Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Neuron ; 112(1): 155-173.e8, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37944520

RESUMO

The hypocretin (Hcrt) (also known as orexin) neuropeptidic wakefulness-promoting system is implicated in the regulation of spatial memory, but its specific role and mechanisms remain poorly understood. In this study, we revealed the innervation of the medial entorhinal cortex (MEC) by Hcrt neurons in mice. Using the genetically encoded G-protein-coupled receptor activation-based Hcrt sensor, we observed a significant increase in Hcrt levels in the MEC during novel object-place exploration. We identified the function of Hcrt at presynaptic glutamatergic terminals, where it recruits fast-spiking parvalbumin-positive neurons and promotes gamma oscillations. Bidirectional manipulations of Hcrt neurons' projections from the lateral hypothalamus (LHHcrt) to MEC revealed the essential role of this pathway in regulating object-place memory encoding, but not recall, through the modulation of gamma oscillations. Our findings highlight the significance of the LHHcrt-MEC circuitry in supporting spatial memory and reveal a unique neural basis for the hypothalamic regulation of spatial memory.


Assuntos
Hipotálamo , Memória Espacial , Camundongos , Animais , Orexinas/metabolismo , Hipotálamo/metabolismo , Neurônios/fisiologia , Região Hipotalâmica Lateral/fisiologia
2.
Proc Natl Acad Sci U S A ; 120(19): e2220911120, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37126681

RESUMO

Narcolepsy with cataplexy is a sleep disorder caused by deficiency in the hypothalamic neuropeptide hypocretin/orexin (HCRT), unanimously believed to result from autoimmune destruction of hypocretin-producing neurons. HCRT deficiency can also occur in secondary forms of narcolepsy and be only temporary, suggesting it can occur without irreversible neuronal loss. The recent discovery that narcolepsy patients also show loss of hypothalamic (corticotropin-releasing hormone) CRH-producing neurons suggests that other mechanisms than cell-specific autoimmune attack, are involved. Here, we identify the HCRT cell-colocalized neuropeptide QRFP as the best marker of HCRT neurons. We show that if HCRT neurons are ablated in mice, in addition to Hcrt, Qrfp transcript is also lost in the lateral hypothalamus, while in mice where only the Hcrt gene is inactivated Qrfp is unchanged. Similarly, postmortem hypothalamic tissues of narcolepsy patients show preserved QRFP expression, suggesting the neurons are present but fail to actively produce HCRT. We show that the promoter of the HCRT gene of patients exhibits hypermethylation at a methylation-sensitive and evolutionary-conserved PAX5:ETS1 transcription factor-binding site, suggesting the gene is subject to transcriptional silencing. We show also that in addition to HCRT, CRH and Dynorphin (PDYN) gene promoters, exhibit hypermethylation in the hypothalamus of patients. Altogether, we propose that HCRT, PDYN, and CRH are epigenetically silenced by a hypothalamic assault (inflammation) in narcolepsy patients, without concurrent cell death. Since methylation is reversible, our findings open the prospect of reversing or curing narcolepsy.


Assuntos
Cataplexia , Narcolepsia , Neuropeptídeos , Camundongos , Animais , Orexinas/metabolismo , Cataplexia/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neuropeptídeos/metabolismo , Narcolepsia/genética , Hipotálamo/metabolismo , Epigênese Genética , Hormônio Liberador da Corticotropina/genética , Hormônio Liberador da Corticotropina/metabolismo
3.
Sleep Med Rev ; 60: 101546, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34607185

RESUMO

Cataplexy is the pathognomonic and the most striking symptom of narcolepsy. It has originally been, and still is now, widely considered as an abnormal manifestation of rapid eye movement (REM) sleep during wakefulness due to the typical muscle atonia. The neurocircuits of cataplexy, originally confined to the brainstem as those of REM sleep atonia, now include the hypothalamus, dorsal raphe (DR), amygdala and frontal cortex, and its neurochemistry originally focused on catecholamines and acetylcholine now extend to hypocretin (HCRT) and other neuromodulators. Here, we review the neuroanatomy and neurochemistry of cataplexy and propose that cataplexy is a distinct brain state that, despite similarities with REM sleep, involves cataplexy-specific features.


Assuntos
Cataplexia , Narcolepsia , Humanos , Hipotálamo , Narcolepsia/diagnóstico , Orexinas , Sono REM/fisiologia , Vigília/fisiologia
4.
Proc Natl Acad Sci U S A ; 116(34): 17061-17070, 2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31375626

RESUMO

Hypocretin/orexin (HCRT) and melanin concentrating hormone (MCH) neuropeptides are exclusively produced by the lateral hypothalamus and play important roles in sleep, metabolism, reward, and motivation. Loss of HCRT (ligands or receptors) causes the sleep disorder narcolepsy with cataplexy in humans and in animal models. How these neuropeptides are produced and involved in diverse functions remain unknown. Here, we developed methods to sort and purify HCRT and MCH neurons from the mouse late embryonic hypothalamus. RNA sequencing revealed key factors of fate determination for HCRT (Peg3, Ahr1, Six6, Nr2f2, and Prrx1) and MCH (Lmx1, Gbx2, and Peg3) neurons. Loss of Peg3 in mice significantly reduces HCRT and MCH cell numbers, while knock-down of a Peg3 ortholog in zebrafish completely abolishes their expression, resulting in a 2-fold increase in sleep amount. We also found that loss of HCRT neurons in Hcrt-ataxin-3 mice results in a specific 50% decrease in another orexigenic neuropeptide, QRFP, that might explain the metabolic syndrome in narcolepsy. The transcriptome results were used to develop protocols for the production of HCRT and MCH neurons from induced pluripotent stem cells and ascorbic acid was found necessary for HCRT and BMP7 for MCH cell differentiation. Our results provide a platform to understand the development and expression of HCRT and MCH and their multiple functions in health and disease.


Assuntos
Hormônios Hipotalâmicos/metabolismo , Hipotálamo/metabolismo , Melaninas/metabolismo , Neurônios/metabolismo , Orexinas/metabolismo , Hormônios Hipofisários/metabolismo , Animais , Hormônios Hipotalâmicos/genética , Hipotálamo/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Melaninas/genética , Camundongos , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/citologia , Orexinas/genética , Hormônios Hipofisários/genética
5.
J Comp Neurol ; 527(9): 1508-1526, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30666646

RESUMO

Orexin A (OXA) and neuropeptide Y (NPY) are two hypothalamic neuropeptides involved in the regulation of feeding behavior and food intake in all vertebrates. Accumulating evidences document that they undergo age-related modifications, with consequences on metabolism, sleep/wake disorders and progression of neurodegenerations. The present study addressed the age related changes in expression and distribution of orexin A (its precursor is also known as hypocretin-HCRT) and NPY, and their regulation by food intake in the short-lived vertebrate model Nothobranchius furzeri. Our experiments, conducted on male specimens, show that: (a) HCRT and OXA and NPY mRNA and protein are localized in neurons of diencephalon and optic tectum, as well as in numerous fibers projecting through the entire neuroaxis, and are colocalized in specific nuclei; (b) in course of aging, HCRT and NPY expressing neurons are localized also in telencephalon and rhombencephalon; (c) HCRT expressing neurons increased slightly in the diencephalic area of old animals and in fasted animals, whereas NPY increased sharply; (d) central HCRT levels are not regulated neither in course of aging nor by food intake; and (e) central NPY levels are augmented in course of aging, and regulated by food intake only in young. These findings represent a great novelty in the study of central orexinergic and NPY-ergic systems in vertebrates', demonstrating an uncommon and unprecedented described regulation of these two orexigenic neuropeptides.


Assuntos
Envelhecimento/metabolismo , Diencéfalo/metabolismo , Ingestão de Alimentos/fisiologia , Fundulidae/metabolismo , Regulação da Expressão Gênica/fisiologia , Hipotálamo/metabolismo , Neuropeptídeo Y/biossíntese , Orexinas/biossíntese , Sequência de Aminoácidos , Animais , Sequência Conservada , Jejum/metabolismo , Fundulidae/genética , Hibridização In Situ , Masculino , Neurônios/metabolismo , Neuropeptídeo Y/genética , Orexinas/genética , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Colículos Superiores/metabolismo
6.
J Surg Oncol ; 113(2): 213-7, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26663089

RESUMO

BACKGROUND: Karyopherin α 2 (KPNA2) is a member of the Karyopherin α family and has recently been reported to play an important role in tumor progression. The aim of the current study was to elucidate the clinicopathological significance of KPNA2 over-expression in colorectal cancer (CRC). PATIENTS AND METHODS: KPNA2 expression was evaluated by immunohistochemistry in 122 surgically resected CRC and 13 biopsy specimens obtained at colonoscopy during screening for preoperative hyperthermochemoradiation therapy (HCRT). The association between KPNA2 expression and clinicopathological features and preoperative HCRT efficacy were examined. RESULTS: The high and low KNPA2 expression groups were comprised of 91 (74.6%) and 31 CRC patients, respectively. A significant association was observed between high expression and lymphatic invasion (P = 0.0245). KPNA2 high expression group had decreased overall survival (P = 0.00374). Multivariate analysis demonstrated high KPNA2 expression was independently associated with poor prognosis. Histological examinations revealed 11 (84.6%) and 2 (15.4%) of cases were KPNA2 positive and negative, respectively. Pathological complete response (pCR) was observed in 9.1% of KPNA2-positive cases and 100% of KPNA2-negative cases. CONCLUSION: High KPNA2 expression was found to be associated with poor prognosis and resistance to HCRT.


Assuntos
Biomarcadores Tumorais/análise , Quimiorradioterapia , Neoplasias Colorretais/química , Neoplasias Colorretais/terapia , Hipertermia Induzida , alfa Carioferinas/análise , Adulto , Idoso , Quimiorradioterapia/métodos , Neoplasias Colorretais/patologia , Terapia Combinada/métodos , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Imuno-Histoquímica , Metástase Linfática , Masculino , Pessoa de Meia-Idade , Invasividade Neoplásica , Estadiamento de Neoplasias , Valor Preditivo dos Testes , Prognóstico
7.
Gene ; 550(2): 253-63, 2014 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-25151310

RESUMO

Camelina sativa is a hardy oilseed crop with seeds that contain high levels of ω3 polyunsaturated fatty acids and protein, which are critical components of fish feed. Camelina might thus be used as a cheaper and more sustainable supplement to fish-based products in aquaculture. Atlantic cod, Gadus morhua, is a species of interest in the aquaculture industry due to a decrease in wild populations and subsequent collapse of some cod fisheries. As cod are carnivorous fish, it is necessary to determine how this species physiologically tolerates plant-based diets. In this study, juvenile Atlantic cod were subjected to 13 weeks of either 15 or 30% camelina meal (CM)-supplemented diets or a control fish meal feed. Growth and food intake were evaluated and the mRNA expression of appetite-related hormones [pro-melanin-concentrating hormone (pmch), hypocretin (synonym: orexin, hcrt), neuropeptide Y (npy) and cocaine- and amphetamine-regulated transcript (cart)] was assessed using quantitative real-time PCR in brain regions related to food intake regulation (telencephalon/preoptic area, optic tectum/thalamus and hypothalamus). CM inclusion diets caused decreases in both growth and food intake in Atlantic cod. Optic tectum pmch transcript expression was significantly higher in fish fed the 30% CM diet compared to fish fed the 15% CM diet. In the hypothalamus, compared to fish fed the control diet, hcrt expression was significantly higher in fish fed the 30% CM diet, while npy transcript expression was significantly higher in fish fed the 15% CM diet. cart mRNA expression was not affected by diet in any brain region. Further studies are needed to determine which factors (e.g. anti-nutritional factors, palatability and nutritional deficits) contribute to reduced feed intake and growth, as well as the maximum CM inclusion level that does not negatively influence feed intake, growth rate and the transcript expression of appetite-related factors in Atlantic cod.


Assuntos
Regulação do Apetite/genética , Encéfalo/metabolismo , Brassicaceae , Dieta , Gadus morhua/genética , Ração Animal , Animais , Apetite/genética , Aquicultura/métodos , Suplementos Nutricionais , Feminino , Gadus morhua/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Hormônios Hipotalâmicos/genética , Hormônios Hipotalâmicos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neuropeptídeo Y/genética , Neuropeptídeo Y/metabolismo , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Orexinas , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo
8.
Anticancer Res ; 34(6): 3141-6, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24922685

RESUMO

Neoadjuvant chemoradiotherapy is commonly used to improve the local control and resectability of locally advanced rectal cancer, with surgery performed after an interval of a number of weeks. We have been conducting a clinical trial of preoperative chemoradiotherapy in combination with regional hyperthermia (hyperthermo-chemoradiation therapy; HCRT) for locally advanced rectal cancer. In the current study we assessed the effect of a longer (>10 weeks) interval after neoadjuvant HCRT on pathological response, oncological outcome and especially on apoptosis, proliferation and p53 expression in patients with rectal cancer. Forty-eight patients with proven rectal adenocarcinoma who underwent HCRT followed by surgery were identified for inclusion in this study. Patients were divided into two groups according to the interval between HCRT and surgery, ≤ 10 weeks (short-interval group) and >10 weeks (long-interval group). Patients in the long-interval group had a significantly higher rate of pathological complete response (pCR) (43.5% vs. 16.0%) than patients of the short-interval group. Patients of the long-interval group had a significantly higher rate of down-staging of T-stage (78.3% vs. 36.0%) and relatively higher rate of that of N-stage (52.2% vs. 36.0%) than patients of the short-interval group. Furthermore, apoptosis in the long-interval group was relatively higher compared to that of the short-interval group, without a significant difference in the Ki-67 proliferative index and expression of p53 in the primary tumor. In conclusion, we demonstrated that a longer interval after HCRT (>10 weeks) seemed to result in a better chance of a pCR, a result confirmed by the trends in tumor response markers, including apoptosis, proliferation and p53 expression.


Assuntos
Adenocarcinoma/secundário , Apoptose , Proliferação de Células , Quimiorradioterapia , Hipertermia Induzida , Terapia Neoadjuvante , Neoplasias Retais/patologia , Adenocarcinoma/mortalidade , Adenocarcinoma/terapia , Adulto , Idoso , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Feminino , Fluoruracila/administração & dosagem , Humanos , Técnicas Imunoenzimáticas , Leucovorina/administração & dosagem , Masculino , Pessoa de Meia-Idade , Metástase Neoplásica , Recidiva Local de Neoplasia/mortalidade , Recidiva Local de Neoplasia/patologia , Recidiva Local de Neoplasia/terapia , Estadiamento de Neoplasias , Neoplasias Retais/mortalidade , Neoplasias Retais/terapia , Taxa de Sobrevida , Resultado do Tratamento
9.
Neuroscience ; 250: 599-613, 2013 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-23912034

RESUMO

Experiments were done to investigate whether hypothalamic hypocretin-1 (hcrt-1; orexin-A) neurons that sent axonal projections to cardiovascular responsive sites in the nucleus of the solitary tract (NTS) co-expressed leucine-enkephalin (L-Enk), and to determine the effects of co-administration of hcrt-1 and D-Ala2,D-Leu5-Enkephalin (DADL) into NTS on mean arterial pressure (MAP) and heart rate. In the first series, in the Wistar rat the retrograde tract-tracer fluorogold (FG) was microinjected (50nl) into caudal NTS sites at which L-glutamate (0.25 M; 10 nl) elicited decreases in MAP and where fibers hcrt-1 immunoreactive fibers were observed that also contained L-Enk immunoreactivity. Of the number of hypothalamic hcrt-1 immunoreactive neurons identified ipsilateral to the NTS injection site (1207 ± 78), 32.3 ± 2.3% co-expressed L-Enk immunoreactivity and of these, 2.6 ± 1.1% were retrogradely labeled with FG. Hcrt-1/L-Enk neurons projecting to NTS were found mainly within the perifornical region. In the second series, the region of caudal NTS found to contain axons that co-expressed hcrt-1 and L-Enk immunoreactivity was microinjected with a combination of hcrt-1 and DADL in α-chloralose anesthetized Wistar rats. Microinjection of DADL into NTS elicited depressor and bradycardia responses similar to those elicited by microinjection of hcrt-1. An hcrt-1 injection immediately after the DADL injection elicited an almost twofold increase in the magnitude of the depressor and bradycardia responses compared to those elicited by hcrt-1 alone. Prior injections of the non-specific opioid receptor antagonist naloxone or the specific opioid δ-receptor antagonist ICI 154,129 significantly attenuated the cardiovascular responses to the combined hcrt-1-DADL injections. Taken together, these data suggest that activation of hypothalamic-opioidergic neuronal systems contribute to the NTS hcrt-1 induced cardiovascular responses, and that this descending hypothalamo-medullary pathway may represent the anatomical substrate by which hcrt-1/L-Enk neurons function in the coordination of autonomic-cardiovascular responses during different behavioral states.


Assuntos
Pressão Arterial/fisiologia , Encefalina Leucina/metabolismo , Hipotálamo/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Vias Neurais/fisiologia , Neurônios/fisiologia , Neuropeptídeos/metabolismo , Núcleo Solitário/fisiologia , Animais , Pressão Arterial/efeitos dos fármacos , Interpretação Estatística de Dados , Encefalina Leucina/análogos & derivados , Encefalina Leucina/farmacologia , Leucina Encefalina-2-Alanina/análogos & derivados , Leucina Encefalina-2-Alanina/farmacologia , Frequência Cardíaca/efeitos dos fármacos , Frequência Cardíaca/fisiologia , Hipotálamo/citologia , Hipotálamo/metabolismo , Imuno-Histoquímica , Peptídeos e Proteínas de Sinalização Intracelular/farmacologia , Masculino , Melfalan/análogos & derivados , Melfalan/farmacologia , Microinjeções , Antagonistas de Entorpecentes/farmacologia , Vias Neurais/citologia , Vias Neurais/metabolismo , Neurônios/metabolismo , Neuropeptídeos/farmacologia , Orexinas , Ratos , Ratos Wistar , Núcleo Solitário/citologia , Núcleo Solitário/metabolismo , Estilbamidinas
10.
Bioorg Med Chem Lett ; 23(17): 4761-9, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23891187

RESUMO

The orexin, or hypocretin, neuropeptides (orexin-A and orexin-B) are produced on neurons in the hypothalamus which project to key areas of the brain that control sleep-wake states, modulation of food intake, panic, anxiety, emotion, reward and addictive behaviors. These neuropeptides exert their effects on a pair of G-protein coupled receptors termed the orexin-1 (OX1) and orexin-2 (OX2) receptors. Emerging biology suggests the involvement of these receptors in psychiatric disorders as they are thought to play a key role in the regulation of multiple systems. This review is intended to highlight key selective OX1 or OX2 small-molecule antagonists.


Assuntos
Antagonistas dos Receptores de Orexina , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Descoberta de Drogas , Humanos , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neuropeptídeos/metabolismo , Receptores de Orexina/metabolismo , Orexinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA