to obese dams during pregnancy and lactation period provides avenues for improving metabolic profiles of the offspring. In the current study, the effects of polar lipids-enriched milk fat globule membrane (MFGM-PL) supplementation to obese dams during pregnancy and lactation on the skeletal outcomes of male offspring are investigated. METHODS AND RESULTS: MFGM-PL is supplemented to obese rats induced by high-fat diet during pregnancy and lactation at a dose of 400 mg kg-1 body weight. Results show that maternal MFGM-PL supplementation significantly ameliorates the stunted skeletal growth of male offspring at weaning. In adulthood offspring, maternal MFGM-PL supplementation protects against high-fat diet (HFD)-induced bone microstructure degeneration and bone marrow adipocyte accumulation. Further investigation shows that maternal supplementation of MFGM-PL significantly ameliorates insulin resistance and increases the mRNA expression of growth hormone releasing hormone (GHRH) in the hypothalamus of HFD offspring. The growth hormone (GH)/insulin-like growth factor-1 (IGF-1) axis is subsequently enhanced in MFGM-PL + HFD offspring, contributing to the beneficial skeletal outcomes. CONCLUSION: The findings suggest that maternal MFGM-PL supplementation of HFD dam during pregnancy and lactation shows desirable effects on fetal skeletal development, with lasting beneficial programming impacts on skeletal outcomes of offspring.


Assuntos
Desenvolvimento Ósseo/efeitos dos fármacos , Glicolipídeos/farmacologia , Glicoproteínas/farmacologia , Resistência à Insulina , Obesidade/dietoterapia , Animais , Desenvolvimento Ósseo/fisiologia , Dieta Hiperlipídica/efeitos adversos , Suplementos Nutricionais , Feminino , Glicolipídeos/química , Glicoproteínas/química , Hormônio Liberador de Gonadotropina/genética , Hormônio do Crescimento/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Lactação , Gotículas Lipídicas/química , Lipídeos/química , Lipídeos/farmacologia , Masculino , Fenômenos Fisiológicos da Nutrição Materna , Leite/química , Obesidade/fisiopatologia , Gravidez , Ratos Sprague-Dawley
17.
Zoolog Sci ; 38(3): 238-246, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34057348

RESUMO

Growth-retarded (grt) mice display primary congenital hypothyroidism due to the hyporesponsiveness of their thyroid glands to thyroid-stimulating hormone (TSH). We examined somatic growth, anterior pituitary development, and hormonal profiles in female grt mice and normal ones. Although growth in grt females was suppressed 2 weeks after birth, the measured growth parameters and organ weights gradually increased and finally reached close to the normal levels. Grt mice exhibited delayed eye and vaginal openings and remained in a state of persistent diestrus thereafter, plasma estrogen levels being lower than those in normal mice. Grt mice that received normal-donor thyroids showed accelerated growth and their body weights increased up to the sham-normal levels, indicating the importance of early thyroid hormone supplementation. In the anterior pituitary, there were fewer growth hormone (GH) and prolactin (PRL) cells in grt mice than in normal mice as examined at 12 weeks after birth, but the numbers of these cells did not differ from those in normal mice after 24 weeks. Grt mice had more TSH cells than normal mice until 48 weeks. Plasma GH levels in grt mice were lower than those in normal mice at 2 weeks, but did not differ substantially after 5 weeks. Compared with normal mice, grt mice had significantly lower plasma PRL and thyroxine levels, but notably higher TSH levels until 48 weeks. These findings indicate that thyroid hormone deficiency in grt mice causes delayed development and growth, and inappropriate development of GH, PRL and TSH cells, followed by the abnormal secretion of hormones by these pituitary cells.


Assuntos
Hipotireoidismo Congênito/patologia , Hipófise/crescimento & desenvolvimento , Glândula Tireoide/transplante , Animais , Hipotireoidismo Congênito/terapia , Feminino , Hormônio do Crescimento , Camundongos , Tamanho do Órgão , Prolactina , Hormônios Tireóideos , Tireotropina/sangue
18.
Int J Mol Sci ; 22(6)2021 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-33799501

RESUMO

The growth hormone (GH)/insulin-like growth factor I (IGF-I) axis is involved in metabolic control. Malnutrition reduces IGF-I and modifies the thermogenic capacity of brown adipose tissue (BAT). Leptin has effects on the GH/IGF-I axis and the function of BAT, but its interaction with IGF-I and the mechanisms involved in the regulation of thermogenesis remains unknown. We studied the GH/IGF-I axis and activation of IGF-I-related signaling and metabolism related to BAT thermogenesis in chronic central leptin infused (L), pair-fed (PF), and control rats. Hypothalamic somatostatin mRNA levels were increased in PF and decreased in L, while pituitary GH mRNA was reduced in PF. Serum GH and IGF-I concentrations were decreased only in PF. In BAT, the association between suppressor of cytokine signaling 3 and the IGF-I receptor was reduced, and phosphorylation of the IGF-I receptor increased in the L group. Phosphorylation of Akt and cyclic AMP response element binding protein and glucose transporter 4 mRNA levels were increased in L and mRNA levels of uncoupling protein-1 (UCP-1) and enzymes involved in lipid anabolism reduced in PF. These results suggest that modifications in UCP-1 in BAT and changes in the GH/IGF-I axis induced by negative energy balance are dependent upon leptin levels.


Assuntos
Tecido Adiposo Marrom/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Hormônio do Crescimento/genética , Fator de Crescimento Insulin-Like I/genética , Leptina/farmacologia , Termogênese/efeitos dos fármacos , Tecido Adiposo Marrom/metabolismo , Animais , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Metabolismo Energético/genética , Transportador de Glucose Tipo 4/genética , Transportador de Glucose Tipo 4/metabolismo , Hormônio do Crescimento/metabolismo , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Injeções Intraventriculares , Fator de Crescimento Insulin-Like I/metabolismo , Masculino , Fosforilação/efeitos dos fármacos , Hipófise/efeitos dos fármacos , Hipófise/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Receptor IGF Tipo 1/genética , Receptor IGF Tipo 1/metabolismo , Somatostatina/genética , Somatostatina/metabolismo , Proteína 3 Supressora da Sinalização de Citocinas/genética , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo , Termogênese/genética , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
19.
Biomolecules ; 11(5)2021 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-33919152

RESUMO

Exposure to low temperatures can be considered a stressor, which when applied for a specific time can lead to adaptive reactions. In our study we hypothesized that cold, when applied to the entire body, may be a factor that positively modifies the aging process of bones by improving the mechanisms related to the body's mineral balance. Taking the above into account, the aim of the study was to determine the concentration of calcium (Ca), magnesium (Mg), and phosphorus (P) in bones, and to examine bone density and concentrations of the key hormones for bone metabolism, namely parathyroid hormone (PTH), somatotropin (GH), 1,25-dihydroxyvitamin D3, 17-ß estradiol, testosterone (T) in plasma, and prostaglandin E2 (PGE2) in the bone of aging rats subjected to physical training in cold water. The animals in the experiment were subjected to a series of swimming sessions for nine weeks. Study group animals (male and female respectively) performed swimming training in cold water at 5 ± 2 °C and in water with thermal comfort temperature (36 ± 2 °C). Control animals were kept in a sedentary condition. Immersion in cold water affects bone mineral metabolism in aging rats by changing the concentration of Ca, Mg, and P in the bone, altering bone mineral density and the concentration of key hormones involved in the regulation of bone mineral metabolism. The effect of cold-water immersion may be gender-dependent. In females, it decreases Ca and Mg content in bones while increasing bone density and 17-ß estradiol and 1,25-dihydroxyvitamin D3 levels, and with a longer perspective in aging animals may be positive not only for bone health but also other estrogen-dependent tissues. In males, cold water swimming decreased PTH and PGE2 which resulted in a decrease in phosphorus content in bones (with no effect on bone density), an increase in 1,25-dihydroxyvitamin D3, and increase in T and GH, and may have positive consequences especially in bones and muscle tissue for the prevention of elderly sarcopenia.


Assuntos
Envelhecimento/fisiologia , Crioterapia/métodos , Esforço Físico/fisiologia , Animais , Densidade Óssea/efeitos dos fármacos , Osso e Ossos/química , Calcitriol/análise , Calcitriol/sangue , Cálcio/análise , Temperatura Baixa , Dinoprostona/análise , Estradiol/análise , Estradiol/sangue , Feminino , Hormônio do Crescimento/análise , Hormônio do Crescimento/sangue , Magnésio/análise , Masculino , Hormônio Paratireóideo/análise , Hormônio Paratireóideo/sangue , Fósforo/análise , Condicionamento Físico Animal/métodos , Plasma/química , Ratos , Ratos Wistar , Testosterona/análise , Testosterona/sangue
20.
Vitam Horm ; 115: 15-37, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33706947

RESUMO

It is the heterogeneous changes of hypothalamic functions that determine the chronological sequence of aging in mammals. Recently, it was hypothesized by Cai the decrease in slow-wave sleep (SWS) resulting from skin aging as responsible for the degeneration of hypothalamic suprachiasmatic nucleus (SCN). It was soon hypothesized by the European people in television that the increase in body fat as responsible for the degeneration of male preoptic sexually dimorphic nucleus (SDN-POA), via the aromatase converting testosterone to estradiol as proposed by Cohen. It is the hypothalamic paraventricular nucleus (PVN) that remains unchanged in neuron number during aging for psychological stress. In this chapter, it is briefly reviewed more manifestations of hypothalamic related mammalian aging processes, including (1) the aging of ovary by lipid, estradiol and hypothalamus; (2) the aging of muscle, stomach, intestine, thymus, and the later aging of brain, regulated by growth hormone/insulin-like growth factor 1(GH/IGF1); (3) the cardiovascular hypertension from PVN activation, the bone and other peripheral aging by psychological stress, and that of kidney by vasopressin. It is classified these aging processes by the primary regulation from one of the three hypothalamic nuclei, although still necessary to investigate and supplement their secondary regulation by the hypothalamic nuclei in future. It is the hypothalamic structural changes that shift the functional balance among these three hypothalamic systems toward aging.


Assuntos
Hipotálamo , Núcleo Supraquiasmático , Envelhecimento/fisiologia , Animais , Estradiol , Feminino , Humanos , Hipotálamo/fisiologia , Masculino , Núcleo Hipotalâmico Paraventricular/fisiologia , Núcleo Supraquiasmático/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA