Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Pollut ; 323: 121173, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36740162

RESUMO

Contamination of soils with chromium (Cr) jeopardized agriculture production globally. The current study was planned with the aim to better comprehend how melatonin (Mel) and hydrogen sulfide (H2S) regulate antioxidant defense system, potassium (K) homeostasis, and nitrogen (N) metabolism in tomato seedlings under Cr toxicity. The data reveal that application of 30 µM Mel to the seedlings treated with 25 µM Cr has a positive effect on H2S metabolism that resulted in a considerable increase in H2S. Exogenous Mel improved phytochelatins content and H+-ATPase activity with an associated increase in K content as well. Use of tetraethylammonium chloride (K+-channel blocker) and sodium orthovanadate (H+-ATPase inhibitor) showed that Mel maintained K homeostasis through regulating H+-ATPase activity under Cr toxicity. Supplementation of the stressed seedlings with Mel substantially scavenged excess reactive oxygen species (ROS) that maintained ROS homeostasis. Reduced electrolyte leakage and lipid peroxidation were additional signs of Mel's ROS scavenging effects. In addition, Mel also maintained normal functioning of nitrogen (N) metabolism and ascorbate-glutathione (AsA-GSH) system. Improved level of N fulfilled its requirement for various enzymes that have induced resilience during Cr stress. Additionally, the AsA-GSH cycle's proper operation maintained redox equilibrium, which is necessary for the biological system to function normally. Conversely, 1 mM hypotaurine (H2S scavenger) abolished the Mel-effect and again Cr-induced impairment on the above-mentioned parameters was observed even in presence of Mel. Therefore, based on the observed findings, we concluded that Mel needs endogenous H2S to alleviate Cr-induced impairments in tomato seedlings.


Assuntos
Sulfeto de Hidrogênio , Melatonina , Melatonina/farmacologia , Melatonina/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Sulfeto de Hidrogênio/metabolismo , Sulfeto de Hidrogênio/farmacologia , Cromo/toxicidade , Cromo/metabolismo , Ácido Ascórbico/farmacologia , Ácido Ascórbico/metabolismo , Glutationa/metabolismo , Antioxidantes/metabolismo , Plântula , Nitrogênio/metabolismo
2.
Pestic Biochem Physiol ; 186: 105167, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35973762

RESUMO

Non-domesticated species may represent a treasure chest of defensive molecules which must be investigated and rescued. Clitoria fairchildiana R. Howard is a non-domesticated Fabacea, native from the Amazonian Forest whose seeds are exquisitely refractory to insect predation. Secondary metabolites from these seeds were fractionated by different organic solvents and the CH2Cl2 fraction (CFD - Clitoria fairchildiana dichloromethane fraction), as the most toxic to 3rd instar Aedes aegypti larvae (LC50 180 PPM), was subjected to silica gel chromatography, eluted with a gradient of CH2Cl2: MeOH and sub fractioned in nine fractions (CFD1 - CFD9). All obtained fractions were tested in their toxicity to the insect larvae. Two rotenoids, a 11α-O-ß-D-glucopyranosylrotenoid and a 6-deoxyclitoriacetal 11-O-n-glucopyranoside, were identified in the mixture of CFD 7.4 and CFD 7.5, and they were toxic (LC50 120 PPM) to 3rd instar Ae. aegypti larvae, leading to exoskeleton changes, cuticular detachment and perforations in larval thorax and abdomen. These C. fairchildiana rotenoids interfered with the acidification process of cell vesicles in larvae midgut and caused inhibition of 55% of V-ATPases activity of larvae treated with 80 PPM of the compounds, when compared to control larvae. The rotenoids also led to a significant increase in the production of reactive oxygen species (ROS) in treated larvae, especially in the hindgut region of larvae intestines, indicating a triggering of an oxidative stress process to these insects.


Assuntos
Aedes , Clitoria , Fabaceae , Inseticidas , Animais , Clitoria/química , Inseticidas/química , Larva , Extratos Vegetais/química , Extratos Vegetais/toxicidade , Sementes/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA