Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 213
Filtrar
Mais filtros

Medicinas Complementares
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Ethnopharmacol ; 329: 118169, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38621463

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The Ba-Qi-Rougan formula (BQRGF) is a traditional and effective compound prescription from Traditional Chinese Medicine (TCM) utilized in treating hepatic fibrosis (HF). AIM OF THE STUDY: We aimed to evaluate the therapeutic efficacy of BQRGF on HF and explore the underlying mechanisms of action. MATERIALS AND METHODS: UPLC-Q-TOF-MS technology was employed to identify the material basis of BQRGF. Mice with carbon tetrachloride (CCl4)-induced HF received BQRGF at three doses (3.87, 7.74, and 15.48 g/kg per day). We examined serum and liver biochemical indicators and liver histology to assess the therapeutic impact. Primary mouse cells were isolated and utilized for experimental analysis. MSMP expression levels were examined in vitro and in vivo experimental models, including human and mouse tissue. Furthermore, lentivirus and small interfering RNA (siRNA) transfections were employed to manipulate microseminoprotein (MSMP) expression in LO2 cells (human normal liver cells). These manipulated LO2 cells were then co-cultured with LX2 human hepatic stellate cells (HSCs). Through the modulation of MSMP expression in co-cultured cells, administering recombinant MSMP (rMSMP) with or without BQRGF-medicated serum, and using specific pathway inhibitors or agonists in LX2 cells, we elucidated the underlying mechanisms. RESULTS: A total of 48 compounds were identified from BQRGF, with 12 compounds being absorbed into the bloodstream and 9 compounds being absorbed into the liver. Four weeks of BQRGF treatment in the HF mouse model led to significant improvements in biochemical and molecular assays and histopathology, particularly in the medium and high-dose groups. These improvements included a reduction in the level of liver injury and fibrosis-related factors. MSMP levels were elevated in human and mouse fibrotic liver tissues, and this increase was mitigated in HF mice treated with BQRGF. Moreover, primary cells and co-culture studies revealed that BQRGF reduced MSMP expression, decreased the expression of the hepatic stellate cell (HSC) activation markers, and suppressed critical phosphorylated protein levels in the CCR2/PI3K/AKT pathway. These findings were further validated using CCR2/PI3K/AKT signaling inhibitors and agonists in MSMP-activated LX2 cells. CONCLUSIONS: Collectively, our results suggest that BQRGF combats HF by diminishing MSMP levels and inhibiting MSMP-induced HSC activation through the CCR2/PI3K/AKT pathway.


Assuntos
Medicamentos de Ervas Chinesas , Células Estreladas do Fígado , Cirrose Hepática , Fosfatidilinositol 3-Quinases , Transdução de Sinais , Animais , Células Estreladas do Fígado/efeitos dos fármacos , Células Estreladas do Fígado/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Humanos , Camundongos , Masculino , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/patologia , Cirrose Hepática/metabolismo , Cirrose Hepática/induzido quimicamente , Transdução de Sinais/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Receptores CCR2/metabolismo , Receptores CCR2/genética , Receptores CCR2/antagonistas & inibidores , Camundongos Endogâmicos C57BL , Tetracloreto de Carbono , Linhagem Celular
2.
Front Pharmacol ; 15: 1347120, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38606180

RESUMO

Background: The occurrence and development of Hepatic fibrosis (HF) are closely related to the gut microbial composition and alterations in host metabolism. Qijia Rougan decoction (QJ) is a traditional Chinese medicine compound utilized clinically for the treatment of HF with remarkable clinical efficacy. However, its effect on the gut microbiota and metabolite alterations is unknown. Therefore, our objective was to examine the impact of QJ on the gut microbiota and metabolism in Carbon tetrachloride (CCl4)-induced HF. Methods: 40% CCl4 was used to induce HF, followed by QJ administration for 6 weeks. Serum biochemical analyses, histopathology, immunohistochemistry, RT-PCR, 16S rRNA gene sequencing, and non-targeted metabolomics techniques were employed in this study to investigate the interventional effects of QJ on a CCl4-induced HF model in rats. Results: This study demonstrated that QJ could effectively ameliorate CCl4-induced hepatic inflammation and fibrosis. Moreover, QJ upregulated the expression of intestinal tight junction proteins (TJPs) and notably altered the abundance of some gut microbes, for example, 10 genera closely associated with HF-related indicators and TJPs. In addition, metabolomics found 37 key metabolites responded to QJ treatment and strongly associated with HF-related indices and TJPs. Furthermore, a tight relation between 10 genera and 37 metabolites was found post correlation analysis. Among them, Turicibacter, Faecalibaculum, Prevotellaceae UCG 001, and unclassified Peptococcaceae may serve as the core gut microbes of QJ that inhibit HF. Conclusion: These results suggest that QJ ameliorates hepatic inflammation and fibrosis, which may be achieved by improving intestinal tight junctions and modulating gut microbiota composition as well as modulating host metabolism.

3.
Biomed Pharmacother ; 173: 116429, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38490157

RESUMO

Fibrosis-related diseases (FRD) include conditions like myocardial fibrosis, pulmonary fibrosis, hepatic fibrosis, renal fibrosis, and others. The impact of fibrosis can be severe, causing organ dysfunction, reduced functionality, and even organ failure, leading to significant health issues. Currently, there is a lack of effective modern anti-fibrosis drugs in clinical practice. However, Chinese medicine has a certain beneficial effect on the treatment of such diseases. Angelica sinensis, with its considerable medicinal value, has garnered attention for its anti-fibrosis properties in recent investigations. In the past few years, there has been a growing number of experimental inquiries into the impact of angelica polysaccharide (ASP), angelica water extract, angelica injection, and angelica compound preparation on fibrosis-associated ailments, piquing the interest of researchers. This paper aims to consolidate recent advances in the study of Angelica sinensis for the treatment of fibrosis-related disorders, offering insights for prospective investigations. Literature retrieval included core electronic databases, including Baidu Literature, CNKI, Google-Scholar, PubMed, and Web of Science. The applied search utilized specified keywords to extract relevant information on the pharmacological and phytochemical attributes of plants. The investigation revealed that Angelica sinensis has the potential to impede the advancement of fibrotic diseases by modulating inflammation, oxidative stress, immune responses, and metabolism. ASP, Angelica sinensis extract, Angelica sinensis injection, and Angelica sinensis compound preparation were extensively examined and discussed. These constituents demonstrated significant anti-fibrosis activity. In essence, this review seeks to gain a profound understanding of the role of Angelica sinensis in treating fiber-related diseases. Organ fibrosis manifests in nearly all tissues and organs, posing a critical challenge to global public health due to its widespread occurrence, challenging early diagnosis, and unfavorable prognosis. Despite its prevalence, therapeutic options are limited, and their efficacy is constrained. Over the past few years, numerous studies have explored the protective effects of traditional Chinese medicine on organ fibrosis, with Angelica sinensis standing out as a multifunctional natural remedy. This paper provides a review of organ fibrosis pathogenesis and summarizes the recent two decades' progress in treating fibrosis in various organs such as the liver, lung, kidney, and heart. The review highlights the modulation of relevant signaling pathways through multiple targets and channels by the effective components of Angelica sinensis, whether used as a single medicine or in compound prescriptions.


Assuntos
Angelica sinensis , Fibrose Pulmonar , Angelica sinensis/química , Estudos Prospectivos , Fitoterapia , Medicina Tradicional Chinesa , Fibrose Pulmonar/tratamento farmacológico
4.
Heliyon ; 10(5): e26129, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38434258

RESUMO

Background: Yi-Qi-Jian-Pi Formula (YQJPF) is a herbal medicine that is used to treat patients with liver failure. However, scientific evidence supporting the treatment of hepatic fibrosis with YQJPF has not been forthcoming. The present study aimed to determine the mechanisms underlying the anti-fibrotic effects of YQJPF in mouse models of hepatic fibrosis. Methods: Mice were randomly assigned to control, hepatic fibrosis model, silymarin (positive treated), and low-, medium- and high-dose YQJPF (7.5, 15, and 30 g/kg, respectively) groups. Liver function, inflammatory cytokines, and oxygen stress were analyzed using ELISA kits. Sections were histopathologically stained with hematoxylin-eosin, Masson trichrome, and Sirius red. Macrophage polarization was measured by flow cytometry and immunofluorescence. Potential targets of YQJPF against hepatic fibrosis were analyzed by network pharmacology of Chinese herbal compound and the effects of YQJPF on the transforming growth factor-beta (TGF-ß)/Suppressor of Mothers against Decapentaplegic family member 3 (Smad3) signaling pathway were assessed using qRT-PCR and immunohistochemical staining. Finally, metagenomics and LC-MS/MS were used to detect the intestinal flora and metabolites of the mice, and an in-depth correlation analysis was performed by spearman correlation analysis. The data were compared by one-way ANOVA and least significant differences (LSDs) or ANOVA-Dunnett's T3 method used when no homogeneity was detected. Results: We induced hepatic fibrosis using CCl4 to establish mouse models and found that YQJPF dose-dependently increased body weight, improved liver function, and reversed hepatic fibrosis. Elevated levels of the pro-inflammatory factors IL-1ß, IL-6, and TNF-α in the model mice were substantially decreased by YQJPF, particularly at the highest dose. Levels of serum malondialdehyde and superoxide dismutase (SOD) activity were elevated and reduced, respectively. The malondialdehyde concentration decreased and SOD activity increased in the high-dose group. M1 polarized macrophages (CD86) in the mouse models were significantly decreased and M2 polarization was mildly decreased without significance. However, high-dose YQJPF increased the numbers of M2 macrophages and inhibited TGF-ß/Smad3 signaling. Metagenomic and non-targeted metabolomics detection results showed that YQJPF could regulate intestinal homeostasis, and Spearman correlation analysis showed that the abundance of Calditerrivibrio_nitroreducens was significantly negatively correlated with 18ß-glycyrrhetinic acid. It is suggested that Calditerrivibrio_nitroreducens may reduce the anti-fibrosis effect of licorice and other Chinese herbs by digesting 18ß-glycyrrhetinic acid. Conclusions: YQJPF can reverse liver fibrosis by inhibiting inflammation, suppressing oxidative stress, regulating the immunological response initiated by macrophages, inhibiting TGF-ß/Smad3 signaling and regulating intestinal flora homeostasis. Therefore, YQJPF may be included in clinical regimens to treat hepatic fibrosis.

5.
Phytomedicine ; 128: 155502, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38489889

RESUMO

BACKGROUND: Jaceosidin (JA) is a natural flavone extracted from Artemisia that is used as a food and traditional medicinal herb. It has been reported to possess numerous biological activities. However, the regulatory mechanisms underlying amelioration of hepatic fibrosis remain unclear. HYPOTHESIS/PURPOSE: We hypothesized that jaceosidin acid (JA) modulates hepatic fibrosis and inflammation. METHODS: Thioacetamide (TAA) was used to establish an HF mouse model. In vitro, mouse primary hepatocytes and HSC-T6 cells were induced by TGF-ß, whereas mouse peritoneal macrophages received a treatment lipopolysaccharide (LPS)/ATP. RESULTS: JA decreased serum transaminase levels and improved hepatic histological pathology in TAA-treated mice stimulated by TAA. Moreover, the expression of pro-fibrogenic biomarkers associated with the activation of liver stellate cells was downregulated by JA. Likewise, JA down-regulated the expression of vestigial-like family member 3 (VGLL3), high mobility group protein B1 (HMGB1), toll-like receptors 4 (TLR4), and nucleotide-binding domain-(NOD-) like receptor protein 3 (NLRP3), thereby inhibiting the inflammatory response and inhibiting the release of mature-IL-1ß in TAA-stimulated mice. Additionally, JA suppressed HMGB1 release and NLRP3/ASC inflammasome activation in LPS/ATP-stimulated murine peritoneal macrophages. JA decreases the expression of pro-fibrogenic biomarkers related to liver stellate cell activation and inhibits inflammasome activation in mouse primary hepatocytes. It also down-regulated α-SMA and VGLL3 expressions and also suppressed inflammasome activation in HSC-T6 cells. VGLL3 and α-SMA expression levels were decreased in TGF-ß-stimulated HSC-T6 cells following Vgll3 knockdown. In addition, the expression levels of NLRP3 and cleaved-caspase-1 were decreased in Vgll3-silenced HSC-T6 cells. JA enhanced the inhibitory effects on Vgll3-silenced HSC-T6 cells. Finally, Vgll3 overexpression in HSC-T6 cells affected the expression levels of α-SMA, NLRP3, and cleaved-caspase-1. CONCLUSION: JA effectively modulates hepatic fibrosis by suppressing fibrogenesis and inflammation via the VGLL3/HMGB1/TLR4 axis. Therefore, JA may be a candidate therapeutic agent for the management of hepatic fibrosis. Understanding the mechanism of action of JA is a novel approach to hepatic fibrosis therapy.


Assuntos
Proteína HMGB1 , Cirrose Hepática , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR , Transdução de Sinais , Receptor 4 Toll-Like , Animais , Masculino , Camundongos , Linhagem Celular , Células Estreladas do Fígado/efeitos dos fármacos , Células Estreladas do Fígado/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Proteína HMGB1/metabolismo , Lipopolissacarídeos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/induzido quimicamente , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Transdução de Sinais/efeitos dos fármacos , Tioacetamida , Receptor 4 Toll-Like/metabolismo
6.
Aging (Albany NY) ; 16(4): 3773-3789, 2024 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-38364259

RESUMO

BACKGROUND: Yangyinghuoxue decoction (YYHXD) is a Traditional Chinese medicine (TCM) compound with satisfactory clinical efficacy in the treatment of hepatic fibrosis (HF). However, the pharmacological molecular mechanisms of YYHXD in the treatment of hepatic fibrosis have not yet been clarified. OBJECTIVE: To determine the pharmacological mechanisms of YYHXD for the treatment of hepatic fibrosis via network pharmacology analysis combined with experimental verification. METHODS: First, the bioactive ingredients and potential targets of YYHXD and HF-related targets were retrieved from the online databases and literatures. Next, the "herb-ingredient-target-disease" network and PPI network were constructed for topological analyses and key active compounds and targets screening. Enrichment analyses were performed to identify the critical biological processes and signaling pathways. Then, the molecular docking experiment was performed to initially validate the network pharmacology prediction results. Finally, the antifibrotic effect and pharmacological mechanisms of YYHXD were investigated in CCl4 induced liver fibrosis in rats. RESULTS: In total, 141 active compounds in YYHXD, 637 YYHXD-related targets and 1598 liver fibrosis-related targets were identified. Among them, 69 overlapped targets were finally obtained. Network analysis screened 5 critical bioactive components and 34 key targets. Functional enrichment analysis indicated that YYHXD obviously influenced biological processes such as oxidative stress, cellular inflammation and hepatocyte apoptosis and signaling pathways such as PI3K-Akt, Apoptosis, and JAK-STAT in the treatment of HF. The molecular docking results suggested that the YYHXD may have a direct impact on the PI3K-Akt signaling pathway. Further, in vivo experiment indicated that YYHXD treatment not only reduced liver injury and protected liver function, but also decrease the apoptosis of hepatic parenchyma cells, reducing inflammatory and attenuating oxidative stress. Moreover, YYHXD significantly attenuated the upregulation of target proteins enriched in PI3K signaling pathway, including P-PI3K, P-Akt1, HSP90, MYC, p53. CONCLUSIONS: The mechanisms of YYHXD against liver fibrosis were involved in multiple ingredients, multiple targets and multiple signaling pathways. The PI3K/Akt pathway could be the most important pharmacological mechanism of YYHXD therapy for liver fibrosis.


Assuntos
Farmacologia em Rede , Fosfatidilinositol 3-Quinases , Animais , Ratos , Simulação de Acoplamento Molecular , Proteínas Proto-Oncogênicas c-akt , Cirrose Hepática/tratamento farmacológico
7.
Phytomedicine ; 126: 155148, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38387271

RESUMO

BACKGROUND: Finding a drug for early intervention in the hepatic fibrosis process has important clinical significance. Previous studies have suggested SUMOylation as a potential target for intervention in hepatic fibrosis. However, the role of SAE1, a marker of SUMOylation, in hepatic fibrosis is unknown. Additionally, whether ginkgolic acid (GA), a SUMOylation inhibitor, inhibits hepatic fibrosis by inhibiting SUMO1-activating enzyme subunit 1 (SAE1) should be further investigated. METHODS: Liver tissues of patients with hepatic cirrhosis and a rat model of hepatic fibrosis constructed with CCl4 (400 mg/kg, twice weekly) or TAA (200 mg/kg, twice weekly) were selected, and the degree of hepatic fibrosis was then evaluated using H&E, Sirius red, and Masson's trichrome staining. After knockdown or overexpression of SAE1 in hepatic stellate cells, the expression levels of ferroptosis and hepatic fibrosis markers were measured in vitro. After intervention with a ferroptosis inhibitor, the expression levels were again measured in vivo and in vitro. RESULTS: We first demonstrated that SAE1 increased in patients with hepatic cirrhosis. Subsequently, testing of the rat hepatic fibrosis model confirmed that GA reduced the expression of SAE1 and improved hepatic fibrosis in rats. Then, we used hepatic stellate cell lines to confirm in vitro that GA inhibited SAE1 expression and induced ferroptosis, and that overexpression of SAE1 or inhibition of ferroptosis reversed this process. Finally, we confirmed in vivo that GA induced ferroptosis and alleviated the progression of hepatic fibrosis, while inhibiting ferroptosis also reversed the progression of hepatic fibrosis in rats. CONCLUSION: SAE1 is a potential anti-fibrotic target protein, and GA induces ferroptosis of hepatic stellate cells by targeting SAE1 to exert an anti-hepatic fibrosis effect, which lays an experimental foundation for the future clinical application of its anti-hepatic fibrosis effect.


Assuntos
Ferroptose , Salicilatos , Humanos , Ratos , Animais , Transdução de Sinais , Cirrose Hepática/metabolismo , Fígado , Células Estreladas do Fígado , Enzimas Ativadoras de Ubiquitina/metabolismo , Enzimas Ativadoras de Ubiquitina/farmacologia
8.
J Ethnopharmacol ; 325: 117830, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38301983

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Physalis angulata L., a traditional Chinese medicine called "Kuzhi" in China, was used traditionally to treat liver diseases (eg. icterus, hepatitis) as well as malaria, asthma, and rheumatism. AIM OF THE STUDY: Our study aimed to investigate the withanolides with anti-hepatic fibrosis effect from P. angulate. MATERIALS AND METHODS: Withanolides were obtained from the EtOH extract of P. angulate by bioassay-molecular networking analysis-guided isolation using column chromatography and normal/reversed-phase semipreparative HPLC. The structures of new withanolides were elucidated by combinations of spectroscopic techniques with NMR and ECD calculations. MTT cell viability assay, AO/EB staining method, cell wound healing assay, ELISA and Western blot experiments were employed to evaluate the anti-hepatic fibrosis activity and to uncover related mechanism. Molecular docking analysis and cellular thermal shift assay were used to evaluate and verify the interaction between the active withanolides and their potential targets. RESULTS: Eight unreported withanolides, withagulides A-H (1-8), along with twenty-eight known ones were obtained from P. angulate. Withanolides 6, 9, 10, 24, 27, and 29-32 showed marked anti-hepatic fibrosis effect with COL1A1 expression inhibition above 50 %. Physalin F (9), the main component in the active fraction, significantly decreased the TGF ß1-stimulated expressions of collagen I and α-SMA in LX-2 cells. Mechanism study revealed that physalin F exerted its anti-hepatic fibrosis effect via the PI3K/AKT/mTOR signaling pathway. CONCLUSION: This study suggested that withanolides were an important class of natural products with marked anti-hepatic fibrosis effect. The main withanolide physalin F might be a promising candidate for hepatic fibrosis treatment. The work provided experimental foundation for the use of P. angulate to treat hepatic fibrosis.


Assuntos
Physalis , Vitanolídeos , Vitanolídeos/farmacologia , Vitanolídeos/uso terapêutico , Vitanolídeos/química , Physalis/química , Simulação de Acoplamento Molecular , Fosfatidilinositol 3-Quinases , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/tratamento farmacológico , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Extratos Vegetais/química
9.
Pathol Int ; 74(4): 197-209, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38353379

RESUMO

Chronic hepatic diseases often involve fibrosis as a pivotal factor in their progression. This study investigates the regulatory mechanisms of Yin Yang 1 (YY1) in hepatic fibrosis. Our data reveal that YY1 binds to the prolyl hydroxylase domain 1 (PHD1) promoter. Rats treated with carbon tetrachloride (CCl4) display heightened fibrosis in liver tissues, accompanied by increased levels of YY1, PHD1, and the fibrosis marker alpha-smooth muscle actin (α-SMA). Elevated levels of YY1, PHD1, and α-SMA are observed in the liver tissues of CCl4-treated rats, primary hepatic stellate cells (HSCs) isolated from fibrotic liver tissues, and transforming growth factor beta-1 (TGF-ß1)-induced HSCs. The human HSC cell line LX-2, upon YY1 overexpression, exhibits enhanced TGF-ß1-induced activation, leading to increased expression of extracellular matrix (ECM)-related proteins and inflammatory cytokines. YY1 silencing produces the opposite effect. YY1 exerts a positive regulatory effect on the activation of the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway and PHD1 expression. PHD1 silencing rescues the promotion of YY1 in cell activation, ECM-related protein expression, and inflammatory cytokine production in TGF-ß1-treated LX-2 cells. Overall, our findings propose a model wherein YY1 facilitates TGF-ß1-induced HSC activation, ECM-related protein expression, and inflammatory cytokine production by promoting PHD1 expression and activating the PI3K/AKT signaling pathway. This study positions YY1 as a promising therapeutic target for hepatic fibrosis.


Assuntos
Proteínas Proto-Oncogênicas c-akt , Fator de Crescimento Transformador beta1 , Humanos , Ratos , Animais , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta1/farmacologia , Fator de Crescimento Transformador beta1/uso terapêutico , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/farmacologia , Fosfatidilinositol 3-Quinases/uso terapêutico , Yin-Yang , Cirrose Hepática/metabolismo , Matriz Extracelular/metabolismo , Inflamação/metabolismo , Tetracloreto de Carbono
10.
Front Endocrinol (Lausanne) ; 15: 1322563, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38375190

RESUMO

Background/purpose: Metabolic-associated fatty liver disease (MAFLD) is a major cause of chronic liver disease worldwide and is generally thought to be closely related to obesity and diabetes. However, it also affects non-obese individuals, particularly in Asian cultures. Methods: Healthy physical examination subjects and MAFLD patients were included in the endocrinology department of Jiangsu Provincial Hospital of Traditional Chinese Medicine. MAFLD was defined as fatty liver in imaging without virus infection, drug, alcohol, or other known causes of chronic liver disease. Non-obese MAFLD was defined as MAFLD in non-obese subjects (BMI<25 kg/m2). Results: The final analysis comprised 1047 participants in total. Of 946 MAFLD patients, 162 (17.12%) were diagnosed with non-obese MAFLD. Non-obese MAFLD patients were older, had lower alanine aminotransferase (ALT), triglyceride, and waist circumference, but had higher high density lipoprotein cholesterol (HDL-c) than obese MAFLD patients. Compared with non-obese healthy controls, non-obese MAFLD patients had higher BMI, ALT, gamma-glutamyl transferase (GGT), uric acid (UA), triglycerides (TG), and low density lipoprotein cholesterol (LDL-c). In terms of body composition, body fat mass (BFM), waist-hip ratio (WHR), percent body fat (PBF), visceral fat area (VFA), and fat mass index (FMI) were lower in non-obese healthy controls than non-obese MAFLD patients. A binary logistic regression analysis revealed that non-obese MAFLD was linked with lower GGT and higher HDL-c. Conclusion: In this study cohort, non-obese MAFLD was present at a prevalence of 13.90%. In contrast to non-obese healthy controls, non-obese MAFLD patients exhibited different metabolic profiles, but they also had different body compositions.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Obesidade , Humanos , Fatores de Risco , Índice de Massa Corporal , Obesidade/complicações , Obesidade/epidemiologia , Hepatopatia Gordurosa não Alcoólica/complicações , Composição Corporal , Triglicerídeos , HDL-Colesterol , Metaboloma
11.
Am J Transl Res ; 16(1): 39-50, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38322549

RESUMO

OBJECTIVES: In diabetes, chronic hyperglycemia increases the overactivation of oxidative phosphorylation of mitochondria in the liver, resulting in oxidative stress (OS) damage. The Nrf2 signaling pathway plays a key role in preventing hepatic oxidative injury and inflammation. This study aims to investigate the therapeutic effect and mechanism of Modified Buyang Huanwu Decoction (mBYHWD) on diabetic liver injury (DLI) by regulating oxidative stress mediated by Nrf2 signaling pathway. METHODS: The experiment was divided into three groups: a control group (db/m mice, Con), a diabetes model group (db/db mice, Mod), and a traditional Chinese medicine group (db/m mice, mBYHWD). Post-treatment, serum from each group was analyzed to assess changes of blood glucose, blood lipid, and liver function. These results were combined with data mining to explore the possible pathogenesis of DLI. Liver tissues were collected to observe the pathological morphology and detect related proteins. RESULTS: The results demonstrated that mBYHWD significantly reduced blood lipids and improved liver function following diabetic liver injury. The histopathological results demonstrated that mBYHWD could significantly ameliorate damage of diabetic hepatocytes. Protein analysis revealed that mBYHWD treatment significantly increased the expression of antioxidant proteins in diabetic liver tissue and inhibited inflammation. CONCLUSIONS: The therapeutic mechanism of mBYHWD on DLI may involve activating the Nrf2 signaling pathway to improve oxidative stress, inhibit inflammation, and reduce liver tissue fibrosis.

12.
J Nat Med ; 78(2): 427-438, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38334900

RESUMO

Angelica dahurica (A. dahurica) has a wide range of pharmacological effects, including analgesic, anti-inflammatory and hepatoprotective effects. In this study, we investigated the effect of A. dahurica extract (AD) and its effective component bergapten (BG) on hepatic fibrosis and potential mechanisms. Hepatic fibrosis was induced by intraperitoneal injection with carbon tetrachloride (CCl4) for 1 week, and mice were administrated with AD or BG by gavage for 1 week before CCl4 injection. Hepatic stellate cells (HSCs) were stimulated by transforming growth factor-ß (TGF-ß) and cultured with AD, BG, GW4064 (FXR agonist) or Guggulsterone (FXR inhibitor). In CCl4-induced mice, AD significantly decreased serum aminotransferase, reduced excess accumulation of extracellular matrix (ECM), inhibited caspase-1 and IL-1ß, and increased FXR expressions. In activated HSCs, AD suppressed the expressions of α-SMA, collagen I, and TIMP-1/MMP-13 ratio and inflammatory factors, functioning as FXR agonist. In CCl4-induced mice, BG significantly improved serum transaminase and histopathological changes, reduced ECM excessive deposition, inflammatory response, and activated FXR expression. BG increased FXR expression and inhibited α-SMA and IL-1ß expressions in activated HSCs, functioning as GW4064. FXR deficiency significantly attenuated the decreasing effect of BG on α-SMA and IL-1ß expressions in LX-2 cells. In conclusion, AD could regulate hepatic fibrosis by regulating ECM excessive deposition and inflammation. Activating FXR signaling by BG might be the potential mechanism of AD against hepatic fibrosis.


Assuntos
Cirrose Hepática , Transdução de Sinais , Camundongos , Animais , 5-Metoxipsoraleno/efeitos adversos , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/tratamento farmacológico , Células Estreladas do Fígado , Fator de Crescimento Transformador beta/farmacologia , Fígado
13.
J Ethnopharmacol ; 323: 117730, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38190954

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Qizhuyanggan Decoction (QZD), a traditional Chinese medicine formula, is frequently utilized in clinical practice for managing hepatic fibrosis. However, the specific target and mechanism of action of QZD for hepatic fibrosis treatment remain unknown. AIM OF THE STUDY: By combining network pharmacology, serum medicinal chemistry, and experimental validation methods, our study aimed to investigate the therapeutic effects of QZD on hepatic fibrosis, the anti-hepatic fibrosis active ingredients, and the possible mechanism of anti-hepatic fibrosis action. MATERIALS AND METHODS: The study aimed to investigate the therapeutic effect of QZD on hepatic fibrosis induced by CCl4 in SD rats, as well as its mechanism of action. The rats were anesthetized intraperitoneally using 3% pentobarbital and were executed after asphyxiation with high concentrations of carbon dioxide. Several techniques were employed to evaluate the efficacy of QZD, including ELISA, Western blot, HYP reagent assay, and various pathological examinations such as HE, Masson, Sirius Red staining, and immunohistochemistry (IHC). Additionally, serum biochemical assays were conducted to assess the effect of QZD on liver injury. Network pharmacology, UPLC, molecular docking, and molecular dynamics simulation were utilized to explore the mechanism of QZD in treating hepatic fibrosis. Finally, experimental validation was performed through ELISA, IHC, RT-qPCR, and Western blot analysis. RESULT: Liver histopathology showed that QZD reduced inflammation and inhibited collagen production, and QZD significantly reduced HA and LN content to treat hepatic fibrosis. Serum biochemical analysis showed that QZD improved liver injury. Network pharmacology combined with UPLC screened six active ingredients and obtained 87 targets for the intersection of active ingredients and diseases. The enrichment analysis results indicated that the PI3K/AKT pathway might be the mechanism of action of QZD in the treatment of hepatic fibrosis, and counteracting the inflammatory response might be one of the pathways of action of QZD. Molecular docking and molecular dynamics simulations showed that the active ingredient had good binding properties with PI3K, AKT, and mTOR proteins. Western blot, ELISA, PCR, and IHC results indicated that QZD may treat hepatic fibrosis by inhibiting the PI3K/AKT/mTOR pathway and suppressing M1 macrophage polarization, while also promoting M2 macrophage polarization. CONCLUSIONS: QZD may be effective in the treatment of hepatic fibrosis by inhibiting the PI3K/AKT/mTOR signaling pathway and M1 macrophage polarization, while promoting M2 macrophage polarization. This provides a strong basis for the clinical application of QZD.


Assuntos
Química Farmacêutica , Medicamentos de Ervas Chinesas , Animais , Ratos , Ratos Sprague-Dawley , Simulação de Acoplamento Molecular , Farmacologia em Rede , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Cirrose Hepática/tratamento farmacológico , Serina-Treonina Quinases TOR , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico
14.
J Ethnopharmacol ; 324: 117720, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38211823

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: During the regression of liver fibrosis, a decrease in hepatic stellate cells (HSCs) can occur through apoptosis or inactivation of activated HSCs (aHSCs). A new approach for antifibrotic therapy involves transforming hepatic myofibroblasts into a quiescent-like state. Lamiophlomis rotata (Benth.) Kudo (L. rotata), an orally available Tibetan herb, has traditionally been used to treat skin disease, jaundice, and rheumatism. In our previous study, we found that the total polyphenolic glycoside extract of L. rotata (TPLR) promotes apoptosis in aHSCs for the treatment of hepatic fibrosis. However, whether TPLR induces aHSCs to become inactivated HSCs (iHSCs) is unclear, and the underlying mechanism remains largely unknown. PURPOSE: This study aimed to examine the impact of TPLR on the phenotypes of hepatic stellate cells (HSCs) during the regression of liver fibrosis and explore the potential mechanism of action. METHODS: The effect of TPLR on the phenotypes of hepatic stellate cells (HSCs) was assessed using immunofluorescence (IF) staining, reverse transcription-polymerase chain reaction (RT-PCR), and Western blotting. Transcriptomic and proteomic methods were employed to identify the main signaling pathways involved. Based on the omics results, the likely mechanism of TPLR on the phenotypes of aHSCs was confirmed through overexpression and knockdown experiments in TGF-ß1-activated LX-2 cells. Using a CCl4-induced liver fibrosis mouse model, we evaluated the anti-hepatic fibrosis effect of TPLR and explored its potential mechanism based on omics findings. RESULTS: TPLR was found to induce the differentiation of aHSCs into iHSCs by significantly decreasing the protein expression of α-SMA and Desmin. Transcriptomic and proteomic analyses revealed that the AGE/RAGE signaling pathway plays a crucial role in the morphological transformation of HSCs following TPLR treatment. In vitro experiments using RAGE overexpression and knockdown demonstrated that the mechanism by which TPLR affects the phenotype of HSCs is closely associated with the RAGE/RAS/MAPK/NF-κB axis. In a model of liver fibrosis, TPLR obviously inhibited the generation of AGEs and alleviated liver tissue damage and fibrosis by downregulating RAGE and its downstream targets. CONCLUSION: The AGE/RAGE axis plays a pivotal role in the transformation of activated hepatic stellate cells (aHSCs) into inactivated hepatic stellate cells (iHSCs) following TPLR treatment, indicating the potential of TPLR as a therapeutic agent for the management of liver fibrosis.


Assuntos
Glicosídeos , Proteômica , Camundongos , Animais , Glicosídeos/farmacologia , Glicosídeos/metabolismo , Cirrose Hepática/metabolismo , Fígado , Perfilação da Expressão Gênica , Células Estreladas do Fígado , Fator de Crescimento Transformador beta1/metabolismo
15.
J Ethnopharmacol ; 321: 117538, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38056536

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Yinchen Wuling powder (YCWLP) is a famous traditional Chinese medicine formula with the effect of "removing jaundice and eliminating dampness", which has the potential to prevent and treat hepatic fibrosis (HF). However, the mechanism of the active ingredients of YCWLP in treating HF remains to be clarified. AIM OF THE STUDY: This study aims to investigate the in vivo metabolic profile of YCWLP and the mechanism of its gut microbiota-mediated therapeutic effect on HF via network pharmacology. MATERIALS AND METHODS: In this comprehensive study, the UHPLC-FT-ICR-MS platform was used for the systematic characterization of the in vivo metabolic profile of YCWLP, and the mediating effect of gut microbiota was elucidated by comparing the differences of metabolites between the normal rats and pseudo germ-free rats administrated with YCWLP. Then, the identified active ingredients of YCWLP metabolized by gut microbiota and their targets associated with HF were used for further network pharmacological analysis, including the construction of PPI network, GO and KEGG enrichment and compound-target-pathway-disease network. RESULTS: Overall, 41 prototype compounds and 138 metabolites were identified in the biosamples after YCWLP administration. Among them, 15 drug prototypes are clearly metabolized by gut microbiota, and 91 metabolites showed significant differences between the N-YCWLP group and the PGF-YCWLP group, which might be attributed to the mediation of gut microbiota. Network pharmacology studies on the aforementioned 15 prototype components indicated crucial roles of arginine biosynthesis and complement and coagulation cascades-related genes such as PLG, NOS3, GC and F2 in the treatment of HF by YCWLP mediated by gut microbiota. CONCLUSIONS: The therapeutic effects of multiple active ingredients in YCWLP on HF depend on the metabolism of gut microbiota. This study offers novel insights into the relationship between bioactive chemical constituents and the action mechanism of YCWLP against HF.


Assuntos
Medicamentos de Ervas Chinesas , Farmacologia em Rede , Animais , Ratos , Disponibilidade Biológica , Pós , Cirrose Hepática/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Simulação de Acoplamento Molecular
16.
Phytomedicine ; 123: 155145, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37976698

RESUMO

BACKGROUND: Sesamol (SEM), a natural lignan compound isolated from sesame, has strong anti-oxidant property, regulating lipid metabolism, decreasing cholesterol and hepatoprotection. However, its anti-hepatic fibrosis effect and mechanisms have not been comprehensively elucidated. HYPOTHESIS/PURPOSE: This study aims to investigate the anti-hepatic fibrosis of SEM and its underlying mechanisms. METHOD: C57BL/6 mice with hepatic fibrosis were induced by TAA, then administrated with SEM or curcumin, respectively. HSCs were stimulated by TGF-ß or conditioned medium, and then cultured with SEM, GW4064, GW3965, Rapamycin (RA) or 3-methyladenine (3-MA), respectively. Mice with hepatic fibrosis also were administrated with SEM, RA or 3-MA to estimate the effect of SEM on autophagy. RESULTS: In vitro, SEM significantly inhibited extracellular matrix deposition, P2 × 7r-NLRP3, and inflammatory cytokines. SEM increased FXR and LXRα/ß expressions and decreased MAPLC3α/ß and P62 expressions, functioning as 3-MA (autophagy inhibitor). In vivo, SEM reduced serum transaminase, histopathology changes, fibrogenesis, autophagy markers and inflammatory cytokines caused by TAA. LX-2 were activated with conditioned medium from LPS-primed THP-1, which resulted in significant enhance of autophagy markers and inflammatory cytokines and decrease of FXR and LXRα/ß expressions. SEM could reverse above these changes and function as 3-MA, GW4064, or GW3965. Deficiency of FXR or LXR attenuated the regulation of SEM on α-SMA, MAPLC3α/ß, P62 and IL-1ß in activated LX-2. In activated THP-1, deficiency of FXR could decrease the expression of LXR, and vice versa. Deficiency of FXR or LXR in activated MΦ decreased the expressions of FXR and LXR in activated LX-2. Deficiency FXR or LXR in activated MΦ also attenuated the regulation of SEM on α-SMA, MAPLC3α/ß, P62, caspase-1 and IL-1ß. In vivo, SEM significantly reversed hepatic fibrosis via FXR/LXR and autophagy. CONCLUSION: SEM could regulate hepatic fibrosis by inhibiting fibrogenesis, autophagy and inflammation. FXR/LXR axis-mediated inhibition of autophagy contributed to the regulation of SEM against hepatic fibrosis, especially based on involving in the crosstalk of HSCs-macrophage. SEM might be a prospective therapeutic candidate, and its mechanism would be a new direction or strategy for hepatic fibrosis treatment.


Assuntos
Benzoatos , Benzodioxóis , Benzilaminas , Hepatócitos , Cirrose Hepática , Fenóis , Camundongos , Animais , Meios de Cultivo Condicionados/efeitos adversos , Meios de Cultivo Condicionados/metabolismo , Camundongos Endogâmicos C57BL , Cirrose Hepática/metabolismo , Hepatócitos/metabolismo , Macrófagos , Citocinas/metabolismo , Autofagia , Células Estreladas do Fígado , Fígado
17.
J Ethnopharmacol ; 321: 117402, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37967779

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: DHZCP is a traditional Chinese medicinal formula in "The Synopsis of Prescriptions of the Golden Chamber" that has been often used in the treatment of hepatic disorders, gynecopathy and atherosclerosis. However, its underlying mechanisms in preventing hepatic fibrosis remain incompletely understood. AIM OF THE STUDY: This study aims to explore the therapeutic efficacy and potential mechanism of DHZCP in a CCL4-induced experimental hepatic fibrosis rat model. MATERIALS AND METHODS: DHZCP was orally administered at doses of 0.168, 0.084 and 0.042 g⋅kg-1⋅d-1 in a CCL4-induced hepatic fibrosis model using SD rats. Histopathology, immunohistochemistry and biochemical analysis, ELISA, Flow cytometry, WB, RT-PCR, 16 S rRNA, and untargeted metabolomic analysis were used to determine the therapeutic effects and mechanisms of DHZCP in the treatment of CCL4-induced hepatic fibrosis. RESULTS: Pharmacodynamically, DHZCP inhibited ALT and AST, improved liver function, decreased NF-κB, TNF-α and IL-6 in liver tissue, indicating its role in inhibiting CCL4-induced liver inflammation. Most importantly, it reduces the level of fibrosis in serum and liver tissue. Histological analysis also showed that DHZCP could effectively inhibit inflammatory cytokine infiltration and excessive collagen deposition. Mechanistically, DHZCP regulates gut microbiota, improves the proportion of firmicutes and bacteroidota at the phylum level, and increases the abundance of beneficial bacteria at the genus level, such as muribagulaceae unclassified, prevotella, alloprevotella, closteriales unclassified, lachnospiraceae unclassified and phascolarctobacterium. Instead, it reduced the abundance of two harmful bacteria, desulfovibrio and colidextribacter. Four types of metabolites such as hydrocarbons, organic nitrogen compounds, organic oxygen compounds, and organosulfur compounds were added. Furthermore, DHZCP was found to reduce the damage of intestinal barrier caused by changes in gut microbiota and metabolites. CONCLUSION: DHZCP is an effective inhibitor of hepatic fibrosis by regulating gut microbiota and metabolites, improving the integrity of the intestinal barrier.


Assuntos
Medicamentos de Ervas Chinesas , Microbioma Gastrointestinal , Ratos , Animais , Ratos Sprague-Dawley , Medicamentos de Ervas Chinesas/efeitos adversos , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/metabolismo
18.
Toxicol In Vitro ; 95: 105738, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38000518

RESUMO

Medicinal plants are important worldwide, considering their properties for treating diseases; however, few studies have evaluated their toxicological potential. Among them, Artemisia absinthium is frequently used to treat liver diseases, because its essential oil has several popular therapeutic properties. Based on this information, in the present study, we investigated molecular connectors of physiological effects of the Artemisia absinthium essential oil on human hepatic stellate cell line, LX-2, to explore the potential toxicity of the plant on liver cells. LX-2 is a cellular model to investigate mechanisms of liver fibrosis; then, to analyze the essential oil effects LX-2 was cultured under different conditions, treated or not with the essential oil at 0.4 µg/µL for 24 h. Next, fluorescence microscopy analyses, gene expression measurements, and biochemical approaches revealed that the essential oil reduced pro-fibrogenic markers; however, disrupt lipid metabolism, and cause cellular stress, by the activation of cellular detoxification and pro-inflammatory processes. In conclusion, the hepatic stellate cells incubated with the essential oil present an antifibrotic potential, supporting its popular use; however, the combined results suggest that the essential oil of Artemisia absinthium should be used with caution.


Assuntos
Artemisia absinthium , Óleos Voláteis , Humanos , Artemisia absinthium/toxicidade , Artemisia absinthium/química , Óleos Voláteis/toxicidade , Óleos Voláteis/química , Células Estreladas do Fígado
19.
J Ethnopharmacol ; 321: 117486, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38030027

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Jiawei Taohe Chengqi Tang (JTCD) is a modified formulation of Traditional Chinese Medicine (TCM) known as Taohe Chengqi Decoction, which has been described in the ancient TCM literature "Treatise on Febrile Diseases". As a formula that can activate blood circulation and eliminate blood stasis and regulate Yin and Yang in traditional Chinese medicine applications, JTCD has been reported to be effective in the treatment of chronic liver disease and hepatic fibrosis (HF). AIM OF STUDY: The current study aimed to evaluate the effectiveness of JTCD in modulating hepatic macrophages by regulating the Notch signal pathway, and to further investigate the mechanisms underlying macrophage reprogramming that leads to HF. MATERIALS AND METHODS: Molecular assays were performed using in vitro cultures of human mononuclear THP-1 cells and human-derived hepatic stellate cells LX-2. CCl4-induced mice were utilized as an in vivo model to simulate HF. RESULTS: Our results demonstrated that JTCD exhibited dual effects by inhibiting hepatic stellate cell (HSCs) activation and modulating the polarisation of macrophages towards the M2 phenotype while decreasing the M1 phenotype. Network pharmacological analyses and molecular docking studies revealed that the Notch signal pathway was significantly enriched and played a crucial role in the therapeutic response of JTCD against HF. Moreover, through the establishment of a co-culture model, we validated that JTCD inhibited the Notch signal pathway in macrophages, leading to alterations in macrophage reprogramming, subsequent inhibition of HSC activation, and ultimately exerting anti-HF effects. CONCLUSION: In conclusion, our findings provide solid evidence for JTCD in treating HF, as it suppresses the Notch signal pathway in macrophages, regulates macrophage reprogramming, and inhibits HSC activation.


Assuntos
Cirrose Hepática , Transdução de Sinais , Camundongos , Humanos , Animais , Simulação de Acoplamento Molecular , Cirrose Hepática/metabolismo , Macrófagos , Técnicas de Cocultura , Células Estreladas do Fígado
20.
J Ethnopharmacol ; 322: 117656, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38154526

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Ganoderma lucidum, a traditional edible medicinal mushroom, has been widely reported to improve liver diseases as a dietary intervention for people. Ganoderma lucidum extracts, primarily total triterpenoids (GLTTs), are one of the bioactive ingredients that have excellent beneficial effects on hepatic fibrosis. Therefore, its prevention and reversal are particularly critical due to the increasing number of patients with chronic liver diseases worldwide. AIM OF THE STUDY: The study aimed to evaluate whether GLTTs had a hepatoprotective effect against hepatic fibrosis through metabolic perturbations and gut microbiota changes and its underlying mechanisms. MATERIALS AND METHODS: The compound compositions of GLTTs were quantified, and carbon tetrachloride (CCl4)-induced hepatic fibrosis rats were used to investigate the cause of the improvement in various physiological states with GLTTs treatment, and to determine whether its consequent effect was associated with endogenous metabolites and gut microbiota using UPLC-Q-TOF-MSE metabolomics and 16S rRNA gene sequencing technology. RESULTS: GLTTs alleviated physical status, reduced liver pathological indicators, proinflammatory cytokines, and deposition of hepatic collagen fibers via regulating the NF-κB and TGF-ß1/Smads pathways. The untargeted metabolomics analysis identified 16 potential metabolites that may be the most relevant metabolites for gut microbiota dysbiosis and the therapeutic effects of GLTTs in hepatic fibrosis. Besides, although GLTTs did not significantly affect the α-diversity indexes, significant changes were observed in the composition of microflora structure. In addition, Spearman analysis revealed strong correlations between endogenous metabolites and gut microbiota g_Ruminococcus with hepatic fibrosis. CONCLUSION: GLTTs could provide a potential target for the practical design and application of novel functional food ingredients or drugs in the therapy of hepatic fibrosis.


Assuntos
Microbioma Gastrointestinal , Reishi , Humanos , Ratos , Animais , NF-kappa B/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Reishi/metabolismo , Ruminococcus/metabolismo , RNA Ribossômico 16S , Cirrose Hepática/metabolismo , Comunicação , Tetracloreto de Carbono/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA