Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 890
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
Environ Geochem Health ; 46(5): 172, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38592578

RESUMO

Advancement in bioinspired alloy nanomaterials has a crucial impact on fuel cell applications. Here, we report the synthesis of PtPd alloy nanoclusters via the hydrothermal method using Piper longum extract, representing a novel and environmentally friendly approach. Physicochemical characteristics of the synthesized nanoclusters were investigated using various instrumentation techniques, including X-ray photoelectron spectroscopy, X-ray diffraction, and High-Resolution Transmission electron microscopy. The electrocatalytic activity of the biogenic PtPd nanoclusters towards the oxidation of formic acid and methanol was evaluated chronoamperometry and cyclic voltammetry studies. The surface area of the electrocatalyst was determined to be 36.6 m2g-1 by Electrochemical Surface Area (ECSA) analysis. The biologically inspired PtPd alloy nanoclusters exhibited significantly higher electrocatalytic activity compared to commercial Pt/C, with specific current responses of 0.24 mA cm - 2 and 0.17 mA cm - 2 at synthesis temperatures of 180 °C and 200 °C, respectively, representing approximately four times higher oxidation current after 120 min. This innovative synthesis approach offers a promising pathway for the development of PtPd alloy nanoclusters with enhanced electrocatalytic activity, thereby advancing fuel cell technology towards a sustainable energy solution.


Assuntos
Formiatos , Metanol , Piper , Ligas , Extratos Vegetais
2.
Sci Rep ; 14(1): 8406, 2024 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600150

RESUMO

The aim of this work was to synthesize a green nanoparticle SnCuO@FeO nanocomposite core-shell to break oily water emulsions during petroleum-enhancing production processes as an alternative to chemical and physical processes. In this study, eight bacterial isolates (MHB1-MHB8) have been isolated from tree leaves, giant reeds, and soil samples. The investigation involved testing bacterial isolates for their ability to make FeO nanoparticles and choosing the best producers. The selected isolate (MHB5) was identified by amplification and sequencing of the 16S rRNA gene as Bacillus paramycoides strain OQ878685. MHB5 produced the FeO nanoparticles with the smallest particle size (78.7 nm) using DLS. XRD, FTIR, and TEM were used to characterize the biosynthesized nanoparticles. The jar experiment used SnCuO@FeO with different ratios of Sn to CuO (1:1, 2:1, and 3:1) to study the effect of oil concentration, retention time, and temperature. The most effective performance was observed with a 1:1 ratio of Sn to CuO, achieving an 85% separation efficiency at a concentration of 5 mg/L, for a duration of 5 min, and at a temperature of 373 K. Analysis using kinetic models indicates that the adsorption process can be accurately described by both the pseudo-first-order and pseudo-second-order models. This suggests that the adsorption mechanism likely involves a combination of film diffusion and intraparticle diffusion. Regarding the adsorption isotherm, the Langmuir model provides a strong fit for the data, while the D-R model indicates that physical interactions primarily govern the adsorption mechanism. Thermodynamic analysis reveals a ∆H value of 18.62 kJ/mol, indicating an exothermic adsorption process. This suggests that the adsorption is a favorable process, as energy is released during the process. Finally, the synthesized green SnCuO@FeO nanocomposite has potential for use in advanced applications in the oil and gas industry to help the industry meet regulatory compliance, lower operation costs, reduce environmental impact, and enhance production efficiency.


Assuntos
Nanocompostos , Petróleo , Poluentes Químicos da Água , Emulsões , RNA Ribossômico 16S , Termodinâmica , Água/química , Adsorção , Cinética , Poluentes Químicos da Água/química , Concentração de Íons de Hidrogênio
3.
Molecules ; 29(7)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38611744

RESUMO

The green synthesis of zinc oxide nanoparticles (ZnO NPs) using plants has grown in significance in recent years. ZnO NPs were synthesized in this work via a chemical precipitation method with Jasminum sambac (JS) leaf extract serving as a capping agent. These NPs were characterized using UV-vis spectroscopy, FT-IR, XRD, SEM, TEM, TGA, and DTA. The results from UV-vis and FT-IR confirmed the band gap energies (3.37 eV and 3.50 eV) and the presence of the following functional groups: CN, OH, C=O, and NH. A spherical structure and an average grain size of 26 nm were confirmed via XRD. The size and surface morphology of the ZnO NPs were confirmed through the use of SEM analysis. According to the TEM images, the ZnO NPs had an average mean size of 26 nm and were spherical in shape. The TGA curve indicated that the weight loss starts at 100 °C, rising to 900 °C, as a result of the evaporation of water molecules. An exothermic peak was seen during the DTA analysis at 480 °C. Effective antibacterial activity was found at 7.32 ± 0.44 mm in Gram-positive bacteria (S. aureus) and at 15.54 ± 0.031 mm in Gram-negative (E. coli) bacteria against the ZnO NPs. Antispasmodic activity: the 0.3 mL/mL sample solution demonstrated significant reductions in stimulant effects induced by histamine (at a concentration of 1 µg/mL) by (78.19%), acetylcholine (at a concentration of 1 µM) by (67.57%), and nicotine (at a concentration of 2 µg/mL) by (84.35%). The antipyretic activity was identified using the specific Shodhan vidhi method, and their anti-inflammatory properties were effectively evaluated with a denaturation test. A 0.3 mL/mL sample solution demonstrated significant reductions in stimulant effects induced by histamine (at a concentration of 1 µg/mL) by 78.19%, acetylcholine (at a concentration of 1 µM) by 67.57%, and nicotine (at a concentration of 2 µg/mL) by 84.35%. These results underscore the sample solution's potential as an effective therapeutic agent, showcasing its notable antispasmodic activity. Among the administered doses, the 150 mg/kg sample dose exhibited the most potent antipyretic effects. The anti-inflammatory activity of the synthesized NPs showed a remarkable inhibition percentage of (97.14 ± 0.005) at higher concentrations (250 µg/mL). Furthermore, a cytotoxic effect was noted when the biologically synthesized ZnO NPs were introduced to treated cells.


Assuntos
Antipiréticos , Jasminum , Nanopartículas , Óxido de Zinco , Óxido de Zinco/farmacologia , Parassimpatolíticos , Acetilcolina , Escherichia coli , Histamina , Nicotina , Espectroscopia de Infravermelho com Transformada de Fourier , Staphylococcus aureus , Anti-Inflamatórios/farmacologia , Antibacterianos/farmacologia , Extratos Vegetais/farmacologia
4.
Cureus ; 16(3): e55686, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38586786

RESUMO

Background Terminalia bellirica leaf extract was used as an herbal to get an aqueous extract of Tb-ZnO-TiO2 (zinc and titanium dioxide) nanoparticles composite, and this was subsequently subjected to an analysis of its antioxidant properties and possible antimicrobial activity against gram-negative and gram-positive bacteria. Employing the 2,2-Diphenyl-1-picrylhydrazyl and hydrogen peroxide assay techniques for antioxidant properties. In addition to their biocompatibility, rapid biodegradability, and low toxicity, herbal-based nanoparticles (Tb-ZnO-TiO2 NPs composite) synthesized by T. bellirica have drawn a lot of interest as promising options for administering drugs and effective antimicrobial applications. Materials and methods The form and dimensions of the dispersion of the synthesized nanoparticles were investigated through scanning electron microscopy (SEM), Fourier Transform Infrared Spectroscopy, and UV-visible for particle characterization. Nanoparticles were analyzed for antimicrobial activity using the well diffusion method. Ascorbic acid and vitamin E were used as two separate controls for antioxidant assay with different concentrations, and also toxicity assay was done by using zebrafish embryos. Results Tb-ZnO-TiO2 NPs composite were obtained as a powder, the X-beam diffraction (XRD) result revealed a small quantity of impurities and revealed that the structure was spherical in nature. A unique absorption peak for Tb-ZnO-TiO2 NPs composite may be seen in UV-Vis spectroscopy which is in the region of 260 to 320 nm. The Tb-ZnO-TiO2 NPs composite antibacterial efficacy was evaluated and showed noted antibacterial activity and free radical scavenging activity with less toxicity. Conclusion The results demonstrated the Tb-ZnO-TiO2 NPs composite has strong antioxidant qualities and enormous antibacterial activity obtained from T. bellirica extract. Therefore, the Tb-ZnO-TiO2 NPs composite synthesized nanoparticles can be used in biomedical applications as an effective antioxidant and antibacterial reagent.

5.
Cureus ; 16(3): e55933, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38601374

RESUMO

Aim This study involves synthesizing metal nanoparticles (NPs) via the green synthesis method using Millettia pinnata leaf, Acacia auriculiformis bark, and Citrus sinensis peel and comparatively evaluating their antibacterial activity in vitro through the analysis of cobalt oxide NPs (CoNPs), copper NPs (CuNPs), and selenium NPs (SeNPs). This research contributes to eco-friendly approaches for producing functional nanomaterials with potential applications in medicine and environmental remediation. Materials and methods The metal NPs were synthesized using M. pinnata leaf, A. auriculiformis bark, and C. sinensis peel. These leaf extracts act as self-reducing and stabilizing agents. The antibacterial activity was assessed by the well diffusion method. Cultures of pathogenic bacteria species such as Staphylococcus aureus, Escherichia coli, Bacillus subtilis, and Pseudomonas aeruginosa were prepared. NPs were applied to the culture, and zones of inhibition (ZOIs) were measured. The data were statistically analyzed to compare the antibacterial efficacy of the different NPs. Results The successfully synthesized CoNPs, CuNPs, and SeNPs showed distinctive phytochemical properties. CoNPs exhibited the highest ZOI against most bacterial strains, with CuNPs and SeNPs following. CoNPs consistently showed superior performance compared to CuNPs and SeNPs. Conclusion Our study analyzed the bioactivity of metal NPs produced using green synthesis with plant extracts. CoNPs have shown superior antibacterial effectiveness against both Gram-positive and Gram-negative bacteria when compared to CuNPs and SeNPs. This may be due to their larger surface area, smaller size, unique electrical, magnetic, and catalytic properties, as well as their improved contact with the bacterial cell wall and membrane.

6.
Artigo em Inglês | MEDLINE | ID: mdl-38644720

RESUMO

Nanoparticles bestow beneficial impacts on plants, specifically in increasing photosynthetic capacity and germination rate, pesticide delivery, managing pathogenicity and enhancing nutrient supply. The nanoparticles produced from the medicinal plant extracts are identified as an exceptional applicant in nanomedicine, cosmetics, and agriculture for the treatment of diseases as antimicrobial, antioxidant and anticancer agents, etc. Plant extracts actually have bioactive metabolites that provide therapeutic potential against a variety of diseases. Herein, we review the production of bioactive compounds from leaves, roots, seeds, flowers and stems. We further summarize the different methods for obtaining plant extracts and the green technologies for the synthesis of nanoparticles of plant derived bioactive compounds. Biotechnological aspects of these synthesized nanoparticles are also added here as highlights of this review. Overall, plant derived nanoparticles provide an alternative to conventional approaches for drug delivery as well and present exciting opportunities for future research on novel areas.

7.
Discov Nano ; 19(1): 51, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38502359

RESUMO

We present green synthesis of silver nanoparticles in water using unirradiated and Ag 15 + ion irradiated phytoextracts of Bergenia Ciliata leaf, Eupatorium adenophorum leaf, Rhododendron arboreum leaf and flower. The use of different plant extracts and their subsequent ion irradiation allow for successful refinement of nanoparticle size and morphology. Due to changes in reducing and capping agents the nanoparticle surface functionalization also varies which not only controls the morphology but also allows for surface oxidation and aggregation processes. In this work, we have synthesized silver nanoparticles which exhibit sizes in the range from 13 to 24 nm and having shapes like spherical, quasispherical, trigonal, hexagonal, cylindrical, dendritic assemblies, and porous nanoparticles. Owing to changes in the size and shape of the nanoparticles, their direct bandgap (2.05 eV - 2.48 eV) and local surface plasmon resonance (420 nm - 490 nm) could also be tuned. These nanoparticles are examined as SERS substrates, where their enhancement factors, limit of detection for methylene blue, and SERS substrate homogeneity have been tested. It has been observed the nanoparticles synthesized using unirradiated plant extracts present an enhancement factor of 10 6 with a limit of detection 10 - 8 M. Whereas nanoparticles with refined morphology and shapes upon irradiation present high enhancement factors of >10 7 and detection limit down to 10 - 9 M. In addition, uniformity in Raman spectra over the SERS substrates has been obtained for selected Ag NPs substrates synthesized using irradiated extracts with minimum relative standard deviation in enhancement factor < 12%.

8.
Int J Mol Sci ; 25(6)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38542055

RESUMO

The circular economy, which attempts to decrease agricultural waste while also improving sustainable development through the production of sustainable products from waste and by-products, is currently one of the main objectives of environmental research. Taking this view, this study used a green approach to synthesize two forms of silver nanoparticles: coated silver nanoparticles with olive leaf extract (Ag-olive) and uncoated pure silver nanoparticles (Ag-pure), which were produced by the calcination of Ag-olive at 550 °C. The extract and the fabricated nanoparticles were characterized by a variety of physicochemical techniques, including high-performance liquid chromatography (HPLC), thermal gravimetric analysis (TGA), X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Adult ticks (Hyalomma dromedarii) (Acari: Ixodidae) were used in this study to evaluate the antiparasitic activity of synthesized nanoparticles and extract. Furthermore, the antifungal activity was evaluated against Aspergillus aculeatus strain N (MW958085), Fuserium oxysporum (MT550034), and Alternaria tenuissiuma (MT550036). In both antiparasitic and antifungal tests, the as-synthesized Ag-olive showed higher inhibition activity than Ag-pure and olive leaf extract. The findings of this research suggest that Ag-olive may be a powerful and eco-friendly antiparasitic and antifungal agent. Ag-pure was also evaluated as a photocatalyst under sunlight for the detoxification of Eri-chrome-black T (EBT), methylene blue (MB), methyl orange (MO), and rhodamine B (RhB).


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Olea , Antifúngicos/farmacologia , Prata/química , Nanopartículas Metálicas/química , Antiparasitários , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Luz Solar , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
9.
Cureus ; 16(2): e54671, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38524031

RESUMO

Parkinson's disease (PD) is a progressive neurodegenerative disease that affects approximately 1% of people over the age of 60 and 5% of those over the age of 85. Current drugs for Parkinson's disease mainly affect the symptoms and cannot stop its progression. Nanotechnology provides a solution to address some challenges in therapy, such as overcoming the blood-brain barrier (BBB), adverse pharmacokinetics, and the limited bioavailability of therapeutics. The reformulation of drugs into nanoparticles (NPs) can improve their biodistribution, protect them from degradation, reduce the required dose, and ensure target accumulation. Furthermore, appropriately designed nanoparticles enable the combination of diagnosis and therapy with a single nanoagent. In recent years, gold nanoparticles (AuNPs) have been studied with increasing interest due to their intrinsic nanozyme activity. They can mimic the action of superoxide dismutase, catalase, and peroxidase. The use of 13-nm gold nanoparticles (CNM-Au8®) in bicarbonate solution is being studied as a potential treatment for Parkinson's disease and other neurological illnesses. CNM-Au8® improves remyelination and motor functions in experimental animals. Among the many techniques for nanoparticle synthesis, green synthesis is increasingly used due to its simplicity and therapeutic potential. Green synthesis relies on natural and environmentally friendly materials, such as plant extracts, to reduce metal ions and form nanoparticles. Moreover, the presence of bioactive plant compounds on their surface increases the therapeutic potential of these nanoparticles. The present article reviews the possibilities of nanoparticles obtained by green synthesis to combine the therapeutic effects of plant components with gold.

10.
Heliyon ; 10(6): e28038, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38524534

RESUMO

Herbal medicinal plants have been used for centuries in traditional medicine, and it is interesting to see how modern research has identified the active compounds responsible for their therapeutic effects. The green synthesis of silver nanoparticles using herbal medicinal plants, such as Swertia chirata, is particularly noteworthy due to its antimicrobial properties. In the current study, the Swertia chirata plant was collected for the first time from the region of Murree, Punjab, Pakistan. After collection, extracts were prepared in different solvents (ethanol, methanol, chloroform, and distilled water), and silver nanoparticles were synthesized by reducing silver nitrate (AgNO3). The UV-visible spectrophotometer, SEM, and EDX were used to characterize the synthesized nanoparticles in terms of their size and shape. The phytochemical analysis of crude extract was performed to determine the presence of different kinds of phytochemicals. The antibacterial activity of plant extracts and the silver nanoparticles were then assessed using the agar well diffusion method against various pathogenic bacteria. The results showed that the plant contains several phytochemicals with remarkable antioxidant potential. The antibacterial analysis revealed that silver nanoparticles and the plant extracts exhibited a significant zone of inhibition against human pathogenic bacteria (Escherichia coli, S. capitis, B. subtilis, and Pseudomonas aeruginosa) as compared to the cefixime and norfloxacin. This implies that the nanoparticles have the potential to be used in nano-medicine applications, such as drug delivery systems, as well as for their antibacterial, antifungal, and antiviral activities. Additionally, the development and application of materials and technologies at the nanometer scale opens possibilities for the creation of novel drugs and therapies. Overall, the study highlights the promising potential of herbal medicinal plants found in Murree, Punjab, Pakistan, and green-synthesized silver nanoparticles in various fields of medicine and nanotechnology.

11.
Sci Rep ; 14(1): 6997, 2024 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-38523139

RESUMO

Today, nanoscience explores the potential of nanoparticles due to their extraordinary properties compared to bulk materials. The synthesis of metal nanoparticles using plant extracts is a very promising method for environmental remediation, which gets global attention due to pollution-led global warming. In the present study, iron nanoparticles (FeNPs) were successfully synthesized by the green method using Vernonia amygdalina plant leaf extract as a natural reducing and capping agent. Biosynthesized FeNPs were characterized with different analytical techniques such as UV-visible, FT-IR, XRD, and SEM. The analysis revealed the formation of amorphous FeNPs with an irregular morphology and non-uniform distribution in size and shape. The average particle size was approximately 2.31 µm. According to the catalytic degradation investigation, the FeNPs produced via the green approach are highly effective in breaking down both CV and MB into non-toxic products, with a maximum degradation efficiency of 97.47% and 94.22%, respectively, when the right conditions are met. The kinetics study exhibited a high correlation coefficient close to unity (0.999) and (0.995) for the degradation of MB and CV, respectively, for the zero-order pseudo-kinetics model, which describes the model as highly suitable for the degradation of both dyes by FeNPs compared to other models. The reusability and stability of biosynthesized nano-catalysts were studied and successfully used as efficient catalysts with a slight decrease in the degradation rate more than four times. The results from this study illustrate that green synthesized FeNPs offer a cost-effective, environmentally friendly, and efficient means for the catalytic degradation of organic dyes.


Assuntos
Nanopartículas Metálicas , Vernonia , Ferro , Espectroscopia de Infravermelho com Transformada de Fourier , Corantes , Extratos Vegetais
12.
Sci Rep ; 14(1): 6519, 2024 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-38499602

RESUMO

In this study, tin dioxide nanoparticles (SnO2 NPs) were successfully synthesized through an eco-friendly method using basil leaves extract. The fabricated SnO2 NPs demonstrated significant adsorption capabilities for phenol (PHE), p-nitrophenol (P-NP), and p-methoxyphenol (P-MP) from water matrices. Optimal conditions for maximum removal efficiency was determined for each phenolic compound, with PHE showing a remarkable 95% removal at a 3 ppm, 0.20 g of SnO2 NPs, pH 8, and 30 min of agitation at 35 °C. Molecular docking studies unveiled a potential anticancer mechanism, indicating the ability of SnO2 NPs to interact with the epidermal growth factor receptor tyrosine kinase domain and inhibit its activity. The adsorption processes followed pseudo-second order kinetics and Temkin isotherm model, revealing spontaneous, exothermic, and chemisorption-controlled mechanisms. This eco-friendly approach utilizing plant extracts was considered as a valuable tool for nano-sorbent production. The SnO2 NPs not only exhibit promise in water treatment and also demonstrate potential applications in cancer therapy. Characterization techniques including scanning electron microscopy, UV-visible spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction spectroscopy (XRD), and energy-dispersive X-ray spectroscopy (EDAX) provided comprehensive insights into the results.


Assuntos
Nanopartículas , Estanho , Simulação de Acoplamento Molecular , Óxidos , Nanopartículas/química , Fenol , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X , Extratos Vegetais/química
13.
Nanotechnology ; 35(26)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38527365

RESUMO

The fruit extract ofBuchanania obovataand the eutectic-based ionic liquid were utilized, in an eco-friendly, inexpensive, simple method, for synthesizing zinc oxide nanoparticles (ZnO NPs). The influence of the reducing, capping and stabilizing agents, in both mediums, on the structure, optical, and morphological properties of ZnO NPs was extensively investigated. The surface plasmon resonance peaks were observed at 340 nm and 320 nm for the fruit-based and the eutectic-based ionic liquid mediums, respectively, indicating the formation of ZnO NPs. XRD results confirmed the wurtzite structure of the ZnO NPs, exhibiting hexagonal phases in the diffraction patterns. The SEM and TEM images display that the biosynthesized ZnO NPs exhibit crystalline and hexagonal shape, with an average size of 40 nm for the fruit-based and 25 nm for the eutectic-based ionic liquid. The Brunauer-Emmett-Teller (BET) surface area analysis, revealed a value ∼13 m2g-1for ZnO NPs synthesized using the fruit extract and ∼29 m2g-1for those synthesized using the eutectic-based ionic liquid. The antibacterial activity of the biosynthesized ZnO NPs was assessed against clinically isolated Gram-negative (E. coli) and Gram-positive (S. aureus) bacterial strains using the inhibition zone method. The ZnO NPs produced from the eutectic-based ionic liquids confirmed superior antibacterial activity against bothS. aureusandE. colicompared to those mediated by the utilized fruit extract. At a concentration of 1000, the eutectic-based ionic liquid mediated ZnO NPs displayed a maximum inhibition zone of 16 mm againstS. aureus, while againstE. coli, a maximum inhibition zone of 15 mm was observed using the fruit extract mediated ZnO NPs. The results of this study showed that the biosynthesized ZnO NPs can be utilized as an efficient substitute to the frequently used chemical drugs and covering drug resistance matters resulted from continual usage of chemical drugs by users.


Assuntos
Líquidos Iônicos , Nanopartículas Metálicas , Nanopartículas , Óxido de Zinco , Óxido de Zinco/farmacologia , Óxido de Zinco/química , Líquidos Iônicos/farmacologia , Staphylococcus aureus , Escherichia coli , Antibacterianos/farmacologia , Antibacterianos/química , Nanopartículas/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Testes de Sensibilidade Microbiana , Nanopartículas Metálicas/química
14.
Mol Biol Rep ; 51(1): 418, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38483678

RESUMO

BACKGROUND: The present work demonstrated the green synthesis and characterization of silver nanoparticles (AgNPs) utilizing Elaeocarpus serratus fruit extract. The study examined the effectiveness of phytocompounds in fruit extract in reducing Ag+ to Ag° ions. METHODS: The water-soluble biobased substance production from silver ions to AgNPs in 45 min at room temperature. Surface plasmon resonance (SPR) peak was seen in the UV-visible absorption spectrum of the biologically altered response mixture. Examination with X-ray diffraction (XRD) showed that AgNPs are strong and have a face-centered cubic shape. Scanning electron microscope (SEM) investigation proved the production of AgNPs in a cuboidal shape. RESULTS: The AgNPs demonstrated remarkable antibacterial activity and a potent capacity to neutralize DPPH (2,2-Diphenyl-1-picrylhydrazyl) radicals. The highest growth inhibition was found for E. serratus against S. dysenteriae (18.5 ± 1.0 mm) and S. aureus (18 ± 1.2 mm). These nanoparticles exhibited robust antiradical efficacy even at low concentrations. The AgNPs additionally exhibited cytotoxic effects on (HT-29) human colon adenocarcinoma cancer cells. The MTT assay (3-(4, 5-Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide) indicated an inhibitory concentration (IC50) value of 49.1 ± 2.33 µg/mL for AgNPs, contrasting with the untreated cells of the negative control. The biotoxicity assessment using A. salina displayed mortality rates ranging from 8 to 69.33%, attributable to the E. serratus synthesized AgNPs. CONCLUSIONS: In our results concluded that simply first-hand information on that E. serattus fruit extract synthesized AgNPs were efficiently synthesized without the addition of any hazardous substances, and that they may be a strong antibacterial, antioxidant, and potential cytotoxic effects for the treatment of colon carcinoma cell lines.


Assuntos
Adenocarcinoma , Antineoplásicos , Neoplasias do Colo , Nanopartículas Metálicas , Animais , Humanos , Prata/química , Antioxidantes/química , Artemia , Nanopartículas Metálicas/química , Frutas/química , Staphylococcus aureus , Neoplasias do Colo/tratamento farmacológico , Antibacterianos , Antineoplásicos/farmacologia , Antineoplásicos/química , Células HT29 , Íons , Extratos Vegetais/farmacologia , Extratos Vegetais/química
15.
Biomed Mater ; 19(3)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38518371

RESUMO

The aim of the current study was to synthesize silver nanoparticles (PLSNPs) using green technology by means of phytosterol-enriched fractions fromBlumea laceraextracts (EAF) and evaluate their toxicological and anti-haemorrhoidal potential. The average size of the synthesized particles was found to be 85.64 nm by scanning electron microscopy and transmission electron microscopy. Energy dispersive spectroscopy showed the elemental composition of PLSNPs to be 12.59% carbon and 87.41% silver, indicating the capping of phytochemicals on the PLSNPs. The PLSNPs were also standardized for total phytosterol content using chemical methods and high-perfromance liquid chromatography. The PLSNPs were found to be safe up to 1000 mg kg-1as no toxicity was observed in the acute and sub-acute toxicity studies performed as per OECD guidelines. After the induction of haemorrhoids, experimental animals were treated with different doses of EAF, PLSNPs and a standard drug (Pilex) for 7 d, and on the eighth day the ameliorative potential was assessed by evaluating the haemorrhoidal (inflammatory severity index, recto-anal coefficient) and biochemical (tumour necrosis factor-alpha and interleukin-6) parameters and histology of the recto-anal tissue. The results showed that treatment with PLSNPs and Pilex significantly (p< 0.05) reduced haemorrhoidal and biochemical parameters. This was further supported by restoration of altered antioxidant status. Further, a marked reduction in the inflammatory zones along with minimal dilated blood vessels was observed in the histopathological study. The results of molecular docking studies also confirmed the amelioration of haemorrhoids via AMP-activated protein kinase (AMPK)-mediated reduction of inflammation and endothelin B receptor modification by PLSNPs. In conclusion, PLSNPs could be a good alternative for the management of haemorrhoids.


Assuntos
Hemorroidas , Nanopartículas Metálicas , Fitosteróis , Animais , Prata/química , Hemorroidas/tratamento farmacológico , Hemorroidas/patologia , Proteínas Quinases Ativadas por AMP , Nanopartículas Metálicas/química , Simulação de Acoplamento Molecular , Extratos Vegetais/química , Espectroscopia de Infravermelho com Transformada de Fourier
16.
Molecules ; 29(5)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38474434

RESUMO

In this study, AuNPs were biosynthesized from Cucurbita moschata fruit peel extracts. Biosynthesized AuNPs exhibited maximum absorbance at a 555 nm wavelength, and XRD analysis indicated that the CM-AuNPs had a particle size of less than 100 nm and a cubic crystal structure. TEM scans revealed that the gold particles exhibited a spherical morphology, with an average size of 18.10 nm. FTIR analysis revealed strong peaks indicating the presence of functional groups involved in the reduction reactions. The surface charge of the biosynthesized AuNPs was determined to be -19.7 mV. The antibacterial and antifungal activities of AuNPs against pathogen strains were assessed by the minimum inhibitory concentration (MIC) method. The cytotoxic effects of CM-AuNPs on cancer cell lines (Sk-Ov-3, CaCo2, and A549) and healthy cell lines (HUVEC) were investigated using the MTT method. The findings indicated that AuNPs biosynthesized by the green synthesis method using C. moschata peel aqueous extract had high inhibition on the growth of pathogenic microorganisms and effective cytotoxic activity against cancerous cell lines at low doses. As a result, it can be concluded that CM-AuNPs will be eminently effective in the production of antibacterial and/or anticancer drugs in the pharmaceutical, food, and cosmetic industries.


Assuntos
Antineoplásicos , Cucurbita , Nanopartículas Metálicas , Ouro/química , Cucurbita/metabolismo , Nanopartículas Metálicas/química , Antibacterianos/farmacologia , Antifúngicos/farmacologia , Antineoplásicos/farmacologia , Extratos Vegetais/química , Química Verde
17.
Environ Sci Pollut Res Int ; 31(17): 24768-24787, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38523214

RESUMO

An alternative method to conventional synthesis is examined in this review by the use of plant extracts as reducing and capping agents. The use of plant extracts represents an economically viable and environmentally friendly alternative to conventional synthesis. In contrast to previous reviews, this review focuses on the synthesis of nano-compounds utilizing plant extracts, which lack comprehensive reports. In order to synthesize diverse nanostructures, researchers have discovered a sustainable and cost-effective method of harnessing functional groups in plant extracts. Each plant extract is discussed in detail, along with its potential applications, demonstrating the remarkable morphological diversity achieved by using these green synthesis approaches. A reduction and capping agent made from plant extracts is aligned with the principles of green chemistry and offers economic advantages as well as paving the way for industrial applications. In this review, it is discussed the significance of using plant extracts to synthesize nano-compounds, emphasizing their potential to shape the future of nanomaterials in a sustainable and ecologically friendly manner.


Assuntos
Nanopartículas Metálicas , Nanoestruturas , Nanopartículas Metálicas/química , Extratos Vegetais/química , Química Verde , Nanoestruturas/química , Plantas/química , Antibacterianos
18.
Int J Mol Sci ; 25(6)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38542240

RESUMO

The synergistic impact of nanomaterials is critical for novel intracellular and/or subcellular drug delivery systems of minimal toxicity. This synergism results in a fundamental bio/nano interface interaction, which is discussed in terms of nanoparticle translocation, outer wrapping, embedding, and interior cellular attachment. The morphology, size, surface area, ligand chemistry and charge of nanoparticles all play a role in translocation. In this review, we suggest a generalized mechanism to characterize the bio/nano interface, as we discuss the synergistic interaction between nanoparticles and cells, tissues, and other biological systems. Novel perceptions are reviewed regarding the ability of nanoparticles to improve hybrid nanocarriers with homogeneous structures to enhance multifunctional biomedical applications, such as bioimaging, tissue engineering, immunotherapy, and phototherapy.


Assuntos
Nanopartículas , Nanoestruturas , Nanopartículas/química , Nanoestruturas/química , Sistemas de Liberação de Medicamentos/métodos , Engenharia Tecidual , Propriedades de Superfície
19.
Cureus ; 16(2): e53562, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38445144

RESUMO

Background This study deals with the antimicrobial efficacy of zinc oxide nanoparticles (ZnONPs) synthesized through green methods employing extracts from Ocimum tenuiflorum and Ocimum gratissimum and assessed for their antimicrobial properties against a range of oral pathogens. Methods Zinc oxide nanoparticles (ZnONPs) were synthesized using extracts from Ocimum tenuiflorum and Ocimum gratissimum through a green synthesis approach. Antimicrobial activity was determined using the agar-well diffusion assay to evaluate the consistency of inhibition zones against oral pathogens. Variations in sensitivity were assessed through the time-kill curve assay, quantifying the response of oral pathogens to zinc oxide nanoparticles (ZnONPs) exposure over time. Results The agar-well diffusion assay revealed uniform 9-mm zones of inhibition against all oral pathogens, signifying consistent antimicrobial activity of zinc oxide nanoparticles (ZnONPs). In the time-kill curve assay, Candida albicans exhibited the highest sensitivity, followed by Streptococcus mutans and Staphylococcus aureus. Enterococcus faecalis and Lactobacillus species displayed lower sensitivity, suggesting potential selectivity. Discussion The observed variation in sensitivity implies the potential selectivity of zinc oxide nanoparticles (ZnONPs) against specific oral pathogens, which may have significant implications for oral health applications. These findings underscore the versatility of green-synthesized zinc oxide nanoparticles (ZnONPs) as promising antimicrobial agents, particularly for oral health applications. Conclusion This study provides promising results for the antimicrobial potential of zinc oxide nanoparticles (ZnONPs) synthesized using Ocimum tenuiflorum and Ocimum gratissimum. The consistent antimicrobial activity and variations in sensitivity among oral pathogens highlight their promising utility in oral health care.

20.
Sci Rep ; 14(1): 5934, 2024 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-38467843

RESUMO

The present study reports the green synthesis of silver nanoparticles (AgNPs) in powder form using the leaf extract of Azadirachta indica. The synthesis of AgNPs was confirmed by UV-vis spectroscopy, FTIR, XRD, FESEM, and EDX. The synthesized AgNPs were in a powdered state and dispersed completely in 5% polyethylene glycol (PEG) and demonstrated prolonged shelf life and enhanced bioavailability over a year without any aggregation. The resulting silver nanoformulation demonstrated complete inhibition against Sclerotinia sclerotiorum and Colletotrichum falcatum and 68% to 80% inhibition against Colletotrichum gloeosporioides and Rhizoctonia solani respectively, at 2000 ppm. The EC50 values determined through a statistical analysis were 66.42, 157.7, 19.06, and 33.30 ppm for S. sclerotiorum, C. falcatum, C. gloeosporioides, and R. solani respectively. The silver nanoformulation also established significant cytotoxicity, with a 74.96% inhibition rate against the human glioblastoma cell line U87MG at 250 ppm. The IC50 value for the cancerous cell lines was determined to be 56.87 ppm through statistical analysis. The proposed silver nanoformulation may be used as a next-generation fungicide in crop improvement and may also find application in anticancer investigations. To the best of our knowledge, this is also the first report of silver nanoformulation demonstrating complete inhibition against the economically significant phytopathogen C. falcatum.


Assuntos
Antineoplásicos , Nanopartículas Metálicas , Humanos , Prata/química , Antifúngicos/farmacologia , Nanopartículas Metálicas/química , Fungos/metabolismo , Linhagem Celular , Antineoplásicos/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Antibacterianos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA