Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.496
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Nutrients ; 16(7)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38613013

RESUMO

This study aims to investigate the potential mechanisms underlying the protective effects of myo-inositol (MI) supplementation during suckling against the detrimental effects of fetal energy restriction described in animal studies, particularly focusing on the potential connections with BDNF signaling. Oral physiological doses of MI or the vehicle were given daily to the offspring of control (CON) and 25%-calorie-restricted (CR) pregnant rats during suckling. The animals were weaned and then fed a standard diet until 5 months of age, when the diet was switched to a Western diet until 7 months of age. At 25 days and 7 months of age, the plasma BDNF levels and mRNA expression were analyzed in the hypothalamus and three adipose tissue depots. MI supplementation, especially in the context of gestational calorie restriction, promoted BDNF secretion and signaling at a juvenile age and in adulthood, which was more evident in the male offspring of the CR dams than in females. Moreover, the CR animals supplemented with MI exhibited a stimulated anorexigenic signaling pathway in the hypothalamus, along with improved peripheral glucose management and enhanced browning capacity. These findings suggest a novel connection between MI supplementation during suckling, BDNF signaling, and metabolic programming, providing insights into the mechanisms underlying the beneficial effects of MI during lactation.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Restrição Calórica , Masculino , Feminino , Gravidez , Animais , Ratos , Tecido Adiposo , Dieta Ocidental , Suplementos Nutricionais
2.
bioRxiv ; 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38586039

RESUMO

A thermoregulatory decline occurs with age due to changes in muscle mass, vasoconstriction, and metabolism that lowers core body temperature (Tc). Although lower Tc is a biomarker of successful aging, we have previously shown this worsens cognitive performance in the APP/PS1 mouse model of Alzheimer's disease (AD) [1]. We hypothesized that elevating Tc with thermotherapy would improve metabolism and cognition in APP/PS1 mice. From 6-12 months of age, male and female APP/PS1 and C57BL/6 mice were chronically housed at 23 or 30°C. At 12 months of age, mice were assayed for insulin sensitivity, glucose tolerance, and spatial cognition. Plasma, hippocampal, and peripheral (adipose, hepatic, and skeletal muscle) samples were procured postmortem and tissue-specific markers of amyloid accumulation, metabolism, and inflammation were assayed. Chronic 30°C exposure increased Tc in all groups except female APP/PS1 mice. All mice receiving thermotherapy had either improved glucose tolerance or insulin sensitivity, but the underlying processes responsible for these effects varied across sexes. In males, glucose regulation was influenced predominantly by hormonal signaling in plasma and skeletal muscle glucose transporter 4 expression, whereas in females, this was modulated at the tissue level. Thermotherapy improved spatial navigation in male C57BL/6 and APP/PS1 mice, with the later attributed to reduced hippocampal soluble amyloid-ß (Aß)42. Female APP/PS1 mice exhibited worse spatial memory recall after chronic thermotherapy. Together, the data highlights the metabolic benefits of passive thermotherapy with potential nonpharmacological management for some individuals with AD, and provides further evidence for the necessity of adopting personalized patient care.

3.
Foods ; 13(7)2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38611372

RESUMO

Kaempferol is a natural flavonoid with reported bioactivities found in many fruits, vegetables, and medicinal herbs. However, its effects on exercise performance and muscle metabolism remain inconclusive. The present study investigated kaempferol's effects on improving exercise performance and potential mechanisms in vivo and in vitro. The grip strength, exhaustive running time, and distance of mice were increased in the high-dose kaempferol group (p < 0.01). Also, kaempferol reduced fatigue-related biochemical markers and increased the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) related to antioxidant capacity. Kaempferol also increased the glycogen and adenosine triphosphate (ATP) content in the liver and skeletal muscle, as well as glucose in the blood. In vitro, kaempferol promoted glucose uptake, protein synthesis, and mitochondrial function and decreased oxidative stress in both 2D and 3D C2C12 myotube cultures. Moreover, kaempferol activated the PI3K/AKT and MAPK signaling pathways in the C2C12 cells. It also upregulated the key targets of glucose uptake, mitochondrial function, and protein synthesis. These findings suggest that kaempferol improves exercise performance and alleviates physical fatigue by increasing glucose uptake, mitochondrial biogenesis, and protein synthesis and by decreasing ROS. Kaempferol's molecular mechanism may be related to the regulation of the PI3K/AKT and MAPK signaling pathways.

4.
Molecules ; 29(7)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38611884

RESUMO

Ginkgo biloba L. (ginkgo) is a widely used medicinal plant around the world. Its leaves, which have been used as a traditional Chinese medicine, are rich in various bioactive components. However, most of the research and applications of ginkgo leaves have focused on terpene trilactones and flavonol glycosides, thereby overlooking the other active components. In this study, a lipophilic extract (GL) was isolated from ginkgo leaves. This extract is abundant in lipids and lipid-like molecules. Then, its effect and potential mechanism on glucose uptake and insulin resistance in C2C12 myotubes were investigated. The results showed that GL significantly enhanced the translocation of GLUT4 to the plasma membrane, which subsequently promoted glucose uptake. Meanwhile, it increased the phosphorylation of AMP-activated protein kinase (AMPK) and its downstream targets. Both knockdown of AMPK with siRNA and inhibition with AMPK inhibitor compound C reversed these effects. Additionally, GL ameliorated palmitate-induced insulin resistance by enhancing insulin-stimulated glucose uptake, increasing the phosphorylation of protein kinase B (PKB/AKT), and restoring the translocation of GLUT4 from the cytoplasm to the membrane. However, pretreatment with compound C abolished these beneficial effects of GL. In conclusion, GL enhances basal glucose uptake in C2C12 myotubes and improves insulin sensitivity in palmitate-induced insulin resistant myotubes through the AMPK pathway.


Assuntos
Ginkgo biloba , Resistência à Insulina , Proteínas Quinases Ativadas por AMP , Extratos Vegetais/farmacologia , Insulina , Fibras Musculares Esqueléticas , Glucose
5.
J Nat Med ; 78(3): 693-701, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38587581

RESUMO

Mountain caviar is a fruit of Kochia scoparia that contains momordin Ic as a major saponin constituent. Its extract (MCE) has been shown to suppress blood glucose elevations in the human oral glucose tolerance test (OGTT) as well as increases in blood glucose in OGTT, gastric emptying (GE), and glucose incorporation in the small intestine in rats. However, the effects of MCE and momordin Ic on glucose absorption in mice and these action mechanisms have not been examined for more than 2 decades. Therefore, we herein investigated the effects of MCE, its saponin fraction, and momordin Ic on blood glucose elevations in mice. Mouse blood glucose elevation tests were performed on carbohydrate-loaded mice. The mountain caviar saponin fraction significantly delayed blood glucose elevations in glucose-, sucrose-, and soluble starch-loaded mice. In glucose-loaded mice, the saponin fraction, MCE, and momordin Ic significantly suppressed rapid glucose elevations after glucose loading, but not sucrose loading. A mouse GE study was performed by loading with glucose and phenolphthalein solution. Momordin Ic and MCE strongly suppressed mouse GE. Intestinal glucose absorption was evaluated by the incorporation of 2-deoxyglucose (2-DG) into Caco-2 cell layers and mouse duodenum wall vesicles. The results obtained showed that momordin Ic inhibited the incorporation of 2-DG into Caco-2 cells and mouse duodenum vesicles. Collectively, these results suggest that MCE, particularly the principal saponin, momordin Ic, preferably suppressed glucose-induced blood glucose elevations and delayed carbohydrate-induced glucose elevations in mice. The underlying mechanism was found to involve the suppression of GE and intestinal glucose absorption.


Assuntos
Glicemia , Glucose , Hipoglicemiantes , Extratos Vegetais , Saponinas , Animais , Camundongos , Saponinas/farmacologia , Saponinas/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Humanos , Células CACO-2 , Hipoglicemiantes/farmacologia , Hipoglicemiantes/química , Masculino , Glicemia/efeitos dos fármacos , Glucose/metabolismo , Absorção Intestinal/efeitos dos fármacos , Teste de Tolerância a Glucose , Esvaziamento Gástrico/efeitos dos fármacos , Frutas/química , Camundongos Endogâmicos ICR
6.
Mar Drugs ; 22(4)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38667785

RESUMO

Diabetes mellitus is a chronic metabolic condition marked by high blood glucose levels caused by inadequate insulin synthesis or poor insulin use. This condition affects millions of individuals worldwide and is linked to a variety of consequences, including cardiovascular disease, neuropathy, nephropathy, and retinopathy. Diabetes therapy now focuses on controlling blood glucose levels through lifestyle changes, oral medicines, and insulin injections. However, these therapies have limits and may not successfully prevent or treat diabetic problems. Several marine-derived chemicals have previously demonstrated promising findings as possible antidiabetic medicines in preclinical investigations. Peptides, polyphenols, and polysaccharides extracted from seaweeds, sponges, and other marine species are among them. As a result, marine natural products have the potential to be a rich source of innovative multitargeted medications for diabetes prevention and treatment, as well as associated complications. Future research should focus on the chemical variety of marine creatures as well as the mechanisms of action of marine-derived chemicals in order to find new antidiabetic medicines and maximize their therapeutic potential. Based on preclinical investigations, this review focuses on the next step for seaweed applications as potential multitargeted medicines for diabetes, highlighting the bioactivities of seaweeds in the prevention and treatment of this illness.


Assuntos
Diabetes Mellitus , Suplementos Nutricionais , Hipoglicemiantes , Alga Marinha , Alga Marinha/química , Humanos , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Diabetes Mellitus/tratamento farmacológico , Animais , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Organismos Aquáticos
7.
Environ Res ; 252(Pt 3): 118874, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38579995

RESUMO

3-Methylindole (Skatole), a degradation product of tryptophan produced by intestinal microbial activity, significantly contributes to odor nuisance. Its adverse effects on animal welfare, human health, and environmental pollution have been noted. However, it is still unclear whether the intestinal microbiota mediates the impact of selenium (Se) on skatole production and what the underlying mechanisms remain elusive. A selenized glucose (SeGlu) derivative is a novel organic selenium compound. In this study, a diverse range of dietary SeGlu-treated levels, including SeGlu-deficient (CK), SeGlu-adequate (0.15 mg Se per L), and SeGlu-supranutritional (0.4 mg Se per L) conditions, were used to investigate the complex interaction of SeGlu on intestinal microbiome and serum metabolome changes in male Sprague-Dawley (SD) rats. The study showed that SeGlu supplementation enhanced the antioxidant ability in rats, significantly manifested in the increases of the activity of catalase (CAT) and glutathione peroxidase (GSH-Px), while no change in the level of malonaldehyde (MDA). Metagenomic sequencing analysis verified that the SeGlu treatment group significantly increased the abundance of beneficial microorganisms such as Clostridium, Ruminococcus, Faecalibacterium, Lactobacillus, and Alloprevotella while reducing the abundance of opportunistic pathogens such as Bacteroides and Alistipes significantly. Further metabolomic analysis revealed phenylalanine, tyrosine, and tryptophan biosynthesis changes in the SeGlu treatment group. Notably, the biosynthesis of indole, a critical pathway, was affected by SeGlu treatment, with several crucial enzymes implicated. Correlation analysis demonstrated strong associations between specific bacterial species - Treponema, Bacteroides, and Ruminococcus, and changes in indole and derivative concentrations. Moreover, the efficacy of SeGlu-treated fecal microbiota was confirmed through fecal microbiota transplantation, leading to a decrease in the concentration of skatole in rats. Collectively, the analysis of microbiota and metabolome response to diverse SeGlu levels suggests that SeGlu is a promising dietary additive in modulating intestinal microbiota and reducing odor nuisance in the livestock and poultry industry.


Assuntos
Microbioma Gastrointestinal , Glucose , Ratos Sprague-Dawley , Escatol , Triptofano , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Escatol/metabolismo , Masculino , Triptofano/metabolismo , Ratos , Glucose/metabolismo , Selênio/farmacologia , Dieta
8.
Molecules ; 29(7)2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38611943

RESUMO

Luteolin-7-O-ß-d-glucuronide (LGU) is a major active flavonoid glycoside compound that is extracted from Ixeris sonchifolia (Bge.) Hance, and it is a Chinese medicinal herb mainly used for the treatment of coronary heart disease, angina pectoris, cerebral infarction, etc. In the present study, the neuroprotective effect of LGU was investigated in an oxygen glucose deprivation (OGD) model and a middle cerebral artery occlusion (MCAO) rat model. In vitro, LGU was found to effectively improve the OGD-induced decrease in neuronal viability and increase in neuronal death by a 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and a lactate dehydrogenase (LDH) leakage rate assay, respectively. LGU was also found to inhibit OGD-induced intracellular Ca2+ overload, adenosine triphosphate (ATP) depletion, and mitochondrial membrane potential (MMP) decrease. By Western blotting analysis, LGU significantly inhibited the OGD-induced increase in expressions of receptor-interacting serine/threonine-protein kinase 3 (RIP3) and mixed lineage kinase domain-like protein (MLKL). Moreover, molecular docking analysis showed that LGU might bind to RIP3 more stably and firmly than the RIP3 inhibitor GSK872. Immunofluorescence combined with confocal laser analyses disclosed that LGU inhibited the aggregation of MLKL to the nucleus. Our results suggest that LGU ameliorates OGD-induced rat primary cortical neuronal injury via the regulation of the RIP3/MLKL signaling pathway in vitro. In vivo, LGU was proven, for the first time, to protect the cerebral ischemia in a rat middle cerebral artery occlusion (MCAO) model, as shown by improved neurological deficit scores, infarction volume rate, and brain water content rate. The present study provides new insights into the therapeutic potential of LGU in cerebral ischemia.


Assuntos
Lesões Encefálicas , Glucuronídeos , Luteolina , Animais , Ratos , Infarto da Artéria Cerebral Média/tratamento farmacológico , Simulação de Acoplamento Molecular , Transdução de Sinais , Proteínas Quinases
9.
World J Diabetes ; 15(3): 361-377, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38591088

RESUMO

Diabetes, one of the world's top ten diseases, is known for its high mortality and complication rates and low cure rate. Prediabetes precedes the onset of diabetes, during which effective treatment can reduce diabetes risk. Prediabetes risk factors include high-calorie and high-fat diets, sedentary lifestyles, and stress. Consequences may include considerable damage to vital organs, including the retina, liver, and kidneys. Interventions for treating prediabetes include a healthy lifestyle diet and pharmacological treatments. However, while these options are effective in the short term, they may fail due to the difficulty of long-term implementation. Medications may also be used to treat prediabetes. This review examines prediabetic treatments, particularly metformin, glucagon-like peptide-1 receptor agonists, sodium glucose cotransporter 2 inhibitors, vitamin D, and herbal medicines. Given the remarkable impact of prediabetes on the progression of diabetes mellitus, it is crucial to intervene promptly and effectively to regulate prediabetes. However, the current body of research on prediabetes is limited, and there is considerable confusion surrounding clinically relevant medications. This paper aims to provide a comprehensive summary of the pathogenesis of pre-diabetes mellitus and its associated therapeutic drugs. The ultimate goal is to facilitate the clinical utilization of medications and achieve efficient and timely control of diabetes mellitus.

10.
Vet Sci ; 11(4)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38668411

RESUMO

The administered dose of dexmedetomidine may occasionally fail to produce the anticipated sedative effects. Therefore, a subsequent dose or administration of another sedative may enhance sedation; however, patient safety may be affected. The safety of seven different drugs administered at the following time point after an insufficient dose of dexmedetomidine was evaluated in a crossover, blind, experimental study that included six healthy adult cats. All cats received an initial dose of dexmedetomidine and a subsequent dose of either dexmedetomidine (Group DD), NS 0.9% (DC), tramadol (DT), butorphanol (DBT), buprenorphine (DBP), ketamine (DK), or midazolam (DM). Animal safety was assessed using repeated blood gas analysis and measurement of electrolytes, glucose, cardiac troponin I, and creatinine to evaluate cardiac, respiratory, and renal function. The median values of creatinine, cardiac troponin I, pH, partial pressure of carbon dioxide, potassium, and sodium did not change significantly throughout the study. Heart rate was significantly decreased in all groups after administration of the drug combinations, except for in the DK group. Respiratory rate decreased significantly after administration of the initial dose of dexmedetomidine and in the DBP and DM groups. The partial pressure of oxygen, although normal, decreased significantly after the administration of dexmedetomidine, whereas the median concentration of glucose increased significantly following the administration of dexmedetomidine. The results of our study suggest that the drug combinations used did not alter the blood parameters above normal limits, while cardiac and renal function were not compromised. Therefore, a safe level of sedation was achieved. However, the administration of dexmedetomidine reduced the partial pressure of oxygen; thus, oxygen supplementation during sedation may be advantageous. Additionally, the increase in glucose concentration indicates that dexmedetomidine should not be used in cats with hyperglycaemia, whereas the decrease in haematocrit suggests that dexmedetomidine is not recommended in anaemic cats.

11.
Nutrients ; 16(7)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38613008

RESUMO

Sn-2 palmitate is widely used in infant formula. However, little is known about its effects on metabolism and body composition in middle-aged and elderly adults. In a double-blinded, randomized controlled trial, we enrolled Chinese adults aged 45-75 years with self-reported constipation. Individuals were randomly assigned in a 1:1 ratio to a 1,3-dioleoyl-2-palmitoyl-glycerol (OPO)-enriched oil (66% palmitic acid in the sn-2 position) or a control vegetable oil (24% palmitic acid in the sn-2 position) daily for 24 weeks. Skim milk powder was used as the carrier for both fats. Interviews and body composition were performed at baseline, week 4, week 12 and week 24. A fasting blood draw was taken except at week 4. This study was a secondary analysis and considered exploratory. A total of 111 adults (83 women and 28 men, mean age 64.2 ± 7.0 years) were enrolled, of whom 53 were assigned to the OPO group and 57 to the control group. During the intervention, blood glucose, triglyceride, the triglyceride-glucose index, total cholesterol, low-density lipoprotein cholesterol and remnant cholesterol remained stable, while high-density lipoprotein cholesterol decreased in both groups (p = 0.003). No differences in change were observed between the groups (all p > 0.05). From baseline to week 24, the level of visceral fat increased slightly (p = 0.017), while body weight, total body water, protein, soft lean mass, fat-free mass, skeletal muscle and skeletal muscle mass index (SMI) decreased in two groups (p < 0.01). At weeks 4, 12 and 24, the SMI decreased less in the OPO group than in the control group, with a trend towards significance (p = 0.090). A 24-week daily intake of sn-2-palmitate-enriched oil had no adverse impact on fasting blood glucose, lipids and body composition compared with the control vegetable oil in Chinese adults (funded by Chinese Nutrition Society National Nutrition Science Research Grant, National Key Research and Development Program of China and Wilmar (Shanghai) Biotechnology Research & Development Center Co., Ltd.; ChiCTR1900026480).


Assuntos
Glicemia , Palmitatos , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Composição Corporal , China , HDL-Colesterol , Ácido Palmítico , Óleos de Plantas , Triglicerídeos , População do Leste Asiático
12.
Expert Opin Pharmacother ; 25(6): 641-654, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38660817

RESUMO

INTRODUCTION: Diabetic cardiomyopathy (DCM) is a serious complication of diabetes mellitus involving multiple pathophysiologic mechanisms. In addition to hypoglycemic agents commonly used in diabetes, metabolism-related drugs, natural plant extracts, melatonin, exosomes, and rennin-angiotensin-aldosterone system are cardioprotective in DCM. However, there is a lack of systematic summarization of drugs for DCM. AREAS COVERED: In this review, the authors systematically summarize the most recent drugs used for the treatment of DCM and discusses them from the perspective of DCM pathophysiological mechanisms. EXPERT OPINION: We discuss DCM drugs from the perspective of the pathophysiological mechanisms of DCM, mainly including inflammation and metabolism. As a disease with multiple pathophysiological mechanisms, the combination of drugs may be more advantageous, and we have discussed some of the current studies on the combination of drugs.


Assuntos
Cardiomiopatias Diabéticas , Hipoglicemiantes , Humanos , Cardiomiopatias Diabéticas/tratamento farmacológico , Cardiomiopatias Diabéticas/metabolismo , Animais , Hipoglicemiantes/uso terapêutico , Hipoglicemiantes/farmacologia , Cardiotônicos/uso terapêutico , Cardiotônicos/farmacologia , Quimioterapia Combinada , Fármacos Cardiovasculares/uso terapêutico , Extratos Vegetais/uso terapêutico , Extratos Vegetais/farmacologia
13.
Bot Stud ; 65(1): 8, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38446324

RESUMO

BACKGROUND: Dragon blood is a red fruit resin from the palm tree Daemonorops draco and is a herbal ingredient used in the traditional Chinese medicine, "Jinchuang Ointment," which is used to treat non-healing diabetic wounds. According to the Taiwan Herbal Pharmacopeia, the dracorhodin content in dragon blood should exceed 1.0%. RESULTS: Our findings indicate that dracorhodin and dragon blood crude extracts can stimulate glucose uptake in mouse muscle cells (C2C12) and primary rat aortic smooth muscle cells (RSMC). Dracorhodin is not the only active compound in dragon blood crude extracts from D. draco. Next, we orally administered crude dragon blood extracts to male B6 mice. The experimental group displayed a decreasing trend in fasting blood glucose levels from the second to tenth week. In summary, crude extracts of dragon blood from D. draco demonstrated in vivo hypoglycemic effects in B6 male mice. CONCLUSIONS: We provide a scientific basis "Jinchuang ointment" in treating non-healing wounds in patients with diabetes.

14.
Medicina (Kaunas) ; 60(3)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38541120

RESUMO

Background and Objectives: Diabetes mellitus is a chronic metabolic disease associated with several complications, including that of kidney disease. Plant-based dietary products have shown promise in mitigating these effects to improve kidney function and prevent tissue damage. This study assessed the possible favorable effects of beetroot extract (BE) in improving kidney function and preventing tissue damage in diabetic rats. Materials and Methods: Type 2 diabetes mellitus (T2DM) was induced using a low dose of streptozotocin (STZ). Both control and rats with pre-established T2DM were divided into six groups (each consisting of eight rats). All treatments were given by gavage and continued for 12 weeks. Fasting blood glucose levels, serum fasting insulin levels, Homeostatic Model Assessment for Insulin Resistance (HOMA-IR), serum triglycerides, cholesterol, low-density lipoprotein-cholesterol, serum and urinary albumin, and creatinine and urea levels were measured. Apart from this, glutathione, malondialdehyde, superoxide dismutase, tumor necrosis factor-α, and interleukine-6 in the kidney homogenates of all groups of rats were measured, and the histopathological evaluation of the kidney was also performed. Results: It was observed that treatment with BE increased body weight significantly (p ≤ 0.05) to be similar to that of control groups. Fasting glucose, insulin, HOMA-IR levels, and lipid profile in the plasma of the pre-established T2DM rats groups decreased to p ≤ 0.05 in the BE-treated rats as the BE concentration increased. Treatment with BE also improved the renal levels of oxidative stress and inflammatory markers, urinary albumin, and serum creatinine and urea levels. Unlike all other groups, only the kidney tissues of the T2DM + BE (500 mg/kg) rats group showed normal kidney tissue structure, which appears to be similar to those found in the kidney tissues of the control rats groups. Conclusion: we found that streptozotocin administration disturbed markers of kidney dysfunction. However, Beta vulgaris L. root extract reversed these changes through antioxidant, anti-inflammatory, and antiapoptotic mechanisms.


Assuntos
Beta vulgaris , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Ratos , Animais , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Beta vulgaris/metabolismo , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Metanol/farmacologia , Metanol/uso terapêutico , Estreptozocina , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Glicemia , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Antioxidantes/metabolismo , Insulina , Estresse Oxidativo , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Extratos Vegetais/química , Colesterol , Albuminas
15.
Int J Mol Sci ; 25(6)2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38542390

RESUMO

In arterial hypertension, the dysregulation of several metabolic pathways is closely associated with chronic immune imbalance and inflammation progression. With time, these disturbances lead to the development of progressive disease and end-organ involvement. However, the influence of cholecalciferol on metabolic pathways as a possible mechanism of its immunomodulatory activity in obesity-related hypertension is not known. In a phase 2, randomized, single-center, 24-week trial, we evaluated, as a secondary outcome, the serum metabolome of 36 age- and gender-matched adults with obesity-related hypertension and vitamin D deficiency, before and after supplementation with cholecalciferol therapy along with routine medication. The defined endpoint was the assessment of circulating metabolites using a nuclear magnetic resonance-based metabolomics approach. Univariate and multivariate analyses were used to evaluate the systemic metabolic alterations caused by cholecalciferol. In comparison with normotensive controls, hypertensive patients presented overall decreased expression of several amino acids (p < 0.05), including amino acids with ketogenic and glucogenic properties as well as aromatic amino acids. Following cholecalciferol supplementation, increases were observed in glutamine (p < 0.001) and histidine levels (p < 0.05), with several other amino acids remaining unaffected. Glucose (p < 0.05) and acetate (p < 0.05) decreased after 24 weeks in the group taking the supplement, and changes in the saturation of fatty acids (p < 0.05) were also observed, suggesting a role of liposoluble vitamin D in lipid metabolism. Long-term cholecalciferol supplementation in chronically obese and overweight hypertensives induced changes in the blood serum metabolome, which reflected systemic metabolism and may have fostered a new microenvironment for cell proliferation and biology. Of note, the increased availability of glutamine may be relevant for the proliferation of different T-cell subsets.


Assuntos
Hipertensão , Deficiência de Vitamina D , Adulto , Humanos , Colecalciferol/farmacologia , Colecalciferol/uso terapêutico , Glutamina/uso terapêutico , Glucose/uso terapêutico , Vitamina D/uso terapêutico , Obesidade/complicações , Obesidade/tratamento farmacológico , Suplementos Nutricionais , Deficiência de Vitamina D/complicações , Hipertensão/complicações , Hipertensão/tratamento farmacológico , Aminoácidos/metabolismo , Método Duplo-Cego
16.
Nutrients ; 16(6)2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38542695

RESUMO

This study aims to update the evidence and clarify whether cranberry possesses lipid-lowering and hypoglycemic properties in humans. PubMed, Web of Science, and Scopus were searched to identify relevant articles published up to December 2023. In total, 3145 publications were reviewed and 16 of them were included for qualitative synthesis and meta-analysis. Stata 15.0 and Review Manager 5.4 were applied for statistical analyses. The results revealed a significant decrease in the total cholesterol to high-density lipoprotein cholesterol ratio (TC/HDL-C) (MD = -0.24; 95% CI: -0.45, -0.04; peffect = 0.02) and homeostasis model assessment of insulin resistance (HOMA-IR) (MD = -0.59; 95% CI: -1.05, -0.14; peffect = 0.01) with cranberry consumption. However, it did not influence total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), triglyceride (TG), fasting blood glucose (FBG), glycated hemoglobin (HbA1c), and fasting insulin. In subgroup analysis, cranberry consumption in dried form (capsules, powder, and tablets) was found to significantly decrease the fasting insulin level (three studies, one hundred sixty-five participants, MD = -2.16; 95% CI: -4.24, -0.07; peffect = 0.04), while intervention duration, health conditions, and dosage of polyphenols and anthocyanins had no impact on blood lipid and glycemic parameters. In summary, cranberry might have potential benefits in regulating lipid and glucose profiles.


Assuntos
Vaccinium macrocarpon , Humanos , Antocianinas , Glicemia , HDL-Colesterol , Insulina , Lipídeos , Extratos Vegetais/farmacologia , Ensaios Clínicos Controlados Aleatórios como Assunto , Triglicerídeos
17.
Microb Cell Fact ; 23(1): 91, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38532467

RESUMO

BACKGROUND: Propionic acid fermentation from renewable feedstock suffers from low volumetric productivity and final product concentration, which limits the industrial feasibility of the microbial route. High cell density fermentation techniques overcome these limitations. Here, propionic acid (PA) production from glucose and a crude glycerol/glucose mixture was evaluated using Acidipropionibacterium acidipropionici, in high cell density (HCD) batch fermentations with cell recycle. The agro-industrial by-product, heat-treated potato juice, was used as N-source. RESULTS: Using 40 g/L glucose for nine consecutive batches yielded an average of 18.76 ± 1.34 g/L of PA per batch (0.59 gPA/gGlu) at a maximum rate of 1.15 gPA/L.h, and a maximum biomass of 39.89 gCDW/L. Succinic acid (SA) and acetic acid (AA) were obtained as major by-products and the mass ratio of PA:SA:AA was 100:23:25. When a crude glycerol/glucose mixture (60 g/L:30 g/L) was used for 6 consecutive batches with cell recycle, an average of 35.36 ± 2.17 g/L of PA was obtained per batch (0.51 gPA/gC-source) at a maximum rate of 0.35 g/L.h, and reaching a maximum biomass concentration of 12.66 gCDW/L. The PA:SA:AA mass ratio was 100:29:3. Further addition of 0.75 mg/L biotin as a supplement to the culture medium enhanced the cell growth reaching 21.89 gCDW/L, and PA productivity to 0.48 g/L.h, but also doubled AA concentration. CONCLUSION: This is the highest reported productivity from glycerol/glucose co-fermentation where majority of the culture medium components comprised industrial by-products (crude glycerol and HTPJ). HCD batch fermentations with cell recycling are promising approaches towards industrialization of the bioprocess.


Assuntos
Glucose , Glicerol , Propionatos , Propionibacteriaceae , Fermentação , Ácido Acético , Propionibacterium
18.
Nutrients ; 16(5)2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38474759

RESUMO

Inefficient glucose metabolism and decreased ATP production in the brain are linked to ageing, cognitive decline, and neurodegenerative diseases (NDDs). This study employed thermodynamic analysis to assess the effect of fish oil supplementation on glucose metabolism in ageing brains. Data from previous studies on glucose metabolism in the aged human brain and grey mouse lemur brains were examined. The results demonstrated that Omega-3 fish oil supplementation in grey mouse lemurs increased entropy generation and decreased Gibbs free energy across all brain regions. Specifically, there was a 47.4% increase in entropy generation and a 47.4 decrease in Gibbs free energy in the whole brain, indicating improved metabolic efficiency. In the human model, looking at the specific brain regions, supplementation with Omega-3 polyunsaturated fatty acids (n-3 PUFAs) reduced the entropy generation difference between elderly and young individuals in the cerebellum and particular parts of the brain cortex, namely the anterior cingulate and occipital lobe, with 100%, 14.29%, and 20% reductions, respectively. The Gibbs free energy difference was reduced only in the anterior cingulate by 60.64%. This research underscores that the application of thermodynamics is a comparable and powerful tool in comprehending the dynamics and metabolic intricacies within the brain.


Assuntos
Ácidos Graxos Ômega-3 , Óleos de Peixe , Humanos , Idoso , Óleos de Peixe/metabolismo , Glucose/metabolismo , Ácidos Graxos Ômega-3/metabolismo , Encéfalo/metabolismo , Dieta , Termodinâmica , Suplementos Nutricionais
19.
Plants (Basel) ; 13(5)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38475455

RESUMO

Aruncus spp. has been used as a traditional folk medicine worldwide for its anti-inflammatory, hemostatic, and detoxifying properties. The well-known species A. dioicus var. kamtschaticus has long been used for multifunctional purposes in Eastern Asia. Recently, it was reported that its extract has antioxidant and anti-diabetic effects. In this respect, it is likely that other Aruncus spp. possess various biological activities; however, little research has been conducted thus far. The present study aims to biologically identify active compounds against diabetes in the Korean endemic plant A. aethusifolius and evaluate the underlying mechanisms. A. aethusifolius extract enhanced glucose uptake without toxicity to C2C12 cells. A bioassay-guided isolation of A. aethusifolius yielded two pure compounds, and their structures were characterized as glycolipid derivatives, gingerglycolipid A, and (2S)-3-linolenoylglycerol-O-ß-d-galactopyranoside by an interpretation of nuclear magnetic resonance and high-resolution mass spectrometric data. Both compounds showed glucose uptake activity, and both compounds increased the phosphorylation levels of insulin receptor substrate 1 (IRS-1) and 5'-AMP-activated protein kinase (AMPK) and protein expression of peroxisome proliferator-activated receptor γ (PPARγ). Gingerglycolipid A docked computationally into the active site of IRS-1, AMPK1, AMPK2, and PPARγ (-5.8, -6.9, -6.8, and -6.8 kcal/mol).

20.
Plants (Basel) ; 13(5)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38475490

RESUMO

In the pursuit of identifying the novel resin glycoside modulators glucose-6-phosphatase and α-glucosidase enzymes, associated with blood sugar regulation, methanol-soluble extracts from the flowers of Ipomoea murucoides (cazahuate, Nahuatl), renowned for its abundance of glycolipids, were employed. The methanol-soluble extracts were fractionated by applying the affinity-directed method with glucose-6-phosphatase enzymes from a rat's liver and α-glucosidase enzymes from its intestines. Mass spectrometry and nuclear magnetic resonance were employed to identify the high-affinity compound as a free ligand following the release from the enzymatic complex. Gel permeation through a spin size-exclusion column allowed the separated high-affinity molecules to bind to glucose-6-phosphatase and α-glucosidase enzymes in solution, which led to the identification of some previously reported resin glycosides in the flowers of cazahuate, where a glycolipid mainly structurally related to murucoidin XIV was observed. In vitro studies demonstrated the modulating properties of resin glycosides on the glucose-6-phosphatase enzyme. Dynamic light scattering revealed conformational variations induced by resin glycosides on α-glucosidase enzyme, causing them to become more compact, akin to observations with the positive control, acarbose. These findings suggest that resin glycosides may serve as a potential source for phytotherapeutic agents with antihyperglycemic properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA