Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Gen Comp Endocrinol ; 350: 114477, 2024 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-38387532

RESUMO

Gonadotropin-inhibitory hormone (GnIH) was the first reported hypothalamic neuropeptide inhibiting reproduction in vertebrates. Since its discovery in the quail brain, its orthologs have been identified in a variety of vertebrate species and even protochordates. Depending on the species, the GnIH precursor polypeptides comprise two, three or four mature peptides of the RFamide family. It has been well documented that GnIH inhibits reproduction at the brain-pituitary-gonadal levels and participates in metabolism, stress response, and social behaviors in birds and mammals. However, most studies in fish have mainly been focused on the physiological roles of GnIH in the control of reproduction and results obtained are in some cases conflicting, leaving aside its potential roles in the regulation of other functions. In this manuscript we summarize the information available in fish with respect to the structural diversity of GnIH peptides and functional roles of GnIH in reproduction and other physiological processes. We also highlight the molecular mechanisms of GnIH actions on target cells and possible interactions with other neuroendocrine factors.


Assuntos
Gonadotropinas , Hormônios Hipotalâmicos , Animais , Gonadotropinas/metabolismo , Vertebrados/metabolismo , Peptídeos/metabolismo , Hipotálamo/metabolismo , Reprodução/fisiologia , Peixes/metabolismo , Mamíferos/metabolismo , Hormônios Hipotalâmicos/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo
2.
Amino Acids ; 54(8): 1135-1154, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35286462

RESUMO

GnRH-I and GnIH are the key neuropeptides that regulate the hypothalamic-pituitary-gonadal axis in mammals during aging. Polyamines are important aliphatic amines that are expressed in the brain and show variation with aging. The present study demonstrates evidence of variation in the level of expression of polyamines, GnRH-I and GnIH in the hypothalamus of female mice during aging. The study also suggests regulatory effects of polyamines over expression of the hypothalamic GnRH-I. The study shows a significant positive correlation between polyamines, its associated factors and GnRH-I along with significant negative correlation between polyamines, its associated factors and GnIH. This is the first study to report the effect of polyamines along with lactate or TNF-α or both on GnRH-I expression in GT1-7 cell line. TNF-α and lactate significantly decreased hypothalamic GnRH-I mRNA expression in GT1-7 cells when treated for 24 h. Polyamines (putrescine and agmatine) in contrast, significantly increased GnRH-I mRNA expression in GT1-7 cells when treated for 24 h. Also, polyamines increased GnRH-I mRNA expression when treated in presence of TNF-α or lactate thereby suggesting its neuro-protective role. This study also found 3809 differentially expressed genes through RNA-seq done between the hypothalamic GT1-7 cells treated with putrescine only versus TNF-α and putrescine. The present study suggests for the first time that putrescine treatment to TNFα-primed GT1-7 cells upregulates GnRH-I expression via regulation of several pathways such as calcium ion pathway, estrogen signaling, clock genes as well as regulating other metabolic process like neuronal differentiation and neurulation.


Assuntos
Poliaminas , Putrescina , Envelhecimento , Animais , Feminino , Hormônio Liberador de Gonadotropina/genética , Hormônio Liberador de Gonadotropina/metabolismo , Hipotálamo/metabolismo , Lactatos/metabolismo , Camundongos , Poliaminas/metabolismo , Putrescina/metabolismo , RNA Mensageiro/metabolismo , Roedores/genética , Roedores/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
3.
J Obstet Gynaecol Res ; 48(3): 568-575, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34979587

RESUMO

It is well known that undernourished conditions disturb female reproductive functions in many species, including humans. These alterations are mainly caused by a reduction in gonadotrophin-releasing hormone (GnRH) secretion from the hypothalamus. Evidence from the literature suggests that some hypothalamic factors play pivotal roles in the coordination of reproductive functions and energy homeostasis in response to environmental cues and internal nutritional status. Generally, anorexigenic/satiety-related factors, such as leptin, alpha-melanocyte-stimulating hormone, and proopiomelanocortin, promote GnRH secretion, whereas orexigenic factors, such as neuropeptide Y, agouti-related protein, orexin, and ghrelin, attenuate GnRH secretion. Conversely, gonadotrophin-inhibitory hormone, which exerts anti-GnRH and gonadotrophic effects, promotes feeding behavior in many species. In addition, the activity of kisspeptin, which is a potent stimulator of GnRH, is reduced by undernourished conditions. Under normal nutritional conditions, these factors are coordinated to maintain both feeding behavior and reproductive functions. However, in undernourished conditions their activity levels are markedly altered to promote feeding behavior and temporarily suppress reproductive functions, in order to prioritize the survival of the individual over that of the species.


Assuntos
Hormônio Liberador de Gonadotropina , Kisspeptinas , Feminino , Homeostase/fisiologia , Humanos , Hipotálamo/metabolismo , Kisspeptinas/fisiologia , Neuropeptídeo Y/metabolismo
4.
Photochem Photobiol Sci ; 21(2): 147-158, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35037197

RESUMO

Seasonal reproductive cycles of most birds are regulated by photoperiod via neuroendocrine control. The present study aims to investigate the role of a single long day in triggering hypothalamic expressions of GnRH-I and GnIH in the Eurasian tree sparrow (Passer montanus). Sparrows were divided into two groups (n = 24 each) and pre-treated under short days (9L: 15D) for 4 days. On the fifth day, one group was exposed to long day (14L: 10D), while other was continued under short day for another 1 day. Birds of both the groups were sacrificed and perfused on fifth day at different time points, i.e., ZT 14, ZT 16 and ZT 18 and the expressions of GnRH-I and GnIH mRNAs and peptides were studied using real-time PCR and immunohistochemistry, respectively. In addition, testicular size was measured to know testicular development. Observations revealed that birds exposed to a single long day (14L: 10D) showed an increase in hypothalamic expressions of GnRH-I mRNA and peptide and decrease in levels of GnIH mRNA only at ZT 16 and ZT 18 with no significant change in GnIH peptide. However, no significant change in GnRH-I or GnIH expression was observed at any time point under short day and birds maintained high and low expression levels of GnIH and GnRH-I, respectively. Our results clearly indicate that the photoperiodic response system of sparrow is highly sensitive to light and responds even to single long day. Furthermore, they suggest that the GnRH-I and GnIH are expressed in the hypothalamus of tree sparrow in an anti-phasic manner and switching over of their expression occurs at late hours of exposure of birds to single long day.


Assuntos
Pardais , Animais , Hormônio Liberador de Gonadotropina/metabolismo , Hipotálamo , Fotoperíodo , Reprodução/fisiologia , Pardais/genética
5.
Mol Biol Rep ; 48(2): 1837-1852, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33566226

RESUMO

A hypothalamic neuropeptide, RF-amide related peptide-3 (RFRP-3), the mammalian ortholog of the avian gonadotropin-inhibitory hormone (GnIH) has inhibitory signals for reproductive axis via G-protein coupled receptor 147 in mammals. Moreover, RFRP-3 has orexigenic action but the mechanism involved in energy homeostasis and glucose metabolism is not yet known. Though, the RFRP-3 modulates orexigenic action in co-operation with other neuropeptides, which regulates metabolic cues in the hypothalamus. Administration of GnIH/RFRP-3 suppresses plasma luteinizing hormone, at the same time stimulates feeding behavior in birds and mammals. Likewise, in the metabolically deficient conditions, its expression is up-regulated suggests that RFRP-3 contributes to the integration of energy balance and reproduction. However, in many other metabolic conditions like induced diabetes and high-fat diet obesity, etc. its role is still not clear while, RFRP-3 induces the glucose homeostasis by adipocytes is reported. The physiological role of RFRP-3 in metabolic homeostasis and the metabolic effects of RFRP-3 signaling in pharmacological studies need a detailed discussion. Further studies are required to find out whether RFRP-3 is associated with restricted neuroendocrine function observed in type II diabetes mellitus, aging, or sub-fertility. In this context, the current review is focused on the role of RFRP-3 in the above-mentioned mechanisms. Studies from search engines including PubMed, Google Scholar, and science.gov are included after following set inclusion/exclusion criteria. As a developing field few mechanisms are still inconclusive, however, based on the available information RFRP-3 seems to be a putative tool in future treatment strategies towards metabolic disease.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Metabolismo Energético/efeitos dos fármacos , Gonadotropinas/metabolismo , Hipotálamo/metabolismo , Neuropeptídeos/metabolismo , Reprodução/efeitos dos fármacos , Animais , Diabetes Mellitus Tipo 2/tratamento farmacológico , Metabolismo Energético/genética , Glucose/metabolismo , Homeostase/efeitos dos fármacos , Humanos , Neuropeptídeos/biossíntese , Neuropeptídeos/genética , Neuropeptídeos/farmacologia , Receptores de Neuropeptídeos/metabolismo , Reprodução/genética
6.
Front Neuroendocrinol ; 61: 100900, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33450199

RESUMO

The discovery of novel neurohormones is important for the advancement of neuroendocrinology. In early 1970s, gonadotropin-releasing hormone (GnRH), a hypothalamic neuropeptide that promotes gonadotropin release, was identified to be an endogenous neurohormone in mammals. In 2000, thirty years later, another hypothalamic neuropeptide, gonadotropin-inhibitory hormone (GnIH), that inhibits gonadotropin release, was found in quail. GnIH acts via GPR147 and inhibits gonadotropin release and synthesis and reproductive function in birds through actions on GnRH neurons in the hypothalamus and pituitary gonadotrophs. Later, GnIH was found in other vertebrates including humans. GnIH studies have advanced the progress of reproductive neuroendocrinology. Furthermore, recent GnIH studies have indicated that abnormal changes in GnIH expression may cause pubertal disorder and reproductive dysfunction. Here, we describe GnIH discovery and its impact on the progress of reproductive neuroendocrinology. This review also highlights advancement and perspective of GnIH studies on drug development for pubertal disorder and reproductive dysfunction. (149/150).


Assuntos
Hormônios Hipotalâmicos , Animais , Hormônio Liberador de Gonadotropina/metabolismo , Gonadotropinas , Humanos , Hipotálamo/metabolismo , Neurotransmissores
7.
Gen Comp Endocrinol ; 295: 113519, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32470473

RESUMO

Wild animals are brought into captivity for many reasons. However, unlike laboratory-bred animals, wild caught animals often respond to the dramatic shift in their environment with physiological changes in the stress and reproductive pathways. Using wild-caught male and female house sparrows (Passer domesticus) we examined how time in captivity affects the expression of reproductive and stress-associated genes in the brain, specifically, the hypothalamus. We quantified relative mRNA expression of a neurohormone involved in the stress response (corticotropin releasing hormone [CRH]), a hypothalamic inhibitor of reproduction (gonadotropin inhibitory hormone [GnIH]), and the glucocorticoid receptor (GR), which is important in terminating the stress response. To understand potential shifts at the cellular level, we also examined the presence of hypothalamic GnIH (GnIH-ir) using immunohistochemistry. We hypothesized that expression of these genes and the abundance of cells immunoreactive for GnIH would change in response to time in captivity as compared to free-living individuals. We found that GR mRNA expression and GnIH-ir cell abundance increased after 24 and 45 days in captivity, as compared to wild-caught birds. At 66 days in captivity, GR expression and GnIH cell abundance did not differ from wild-caught birds, suggesting birds had acclimated to captivity. Evaluation of CRH and GnIH mRNA expression yielded similar trends, though they were not statistically significant. In addition, although neuroendocrine factors appeared to acclimate to captivity, a previous study indicated that corticosterone release and immune responses of these same birds did not acclimate to captivity, suggesting that neuroendocrine endpoints may adapt more rapidly to captivity than downstream physiological measures. These data expand our understanding of the physiological shifts occurring when wild animals are brought into captivity.


Assuntos
Hipotálamo/fisiologia , Sistemas Neurossecretores/metabolismo , Reprodução/fisiologia , Pardais/fisiologia , Estresse Fisiológico , Animais , Corticosterona/metabolismo , Hormônio Liberador da Corticotropina/genética , Hormônio Liberador da Corticotropina/metabolismo , Feminino , Regulação da Expressão Gênica , Gônadas/anatomia & histologia , Hormônios Hipotalâmicos/metabolismo , Masculino , Tamanho do Órgão , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Pardais/genética
8.
J Exp Zool A Ecol Integr Physiol ; 333(4): 214-229, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32039555

RESUMO

The gonadotropin-releasing hormone-gonadotropin inhibitor (GnRH-GnIH) system in the hypothalamus of mammals is the key factor that controls the entire reproductive system. The aim of this study was to immunolocalize GnIH (RFRP-3) in the hypothalamus during the estrous cycle and to study the effect of putrescine on the expression of GnRH-I and GnIH through both in vivo and in vitro (GT1-7 cells) approach and the circulatory levels of GnRH-I, GnIH, and gonadotropins were also investigated. The study also aims in analyzing all the immunofluorescence images by measuring the relative pixel count of an image. This study showed the effect of putrescine on the morphology of ovary, uterus, and the expression of the steroidogenic acute regulatory protein in the ovary. This study showed GnIH expression was intense during the diestrus and moderate during proestrus and estrus, whereas mild staining during the metestrus. The study further showed that putrescine supplementation to adult female rats increased both GnRH-I expression in the hypothalamus as well as the GnRH-I levels in circulation. The study, for the first time, also showed that putrescine supplementation decreased the expression and release of GnIH. These effects of upregulating GnRH-I expression and downregulating GnIH expression were confirmed by in vitro experiments using GT1-7 cells. Putrescine supplementation also increased the gonadotropin levels in the serum. To summarize, putrescine can regulate the hypothalamic-pituitary-gonadal axis by increasing the GnRH-I, luteinizing hormone, and follicle-stimulating hormone levels and suppressing GnIH levels. This is the first report showing the simultaneous effects of putrescine on the regulation of both GnRH-I and GnIH in the hypothalamus.


Assuntos
Glicoproteínas/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Hormônios Hipotalâmicos/metabolismo , Hipotálamo/fisiologia , Putrescina/farmacologia , Animais , Linhagem Celular , Ciclo Estral/efeitos dos fármacos , Ciclo Estral/fisiologia , Feminino , Hormônio Foliculoestimulante , Regulação da Expressão Gênica/efeitos dos fármacos , Glicoproteínas/genética , Hormônio Liberador de Gonadotropina/genética , Hormônios Hipotalâmicos/genética , Hormônio Luteinizante , Neurônios/metabolismo , Ovário/efeitos dos fármacos , Transporte Proteico , Ratos , Ratos Wistar , Útero/efeitos dos fármacos
9.
Reprod Sci ; 26(9): 1249-1255, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30458681

RESUMO

Kisspeptin, encoded by the Kiss-1 gene, plays a crucial role in reproductive function by governing the hypothalamic-pituitary-gonadal axis. The recently established Kiss-1-expressing cell model mHypoA-50 displays characteristics of neuronal cells of the anteroventral periventricular (AVPV) region of the mouse hypothalamus. Because Kiss-1 gene expression in these cells is upregulated by estradiol (E2), mHypoA-50 cells are regarded as a valuable model for the study of Kiss-1-expressing neurons in the AVPV region. These cells also express RFamide-related peptide-3 (RFRP-3), a mammalian homolog of gonadotropin inhibitory hormone. The RFRP-3 expression in mHypoA-50 cells was increased by melatonin stimulation. In addition, E2 stimulation increased RFRP-3 expression in these cells. Treatment of the mHypoA-50 cells with exogenous RFRP-3 resulted in the increase of Kiss-1 messenger RNA expression within the cells; however, RFRP-3 did not modify gonadotropin-releasing hormone or kisspeptin-induced Kiss-1 gene expression in these cells. In addition, we found that RFRP-3 stimulation increased the expression of corticotropin-releasing hormone, which may be involved in E2-induced positive feedback in mHypoA-50 cells. Our observations suggest that RFRP-3 might be involved in positive feedback regulation by directly or indirectly increasing Kiss-1 gene expression.


Assuntos
Regulação da Expressão Gênica , Hipotálamo/metabolismo , Kisspeptinas/metabolismo , Neurônios/metabolismo , Neuropeptídeos/metabolismo , Animais , Linhagem Celular , Hormônio Liberador da Corticotropina/metabolismo , Estradiol/farmacologia , Hipotálamo/efeitos dos fármacos , Kisspeptinas/genética , Melatonina/farmacologia , Camundongos , Neurônios/efeitos dos fármacos , Neuropeptídeos/genética , Neuropeptídeos/farmacologia , Receptores de Neuropeptídeos/genética , Receptores de Neuropeptídeos/metabolismo
10.
Neuropeptides ; 71: 90-96, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30220422

RESUMO

Heat stress is an issue of rising concern across the globe. Recently, we found that mRNA expression of gonadotropin-inhibitory hormone (GnIH), an orexigenic neuropeptide, was increased in the heat-exposed chick brain when food intake was reduced. The aim of the current study was to examine mRNA expression of GnIH and of the glucocorticoid receptors (GRs) in the hypothalamus as well as the plasma corticosterone (CORT) and metabolites in 14-d-old chicks exposed to a high ambient temperature (HT; 40 ±â€¯1 °C for 1 or 5 h) or a control thermoneutral temperature (CT; 30 ±â€¯1 °C), either with free access to food or fasted. Heat stress caused a voluntary reduction of food intake and reduced plasma triacylglycerol concentration, but increased rectal temperature and plasma CORT and glucose concentrations (P < 0.05). Heat stress also increased (P < 0.05) the expression of diencephalic GnIH mRNA in chicks when they reduced food intake voluntarily, but did not do so under fasting conditions. Although the expression of GR mRNA was not altered as a result of heat stress, its expression was decreased (P < 0.05) in fasted chicks at 5 h in comparison with fed chicks. In addition, the rectal temperature of fasted chicks was lower than that of fed chicks under both CT and HT. In conclusion, voluntary reduction of food intake caused an increase in brain GnIH mRNA expression, plasma CORT, and body temperature in chicks under heat stress. Interestingly, brain GnIH mRNA expression was not induced by heat stress in fasted chicks and was not accompanied by a decrease in rectal temperature. These results suggest that the increased expression of brain GnIH mRNA in chicks under heat stress could be a consequence of a mechanism mediated by the voluntary reduction of food intake, but that it is not a consequence of fasting.


Assuntos
Proteínas Aviárias/metabolismo , Ingestão de Alimentos/fisiologia , Jejum/metabolismo , Temperatura Alta , Hormônios Hipotalâmicos/metabolismo , Hipotálamo/metabolismo , Animais , Proteínas Aviárias/genética , Galinhas , Hormônios Hipotalâmicos/genética , Masculino , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
11.
J Neuroendocrinol ; 30(7): e12597, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29624758

RESUMO

At the turn of the millennium, a neuropeptide with pronounced inhibitory actions on avian pituitary gonadotrophin secretion was identified and named gonadotrophin-inhibitory hormone (GnIH). Across bird species, GnIH acts at the level of the pituitary and the gonadotrophin-releasing hormone (GnRH) neuronal system to inhibit reproduction. Subsequent to this initial discovery, orthologues of GnIH have been identified and characterised across a broad range of species. In many vertebrates, the actions of GnIH and its orthologues serve functional roles analogous to those seen in birds. In other cases, GnIH and its orthologues exhibit more diverse actions dependent on sex, species, season and reproductive condition. The present review highlights the discovery and functional implications of GnIH across species, focusing on research domains in which the significance of this neuropeptide has been explored most.


Assuntos
Hormônios Hipotalâmicos/metabolismo , Hipotálamo/metabolismo , Reprodução/fisiologia , Estresse Psicológico/metabolismo , Animais , Aves , Mamíferos
12.
Exp Gerontol ; 108: 7-17, 2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29580815

RESUMO

The complex physiology of aging involves a number of molecular and biochemical events, manifested as signs of senescence. Japanese quail is a very unique and advantageous model to study the signs and symptoms of senescence in the central and peripheral modules of HPG axis. In the present study, we have investigated the age dependent variations in hypothalamic deep brain photoreceptors (DBPs), central GnRH-I/II-GnIH-Mel1cR system, testicular GnRH-GnIH system, testicular steroidogenic genes and proteins, androgen receptor (AR) and serum testosterone level in quail of different age groups [3-wk (sexually immature), 6-wk (sexually mature and crossed the puberty), 16-wk (adult, sexually active and showing full breeding phase) and 144-wk (aged)]. Findings of our present study showed the differential expression of these genes/proteins in quail of different age groups. The low levels of the DBPs, GnRH-I, GnIH, Mel1cR in hypothalamus and GnRH-II in midbrain, significantly decreased testicular GnRH/GnRH-R-GnIH, steroidogenic genes/proteins and serum testosterone were observed in immature quail. The significantly increased expression of opsins in the DBPs, GnRH-I, GnIH, Mel1cR in hypothalamus and GnRH-II in midbrain influences the testicular GnRH-GnIH and stimulate the testicular steroidogenesis in mature and adult quail. In aged quail, the significantly decreased levels of hypothalamic DBPs, GnRH-I, GnIH, Mel1cR and midbrain GnRH-II modulates the testicular GnRH-GnIH and further suppresses the genes/proteins involved in steroidogenesis and results in reduced serum testosterone. Hence, it can be concluded from our findings that the testicular steroidogenesis and its neuroendocrine regulation varies with age, in Japanese quail.


Assuntos
Coturnix/fisiologia , Hormônio Liberador de Gonadotropina/metabolismo , Hormônios Hipotalâmicos/metabolismo , Hipotálamo/metabolismo , Proteínas Opsonizantes/metabolismo , Testículo/fisiologia , Envelhecimento/fisiologia , Animais , Atrofia/metabolismo , Atrofia/patologia , Imunofluorescência , Hormônio Liberador de Gonadotropina/genética , Hormônios Hipotalâmicos/genética , Masculino , Melatonina/metabolismo , Microscopia Confocal , Opsinas/genética , Opsinas/metabolismo , Proteínas Opsonizantes/genética , Fotoperíodo , Reprodução , Testículo/patologia , Testosterona/sangue
13.
Gynecol Endocrinol ; 34(1): 73-77, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28604137

RESUMO

To clarify the direct effects of androgens, the changes in the hypothalamic levels of reproductive and appetite regulatory factors induced by chronic dihydrotestosterone (DHT) administration were evaluated in female rats. DHT treatment increased the BW and food intake of the ovariectomized rats, but not the estradiol (E2)-treated rats. DHT administration suppressed the expression of a hypothalamic anorexigenic factor. Although the kisspeptin (Kiss1) mRNA levels of the anterior hypothalamic block (the anteroventral periventricular nucleus, AVPV) were increased in the E2-treated rats, DHT administration did not affect the Kiss1 mRNA levels of the AVPV in the ovariectomized or E2-treated rats. Conversely, DHT administration reduced the Kiss1 mRNA levels of the posterior hypothalamic block (the arcuate nucleus, ARC) in the ovariectomized rats. Although the Kiss1 mRNA levels of the posterior hypothalamic block (ARC) were decreased in the E2-treated rats, DHT administration did not affect the Kiss1 mRNA levels of the ARC in these rats. Serum luteinizing hormone levels of these groups exhibited similar patterns to the Kiss1 mRNA levels of the ARC. These results showed that DHT affects the production of hypothalamic reproductive and appetite regulatory factors, and that these effects of DHT differ according to the estrogen milieu.


Assuntos
Peso Corporal/efeitos dos fármacos , Di-Hidrotestosterona/administração & dosagem , Estradiol/administração & dosagem , Ovariectomia , Reprodução/efeitos dos fármacos , Animais , Núcleo Arqueado do Hipotálamo/química , Núcleo Arqueado do Hipotálamo/efeitos dos fármacos , Núcleo Arqueado do Hipotálamo/metabolismo , Ingestão de Alimentos/efeitos dos fármacos , Feminino , Hipotálamo/química , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Kisspeptinas/genética , RNA Mensageiro/análise , Ratos , Ratos Wistar
14.
Physiol Behav ; 190: 43-60, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28624479

RESUMO

We tested the hypothesis that the effects of food restriction on behavioral motivation are mediated by one or both of the RFamide peptides, RFamide-related peptide-3 (RFRP-3) and kisspeptin (Kp) in female Syrian hamsters (Mesocricetus auratus). Female hamsters fed ad libitum and given a choice between food and adult male hamsters are highly motivated to visit males instead of food on all four days of the estrous cycle, but after 8days of mild food restriction (75% of ad libitum intake) they shift their preference toward food every day of the estrous cycle until the day of estrus, when they shift their preference back toward the males. In support of a role for RFRP-3 in these behavioral changes, the preference for food and the activation of RFRP-3-immunoreactive (Ir) cells in the dorsomedial hypothalamus (DMH) showed the same estrous cycle pattern in food-restricted females, but no association was observed between behavior and the activation of Kp cells in the hypothalamic arcuate nucleus or preoptic area. Next, we tested the hypothesis that food-restriction-induced activation of RFRP-3-Ir cells is modulated by high levels of ovarian steroids at the time of estrus. In support of this idea, on nonestrous days, mild food restriction increased activation of RFRP-3-Ir cells, but failed to do so on the day of estrus even though this level of food restriction did not significantly decrease circulating concentrations of estradiol or progesterone. Furthermore, in ovariectomized females, food-restriction-induced increases in activation of RFRP-3-Ir cells were blocked by systemic treatment with progesterone alone, estradiol plus progesterone, but not estradiol alone. Central infusion with RFRP-3 in ad libitum-fed females significantly decreased sexual motivation and produced significant increases in 90-minute food hoarding, in support of the hypothesis that elevated central levels of RFRP-3 are sufficient to create the shift in behavioral motivation in females fed ad libitum. Together, these results are consistent with the hypothesis that high levels of ingestive motivation are promoted during the nonfertile phase of the estrous cycle by elevated activation of RFRP-3-Ir cells, and RFRP-3-Ir cellular activation is modulated by ovarian steroids around the time of estrus, thereby diverting attention away from food and increasing sexual motivation.


Assuntos
Ciclo Estral/fisiologia , Privação de Alimentos/fisiologia , Kisspeptinas/fisiologia , Motivação/fisiologia , Neuropeptídeos/fisiologia , Animais , Restrição Calórica , Cricetinae , Estradiol/sangue , Estradiol/farmacologia , Feminino , Hipotálamo/metabolismo , Masculino , Mesocricetus , Microinjeções , Neuropeptídeos/metabolismo , Neuropeptídeos/farmacologia , Ovariectomia , Progesterona/sangue , Progesterona/farmacologia
15.
J Photochem Photobiol B ; 175: 254-268, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28923598

RESUMO

Birds time their daily and seasonal activities in synchronization with circadian and annual periodicities in the environment, which is mainly provided by changes in photoperiod/day length conditions. Photoperiod appears to act at the level of eye, pineal and encephalic/deep brain photoperception and thus entrain the hypothalamic clock as well as reproductive circuitry in different avian species. In this article our focus of study is to elucidate out the underlying molecular mechanism of modulation of the hypothalamic reproductive circuitry following the photoperception through the hypothalamic photoreceptor cells and the subsequent alteration in the reproductive responses in quail, kept under different simulated photoperiodic conditions. Present study investigated the different simulated photoperiodic conditions induced hypothalamic DBP-GnRH-GnIH system mediated translation of photoperiodic information and subsequent exhibition of differential photosexual responses (scoto-/photo-sensitivity and refractoriness) in Japanese quail, Coturnix coturnix japonica. Paired testes weight and paired testicular volume increased 15.9 and 22.6-fold respectively in scotorefractory quail compare to that of scotosensitive phase and 12.8 and 24.3-fold in photosensitive quail compare to that of photorefractory phase. The pineal/eye melatonin (through melatonin receptor subtype Mel1cR) and hypothalamic deep brain photoreceptor (DBPs) cells directly modulate the hypothalamic GnRH-I/II and GnIH system and thus exhibit testicular stimulation or regression in response to different photoperiodic conditions (PS, PR, SS and SR). The hypothalamic alteration of DBP(s) and GnRH-GnIH system thus may induce the testicular stimulation in PS and SR quail and testicular regression in SS and PR quail.


Assuntos
Hormônio Liberador de Gonadotropina/metabolismo , Hormônios Hipotalâmicos/metabolismo , Hipotálamo/metabolismo , Codorniz/fisiologia , Reprodução/fisiologia , Testículo/fisiologia , Animais , Atrofia/metabolismo , Atrofia/patologia , Hormônio Liberador de Gonadotropina/genética , Hormônios Hipotalâmicos/genética , Processamento de Imagem Assistida por Computador , Masculino , Melatonina/metabolismo , Microscopia Confocal , Opsinas/genética , Opsinas/metabolismo , Fotoperíodo , Células Fotorreceptoras/metabolismo , Testículo/patologia , Testosterona/sangue
16.
J Neuroendocrinol ; 29(5)2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28295740

RESUMO

To study the mechanism by which monochromatic light affects gonadotrophin-releasing hormone (GnRH) expression in chicken hypothalamus, a total of 192 newly-hatched chicks were divided into intact, sham-operated and pinealectomy groups and exposed to white (WL), red (RL), green (GL) and blue (BL) lights using a light-emitting diode system for 2 weeks. In the GL intact group, the mRNA and protein levels of GnRH-I in the hypothalamus, the mean cell area and mean cell optical density (OD) of GnRH-I-immunoreactive (-ir) cells of the nucleus commissurae pallii were decreased by 13.2%-34.5%, 5.7%-39.1% and 9.9%-17.3% compared to those in the chicks exposed to the WL, RL and BL, respectively. GL decreased these factors related to GnRH-I expression and the effect of GL was not observed in pinealectomised birds. However, the mRNA and protein levels of hypothalamic gonadotrophin-inhibitory hormone (GnIH) and GnIH receptor (GnIHR), the mean cell area and mean cell OD of the GnIH-ir cells of the paraventricularis magnocellularis, and the plasma melatonin concentration in the chicks exposed to GL were increased by 18.6%-49.2%, 21.1%-60.0% and 8.6%-30.6% compared to the WL, RL and BL intact groups, respectively. The plasma melatonin concentration showed a negative correlation with GnRH-I protein and a positive correlation with GnIH and GnIHR proteins. Protein expression of both GnRH-I and GnIHR showed a negative correlation in the hypothalamus. After pinealectomy, GnRH-I expression increased, whereas plasma melatonin concentration, GnIH and GnIHR expression decreased, and there were no significant differences among the WL, RL, GL and BL groups. Double-labelled immunofluorescence showed that GnIH axon terminals were near GnRH-I neurones, some GnRH-I neurones coexpressed with GnIHR and GnIH neurones coexpressed with melatonin receptor subtype quinone reductase 2. These results demonstrate that green light inhibits GnRH-I expression by increasing melatonin secretion and stimulating melatonin receptor-GnIH-GnIH receptor pathway in the chick brain.


Assuntos
Proteínas Aviárias/metabolismo , Hormônios Hipotalâmicos/metabolismo , Hipotálamo/metabolismo , Melatonina/metabolismo , Animais , Galinhas , Luz , Masculino , Melatonina/sangue , Fibras Nervosas/metabolismo , Neurônios/metabolismo , Transdução de Sinais/fisiologia
17.
Mol Neurobiol ; 54(10): 8447-8457, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-27957681

RESUMO

The neurobiological mechanism of puberty onset in primates is currently only partly understood. A recent study reported an important role of Dmx-like 2 (DMXL2), a gene encoding rabconnectin-3α vesicular protein, in human subjects with mental retardation and neuroendocrine impairment of reproduction. To further characterize the potential role of DMXL2 in the regulation of reproduction, we analyzed the expression of DMXL2 in hypothalami of newborn, infantile, juvenile, pubertal, and postpubertal female and male common marmoset monkeys. Additionally, as the relative hypothalamic levels of gonadotropin-inhibitory hormone (GnIH) transcript during postnatal development are unknown in primates, we also quantified messenger RNA (mRNA) levels of RFRP, a gene encoding GnIH. Moreover, the transcript levels of kisspeptin, a well-known regulator of the hypothalamic neurohormonal axis controlling reproduction, were also checked. Transcript and protein levels of DMXL2 and Kiss1 transcript levels increase from the newborn to the infantile and from the juvenile (prepubertal) to the pubertal and the postpubertal period. We also noted a clear upsurge in RFRP transcript levels in the prepubertal period. In conclusion, the hypothalamic expressions of Kiss1 and DMXL2 mRNA increase during infantile, pubertal, and adult stages compared to newborn and juvenile stages in common marmoset monkeys. In contrast, the expression of RFRP mRNA upsurges in juvenile monkeys. Further mechanistic studies are needed to characterize the potential inhibitory role of the GnIH-GPR147 signaling in the prepubertal period and the role of DMXL2 in the molecular cascade regulating the neuroendocrine reproductive axis in primates.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/biossíntese , Hormônios Hipotalâmicos/biossíntese , Hipotálamo/crescimento & desenvolvimento , Hipotálamo/metabolismo , Kisspeptinas/biossíntese , Proteínas do Tecido Nervoso/biossíntese , Proteínas Adaptadoras de Transdução de Sinal/genética , Fatores Etários , Animais , Animais Recém-Nascidos , Callithrix , Feminino , Expressão Gênica , Hormônios Hipotalâmicos/genética , Kisspeptinas/genética , Masculino , Proteínas do Tecido Nervoso/genética , Primatas
18.
Neuropeptides ; 59: 9-20, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27255391

RESUMO

The physiology of reproduction is very complex and is regulated by multiple factors, including a number of hypothalamic neuropeptides. In last few decades, various neuropeptides have been discovered to be involved in stimulation or inhibition of reproduction. In 2000, Tsutsui and colleagues uncovered gonadotropin-inhibitory hormone (GnIH), a neuropeptide generating inhibitory drive to the reproductive axis, in the brain of Coturnix quail. Afterward, GnIH orthologs were discovered in other vertebrates from fish to mammals including human. In these vertebrates, all the discovered GnIH and its ortholgs have LPXRFamide (X=L or Q) sequence at C-terminus. GnIH orthologs of mammals and primates are also termed as RFamide-related peptide (RFRP)-1 and -3 that too have an LPXRFamide (X=L or Q) motif at their C-terminus. GnIH and its orthologs form a member of the RFamide peptide family. GnIH signals via its canonical G protein coupled receptor 147 (GPR147). Both GnIH and GPR147 are expressed in hypothalamus and other brain regions. Besides actions through the hypothalamic GnRH and kisspeptinergic neurons, GnIH-GPR147 signaling exerts inhibitory effect on the reproductive axis via pituitary gonadotropes and directly at gonadal level. Various factors including availability and quality of food, photoperiod, temperature, social interaction, various stresses and some diseases modulate GnIH-GPR147 signaling. In this review, we have discussed expression and actions of GnIH and its orthologs in vertebrates. Special emphasis is given on the role of GnIH-GPR147 signaling pathway in the regulation of reproduction. We have also reviewed and discussed currently available literature on the participation of GnIH-GPR147 signaling pathway in the stress modulation of reproduction.


Assuntos
Hormônios Hipotalâmicos/metabolismo , Hipotálamo/metabolismo , Neuropeptídeos/metabolismo , Reprodução/fisiologia , Animais , Coturnix , Feminino , Humanos , Neurônios/metabolismo , Hipófise/metabolismo , Transdução de Sinais/fisiologia
19.
Biochem Biophys Res Commun ; 475(2): 189-93, 2016 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-27208779

RESUMO

The present study aimed to determine the relationship between melatonin and gonadotropin-inhibitory hormone (GnIH) and their effect on reproduction in cinnamon clownfish, Amphiprion melanopus. Accordingly, we investigated the expression pattern of GnIH, GnIH receptor (GnIH-R), and melatonin receptor (MT-R1) mRNA and protein, as well as the plasma levels of melatonin, during sex change in cinnamon clownfish. We found that GnIH and MT-R1 mRNA and melatonin activity were higher in fish with mature brain than in fish with developing gonads, and using double immunofluorescence staining, we found that both GnIH and MT-R1 proteins were co-expressed in the hypothalamus of cinnamon clownfish. These findings support the hypothesis that melatonin plays an important role in the negative regulation of maturation and GnIH regulation during reproduction.


Assuntos
Proteínas de Peixes/metabolismo , Hormônios Hipotalâmicos/metabolismo , Melatonina/metabolismo , Perciformes/crescimento & desenvolvimento , Receptores de Melatonina/metabolismo , Comportamento Sexual Animal , Animais , Feminino , Proteínas de Peixes/análise , Proteínas de Peixes/genética , Regulação da Expressão Gênica no Desenvolvimento , Hormônios Hipotalâmicos/análise , Hormônios Hipotalâmicos/genética , Hipotálamo/crescimento & desenvolvimento , Hipotálamo/metabolismo , Masculino , Melatonina/análise , Melatonina/sangue , Melatonina/genética , Perciformes/sangue , Perciformes/metabolismo , RNA Mensageiro/genética , Receptores de Melatonina/análise , Receptores de Melatonina/genética , Desenvolvimento Sexual
20.
Gen Comp Endocrinol ; 230-231: 67-75, 2016 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-27038875

RESUMO

Present study examined the expression of brain peptides associated with the reproduction and energy homeostasis (GnRH/GnIH, NPY/VIP), and assessed their possible functional association in the photosensitive (non-breeding, pre-breeding), photostimulated (breeding) and photorefractory (post-breeding) migratory redheaded buntings (Emberiza bruniceps), using double-labeled immunohistochemistry. Particularly, we measured immunoreactive (-ir) cell numbers, per cent cell area and cell optical density (OD) in the preoptic area (GnRH-I), midbrain (GnRH-II), paraventricular nucleus (GnIH), dorsomedial hypothalamus, DMH and infundibular complex, INc (NPY and VIP), and lateral septal organ (VIP) of buntings kept under natural photoperiods at the wintering latitude (26°55'N). There was a significant seasonal difference in GnRH-I, not GnRH-II, with reduced -ir cells in the photosensitive and photorefractory buntings, and notably with increased cell OD between the refractory and non-breeding states with no increase in testis size. Also, increased cell OD of GnIH neurons in non-breeding state indicated its role in the maintenance of small testes during the post-refractory period. Overall, seasonal changes in GnRH-I and GnIH were found consistent with their suggested roles in reproductive regulation of absolute photorefractory birds. Further, there was a significant seasonal change in cell OD of NPY neurons in DMH, not the INc. In contrast, VIP immunoreactivity was seasonally altered, with a significantly higher VIP-ir cells in breeding than the pre-breeding state. Finally, close proximity between perikarya with fibres suggested functional interactions between the GnRH and GnIH, and NPY and VIP. Thus, seasonal plasticity of brain peptides is perhaps the part of neural regulation of seasonal reproduction and associated energy homeostasis in migratory songbirds.


Assuntos
Encéfalo/metabolismo , Encéfalo/efeitos da radiação , Metabolismo Energético/efeitos da radiação , Hormônio Liberador de Gonadotropina/análogos & derivados , Homeostase/efeitos da radiação , Precursores de Proteínas/metabolismo , Reprodução/fisiologia , Aves Canoras/fisiologia , Migração Animal/efeitos da radiação , Animais , Encéfalo/citologia , Hormônio Liberador de Gonadotropina/metabolismo , Hipotálamo/citologia , Hipotálamo/metabolismo , Hipotálamo/efeitos da radiação , Imuno-Histoquímica , Masculino , Neurônios/metabolismo , Fotoperíodo , Área Pré-Óptica/citologia , Área Pré-Óptica/metabolismo , Área Pré-Óptica/efeitos da radiação , Reprodução/efeitos da radiação , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA