Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(28): 33504-33513, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37411033

RESUMO

Exposure to fine particulate matter with a diameter ≤2.5 µm (PM2.5) can result in serious inflammation and oxidative stress in lung tissue. However, there is presently very few effective treatments for PM2.5-induced many pulmonary diseases, such as acute lung injury (ALI). Herein, curcumin-loaded reactive oxygen species (ROS)-responsive hollow mesoporous silica nanoparticles (Cur@HMSN-BSA) are proposed for scavenging the intracellular ROS and suppressing inflammatory responses against PM2.5-induced ALI. The prepared nanoparticles were coated with bovine serum albumin (BSA) via an ROS-sensitive thioketal (TK)-containing linker, in which the TK-containing linker would be cleaved by the excessive amounts of ROS in inflammatory sites to induce the detachment of BSA from the nanoparticles surface and thus triggering release of loaded curcumin. The Cur@HMSN-BSA nanoparticles could be used as ROS scavengers because of their excellent ROS-responsiveness, which were able to efficiently consume high concentrations of intracellular ROS. Furthermore, it was also found that Cur@HMSN-BSA downregulated the secretion of several important pro-inflammatory cytokines and promoted the polarization from M1 phenotypic macrophages to M2 phenotypic macrophages for eliminating PM2.5-induced inflammatory activation. Therefore, this work provided a promising strategy to synergistically scavenge intracellular ROS and suppress the inflammation responses, which may serve as an ideal therapeutic platform for pneumonia treatment.


Assuntos
Lesão Pulmonar Aguda , Curcumina , Nanopartículas , Humanos , Curcumina/farmacologia , Curcumina/uso terapêutico , Espécies Reativas de Oxigênio , Dióxido de Silício , Soroalbumina Bovina , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Material Particulado , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico
2.
Acta Biomater ; 126: 408-420, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33731303

RESUMO

The combination of chemotherapy and photothermal therapy (PTT) into a single formulation has attracted increasing attention as a strategy for enhancing cancer treatment. Here, hollow mesoporous silica nanoparticles (HMSNs) were used as a base carrier material, loaded with the anti-cancer drug doxorubicin (DOX), and surface functionalized with chitosan (CS) and copper sulfide (CuS) nanodots to give HMSNs-CS-DOX@CuS. In this formulation, the CuS dots act as gatekeepers to seal the surface pores of the HMSNs, preventing a burst release of DOX into the systemic circulation. S-S bonds connect the CuS dots to the HMSNs; these are selectively cleaved under the reducing microenvironment of the tumor, permitting targeted drug release. This, coupled with the PTT properties of CuS, results in a potent chemo/PTT platform. The HMSNs-CS-DOX@CuS nanoparticles have a uniform size (150 ± 13 nm), potent photothermal properties (η = 36.4 %), and tumor-targeted and near infrared (NIR) laser irradiation-triggered DOX release. In vitro and in vivo experimental results confirmed that the material has good biocompatibility, but is effectively taken up by cancer cells. Moreover, the CuS nanodots permit simultaneous thermal/photoacoustic dual-modality imaging. Treatment with HMSNs-CS-DOX@CuS and NIR irradiation caused extensive apoptosis in cancer cells both in vitro and in vivo, and could dramatically extend the lifetimes of animals in a murine breast cancer model. The system developed in this work therefore merits further investigation as a potential nanotheranostic platform for cancer treatment. STATEMENT OF SIGNIFICANCE: Conventional cancer chemotherapy is accompanied by unavoidable off-target toxicity. Combination therapies, which can ameliorate these issues, are attracting significant attention. Here, the anticancer drug doxorubicin (DOX) was encapsulated in the central cavity of chitosan (CS)-modified hollow mesoporous silica nanoparticles (HMSNs). The prepared system can target drug release to the tumor microenvironment. When exposed to near infrared laser (NIR) irradiation, CuS nanodots located at the surface pores of the HMSNs generate energy, accelerating drug release. In addition, a systematic in vitro and in vivo evaluation confirmed the HMSNs-CS-DOX@CuS platform to give highly effective synergistic chemotherapeutic-photothermal therapy and have effective thermal/photoacoustic dual-imaging properties. This work may open up a new avenue for NIR-enhanced synergistic therapy with simultaneous thermal/photoacoustic dual imaging.


Assuntos
Antineoplásicos , Neoplasias da Mama , Quitosana , Nanopartículas , Animais , Antineoplásicos/farmacologia , Cobre/farmacologia , Doxorrubicina/farmacologia , Liberação Controlada de Fármacos , Humanos , Camundongos , Fototerapia , Medicina de Precisão , Dióxido de Silício , Sulfetos , Microambiente Tumoral
3.
Drug Deliv ; 27(1): 258-268, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32009475

RESUMO

In this paper, we prepared doxorubicin-loaded folic acid-functionalized pH-sensitive photothermal therapy (PTT) traceable hollow mesoporous silica nanoparticles (DOX-HPCF) as a drug carrier for liver cancer treatment. According to TEM characterization, hollow mesoporous silica nanoparticles (HMSN) are monodispersed spherical particles with hollow structure. In vitro drug release experiments showed that HPCF exhibited pH-sensitive release. Cell uptake experiments showed that HPCF was successfully absorbed by SMMC-7721 cells. In addition, DOX-HPCF significantly inhibited the proliferation of SMMC-7721 cells, and the near-infrared (NIR) light group showed a more obvious inhibitory effect. In vivo anti-tumor experiments showed that DOX-HPCF-assisted PTT inhibited tumor growth significantly. Therefore, HPCF is a promising photothermotherapy carrier for the treatment of liver cancer.


Assuntos
Doxorrubicina/farmacologia , Portadores de Fármacos/química , Nanopartículas/química , Fototerapia/métodos , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Doxorrubicina/administração & dosagem , Liberação Controlada de Fármacos , Estabilidade de Medicamentos , Feminino , Ácido Fólico/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Camundongos , Dióxido de Silício/química , Carga Tumoral/efeitos dos fármacos
4.
ACS Appl Mater Interfaces ; 11(51): 47798-47809, 2019 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-31773941

RESUMO

Conventional adjuvants (e.g., aluminum) are insufficient to trigger cell-mediated immunity, which plays a crucial role in triggering specific immunity against cancer. Therefore, developing appropriate adjuvants for cancer vaccines is a central way to stimulate the antitumor immune response. Hollow mesoporous silica nanoparticles (HMSNs) have been proven to stimulate Th1 antitumor immunity in vivo and promote immunological memory in the formulation of novel cancer vaccines. Yet, immune response rates of existing HMSNs for anticancer immunity still remain low. Here, we demonstrate the generation of polyethylenimine (PEI)-incorporated thin-shell HMSNs (THMSNs) through a facile PEI etching strategy for cancer immunotherapy. Interestingly, incorporation of PEI and thin-shell hollow structures of THMSNs not only improved the antigen-loading efficacy and sustained drug release profiles but also enhanced the phagocytosis efficiency by dendritic cells (DCs), enabled DC maturation and Th1 immunity, and sustained immunological memory, resulting in the enhancement of the adjuvant effect of THMSNs. Moreover, THMSNs vaccines without significant side effects can significantly reduce the potentiality of tumor growth and metastasis in tumor challenge and rechallenge models, respectively. THMSNs are considered to be promising vehicles and excellent adjuvants for the formulation of cancer vaccines for immunotherapy.


Assuntos
Adjuvantes Imunológicos/química , Vacinas Anticâncer/química , Imunoterapia/métodos , Nanopartículas/química , Polietilenoimina/química , Dióxido de Silício/química , Animais , Células Dendríticas/metabolismo , Humanos
5.
Acta Biomater ; 88: 448-461, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30818051

RESUMO

Near-infrared (NIR)-responsive drug delivery systems have enhanced tumor ablative efficiency through permeation and retention effects. Graphene oxide (GO) has shown great potential both in photothermal therapy and in drug delivery. Thus, in this study, we designed an ambient spark-generated GO, wrapped on topotecan (TPT)-loaded hollow mesoporous silica nanoparticles (HMSN-NH2-TPT-CGO), to function as an efficient platform for pH-dependent sustained release of TPT. HMSN-NH2-TPT-CGO also exhibited a combined chemo-photothermal effect within a single carrier system. This developed system was stable with a uniform particle size (∼190 nm) and was demonstrated to possess a sufficient heat-absorbing capacity to induce tumor cell ablation. We performed the ablation of tumor cells both in vitro and in vivo in combination with photothermal therapy and chemotherapy using the spark-generated functional GO and HMSN. The prepared nanocarriers demonstrated high cellular uptake, apoptosis, and G0/G1 cell cycle arrest. In vivo study using the MDA-MB-231 xenograft model revealed the ultraefficient tumor ablative performance of HMSN-NH2-TPT-CGO compared with that of free TPT, with no toxic effect on vital organs. Altogether, the optimized nanocarriers presented a significant potential to act as a vehicle for cancer treatment. STATEMENT OF SIGNIFICANCE: This is the first study that uses spark-generated graphene oxide nanoflakes to cover the topotecan (TPT)-loaded hollow mesoporous silica nanoparticles (HMSNs) to treat breast cancer. Dense silica was used as a hard template to prepare the HMSNs attributing to a high drug payload. The concentration of Na2CO3 was precisely controlled to minimize the silica etching time within 70 min. The use of the nanographene flakes served a dual purpose, first, by acting as a capping agent to prevent the premature release of drug and, second, by serving as a nano heater that significantly ablates the tumor cells. The prepared nanocarriers (NCs) exhibited effective and enhanced in vitro and in vivo apoptosis, as well as significant tumor growth inhibition even after 15 days of treatment time, with no toxic effect to the vital organs. The NCs enhanced in vitro tumor cell killing effects and served as an effective carrier for in vivo tumor regression, thereby highlighting the enormous potential of this system for breast cancer therapy.


Assuntos
Aerossóis/farmacologia , Antineoplásicos/farmacologia , Carbono/química , Hipertermia Induzida , Nanopartículas/química , Fototerapia , Dióxido de Silício/química , Animais , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Terapia Combinada , Liberação Controlada de Fármacos , Feminino , Grafite/química , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , Nanopartículas/ultraestrutura , Tamanho da Partícula , Porosidade , Espectroscopia de Infravermelho com Transformada de Fourier , Eletricidade Estática , Topotecan/farmacologia
6.
Int J Nanomedicine ; 13: 8339-8354, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30584304

RESUMO

BACKGROUND: Thyroid cancer becomes the most common endocrine cancer with the greatest growing incidence in this decade. Sorafenib is a multikinase inhibitor for the treatment of progressive radioactive iodine-refractory differentiated thyroid cancer (DTC), while the off-target toxicity effect is usually inconvenient for patients taking. METHODS: In this study, hollow mesoporous silica nanoparticles (HMSNs) with transferrin modification (Tf-HMSNs) were loaded with sorafenib (sora@Tf-HMSNs) to help targeted delivery of sorafenib. Due to the biocompatible Tf shell, Tf-HMSNs exhibited excellent bio-compatibility and increased intracellular accumulation, which improved the targeting capability to cancer cells in vitro and in vivo. RESULTS: Sora@Tf-HMSNs treatment exhibited the strongest inhibition effect of res-TPC-1 cells and res-BCPAP cells compared with sora@HMSNs and sorafenib groups and induced more cancer cell apoptosis. Finally, Western blot analysis was conducted to check the expression of RAF/MEK/ERK signaling pathway after sorafenib encapsulated Tf-HMSNs treatment. CONCLUSION: Overall, sora@Tf-HMSNs can significantly increase the effective drug concentration in cancer cells and thus enhance the anticancer effect, which are expected to be promising nanocarriers to deliver anticancer drugs for effective and safe therapy for RAI-refractory DTC.


Assuntos
Diferenciação Celular , Sistemas de Liberação de Medicamentos , Nanopartículas/química , Receptores da Transferrina/metabolismo , Dióxido de Silício/química , Sorafenibe/administração & dosagem , Sorafenibe/uso terapêutico , Neoplasias da Glândula Tireoide/tratamento farmacológico , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Portadores de Fármacos/farmacologia , Liberação Controlada de Fármacos , Humanos , Radioisótopos do Iodo/química , Camundongos Nus , Nanopartículas/ultraestrutura , Porosidade , Transdução de Sinais , Neoplasias da Glândula Tireoide/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Int J Nanomedicine ; 13: 7607-7621, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30510420

RESUMO

BACKGROUND: Integration of several types of therapeutic agents into one nanoplatform to enhance treatment efficacy is being more widely used for cancer therapy. METHODS: Herein, a biocompatible polydopamine (PDA)-coated MoSe2-wrapped doxorubicin (DOX)-loaded hollow mesoporous silica nanoparticles (HMSNs) nanoplatform (PM@HMSNs-DOX) was fabricated for dual-sensitive drug release and chemo-photothermal therapy for enhancing the therapeutic effects on breast cancer. The HMSNs were obtained by a "structural difference-based selective etching" strategy and served as the drug carrier, exhibiting a high DOX loading capacity of 427 mg/g HMSNs-NH2, and then wrapped with PDA-coated MoSe2 layer to form PM@HMSNs-DOX. Various techniques proved the successful fabrication of the nanocomposites. RESULTS: The formed PM@HMSNs-DOX nanocomposites exhibited good biocompatibility, good stability, and super-additive photothermal conversion efficiency due to the cooperation of MoSe2 and PDA. Simultaneously, the pH/near-infrared-responsive drug release profile was observed, which could enhance the synergistic therapeutic anticancer effect. The antitumor effects of PM@HMSNs-DOX were evaluated both in vitro and in vivo, demonstrating that the synergistic therapeutic efficacy was significantly superior to any monotherapy. Also, in vivo pharmacokinetics studies showed that PM@HMSNs-DOX had a much longer circulation time than free DOX. In addition, in vitro and in vivo toxicity studies certified that PM@HMSNs are suitable as biocompatible agents. CONCLUSION: Our nanoplatform loaded with DOX displays pH/near-infrared-induced chemotherapy and excellent photothermal therapy, which hold great potential for cancer treatment.


Assuntos
Liberação Controlada de Fármacos , Hipertermia Induzida , Indóis/química , Molibdênio/química , Nanopartículas/química , Fototerapia , Polímeros/química , Dióxido de Silício/química , Animais , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Morte Celular , Linhagem Celular Tumoral , Preparações de Ação Retardada/uso terapêutico , Doxorrubicina/química , Doxorrubicina/farmacocinética , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Feminino , Humanos , Hidrodinâmica , Concentração de Íons de Hidrogênio , Camundongos Endogâmicos BALB C , Camundongos Nus , Nanopartículas/ultraestrutura , Ratos Sprague-Dawley , Distribuição Tecidual
8.
ACS Appl Mater Interfaces ; 8(11): 6869-79, 2016 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-26937591

RESUMO

In this study, polymeric prodrug coated hollow mesoporous silica nanoparticles (HMSNs) with encapsulated near-infrared (NIR) absorbing dye were prepared and explored for combined photothermal-chemotherapy. A copolymer integrated with tert-butoxycarbonyl protected hydrazide groups and oligoethylene glycols was initially grafted on the surface of HMSNs via reversible addition-fragmentation chain-transfer (RAFT) polymerization followed by the deprotection to reactivate the hydrazide groups for the conjugation of anticancer drug doxorubicin (DOX). DOX was covalently bound onto the polymer substrate by acid-labile hydrazone bond and released quickly in weak acidic environment for chemotherapy. The hollow cavity of HMSNs was loaded with an NIR absorbing dye IR825 to form the final multifunctional hybrid denoted as HMSNs-DOX/IR825. The hybrid exhibited good dispersity and stability as well as high light-to-heat conversion efficiency. As revealed by confocal microscopy and flow cytometry analysis, the hybrid was efficiently taken up by cancer cells, and the conjugated DOX could be released under the cellular environment. In vitro cytotoxicity study demonstrated that anticancer activity of HMSNs-DOX/IR825 could be significantly improved by the NIR irradiation, which led to a satisfactory therapeutic efficacy through the combination treatment. Thus, the developed hybrid could be a promising candidate for the combined photothermal-chemotherapy of cancer.


Assuntos
Benzoatos , Doxorrubicina , Hipertermia Induzida/métodos , Indóis , Raios Infravermelhos , Nanopartículas/química , Neoplasias , Fototerapia/métodos , Pró-Fármacos , Dióxido de Silício , Benzoatos/química , Benzoatos/farmacocinética , Benzoatos/farmacologia , Cápsulas , Doxorrubicina/química , Doxorrubicina/farmacocinética , Doxorrubicina/farmacologia , Células HeLa , Humanos , Indóis/química , Indóis/farmacocinética , Indóis/farmacologia , Neoplasias/metabolismo , Neoplasias/patologia , Neoplasias/terapia , Porosidade , Pró-Fármacos/química , Pró-Fármacos/farmacocinética , Pró-Fármacos/farmacologia , Dióxido de Silício/química , Dióxido de Silício/farmacocinética , Dióxido de Silício/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA