Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Tipo de documento
Intervalo de ano de publicação
1.
Neurosci Bull ; 38(9): 1041-1056, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35705785

RESUMO

Functional changes in synaptic transmission from the lateral entorhinal cortex to the dentate gyrus (LEC-DG) are considered responsible for the chronification of pain. However, the underlying alterations in fan cells, which are the predominant neurons in the LEC that project to the DG, remain elusive. Here, we investigated possible mechanisms using a rat model of complete Freund's adjuvant (CFA)-induced inflammatory pain. We found a substantial increase in hyperpolarization-activated/cyclic nucleotide-gated currents (Ih), which led to the hyperexcitability of LEC fan cells of CFA slices. This phenomenon was attenuated in CFA slices by activating dopamine D2, but not D1, receptors. Chemogenetic activation of the ventral tegmental area -LEC projection had a D2 receptor-dependent analgesic effect. Intra-LEC microinjection of a D2 receptor agonist also suppressed CFA-induced behavioral hypersensitivity, and this effect was attenuated by pre-activation of the Ih. Our findings suggest that down-regulating the excitability of LEC fan cells through activation of the dopamine D2 receptor may be a strategy for treating chronic inflammatory pain.


Assuntos
Dor Crônica , Córtex Entorrinal , Animais , Córtex Entorrinal/metabolismo , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Neurônios/metabolismo , Ratos , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2
2.
Metab Brain Dis ; 36(8): 2181-2193, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34118021

RESUMO

Mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes (MELAS) is a disease that should be considered as a differential diagnosis to acute ischemic stroke taking into account its onset pattern and neurological symptoms, which are similar to those of an ischemic stroke. Technological advancements in neuroimaging modalities have greatly facilitated differential diagnosis between stroke and MELAS on diagnostic imaging. Stroke-like episodes in MELAS have the following features: (1) symptoms are neurolocalized according to lesion site; (2) epileptic seizures are often present; (3) lesion distribution is inconsistent with vascular territory; (4) lesions are common in the posterior brain regions; (5) lesions continuously develop in adjacent sites over several weeks or months; (6) neurological symptoms and stroke-like lesions tend to be reversible, as presented on magnetic resonance imaging; (7) the rate of recurrence is high; and; (8) brain dysfunction and atrophy are slowly progressive. The m.3243ANG mutation in the MT-TL1 gene encoding the mitochondrial tRNALeu(UUR) is most commonly associated with MELAS. Although the precise pathophysiology is still unclear, one possible hypothesis for these episodes is a neuronal hyperexcitability theory, including neuron-astrocyte uncoupling. Supplementation, such as with L-arginine or taurine, has been proposed as preventive treatments for stroke-like episodes. As this disease is still untreatable and devastating, numerous drugs are being tested, and new gene therapies hold great promise for the future. This article contributes to the understanding of MELAS and its implications for clinical practice, by deepening their insight into the latest pathophysiological hypotheses and therapeutic developments.


Assuntos
AVC Isquêmico , Síndrome MELAS , Acidente Vascular Cerebral , Encéfalo/patologia , Humanos , Síndrome MELAS/diagnóstico por imagem , Síndrome MELAS/genética , Síndrome MELAS/terapia , RNA de Transferência de Leucina , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/terapia
3.
Expert Opin Ther Targets ; 24(7): 629-637, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32336175

RESUMO

INTRODUCTION: Epilepsy is a common neurological disorder of neuronal hyperexcitability that begets recurrent and unprovoked seizures. The lack of a truly satisfactory pharmacotherapy for epilepsy highlights the clinical urgency for the discovery of new drug targets. To that end, targeting the electroneutral K+/Cl- cotransporter KCC2 has emerged as a novel therapeutic strategy for the treatment of epilepsy. AREAS COVERED: We summarize the roles of KCC2 in the maintenance of synaptic inhibition and the evidence linking KCC2 dysfunction to epileptogenesis. We also discuss preclinical proof-of-principle studies that demonstrate that augmentation of KCC2 function can reduce seizure activity. Moreover, potential strategies to modulate KCC2 activity for therapeutic benefit are highlighted. EXPERT OPINION: Although KCC2 is a promising drug target, questions remain before clinical translation. It is unclear whether increasing KCC2 activity can reverse epileptogenesis, the ultimate curative goal for epilepsy therapy that extends beyond seizure reduction. Furthermore, the potential adverse effects associated with increased KCC2 function have not been studied. Continued investigations into the neurobiology of KCC2 will help to translate promising preclinical insights into viable therapeutic avenues that leverage fundamental properties of KCC2 to treat medically intractable epilepsy and other disorders of failed synaptic inhibition with attendant neuronal hyperexcitability.


Assuntos
Anticonvulsivantes/farmacologia , Epilepsia/tratamento farmacológico , Terapia de Alvo Molecular , Animais , Descoberta de Drogas , Avaliação Pré-Clínica de Medicamentos , Epilepsia/fisiopatologia , Humanos , Neurônios/metabolismo , Simportadores/metabolismo
4.
Neurobiol Aging ; 88: 1-10, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32065917

RESUMO

Recently, increased neuronal activity in nucleus reuniens (Re) has been linked to hyperexcitability within hippocampal-thalamo-cortical networks in the J20 mouse model of amyloidopathy. Here in vitro whole-cell patch clamp recordings were used to compare old pathology-bearing J20 mice and wild-type controls to examine whether altered intrinsic electrophysiological properties could contribute to the amyloidopathy-associated Re hyperactivity. A greater proportion of Re neurons display hyperpolarized membrane potentials in J20 mice without changes to the incidence or frequency of spontaneous action potentials. Re neurons recorded from J20 mice did not exhibit increased action potential generation in response to depolarizing current stimuli but an increased propensity to rebound burst following hyperpolarizing current stimuli. Increased rebound firing did not appear to result from alterations to T-type Ca2+ channels. Finally, in J20 mice, there was an ~8% reduction in spike width, similar to what has been reported in CA1 pyramidal neurons from multiple amyloidopathy mice. We conclude that alterations to the intrinsic properties of Re neurons may contribute to hippocampal-thalmo-cortical hyperexcitability observed under pathological beta-amyloid load.


Assuntos
Doença de Alzheimer/etiologia , Doença de Alzheimer/fisiopatologia , Núcleos da Linha Média do Tálamo/fisiopatologia , Potenciais de Ação , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Canais de Cálcio/metabolismo , Córtex Cerebral/fisiopatologia , Modelos Animais de Doenças , Hipocampo/fisiopatologia , Masculino , Potenciais da Membrana , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Técnicas de Patch-Clamp , Tálamo/fisiopatologia
5.
Philos Trans R Soc Lond B Biol Sci ; 374(1787): 20190029, 2019 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-31630652

RESUMO

In synaesthesia, stimulation of one sensory modality evokes additional experiences in another modality (e.g. sounds evoking colours). Along with these cross-sensory experiences, there are several cognitive and perceptual differences between synaesthetes and non-synaesthetes. For example, synaesthetes demonstrate enhanced imagery, increased cortical excitability and greater perceptual sensitivity in the concurrent modality. Previous models suggest that synaesthesia results from increased connectivity between corresponding sensory regions or disinhibited feedback from higher cortical areas. While these models explain how one sense can evoke qualitative experiences in another, they fail to predict the broader phenotype of differences observed in synaesthetes. Here, we propose a novel model of synaesthesia based on the principles of stochastic resonance. Specifically, we hypothesize that synaesthetes have greater neural noise in sensory regions, which allows pre-existing multisensory pathways to elicit supra-threshold activation (i.e. synaesthetic experiences). The strengths of this model are (a) it predicts the broader cognitive and perceptual differences in synaesthetes, (b) it provides a unified framework linking developmental and induced synaesthesias, and (c) it explains why synaesthetic associations are inconsistent at onset but stabilize over time. We review research consistent with this model and propose future studies to test its limits. This article is part of a discussion meeting issue 'Bridging senses: novel insights from synaesthesia'.


Assuntos
Sinestesia/psicologia , Cognição , Percepção de Cores , Humanos , Modelos Neurológicos , Modelos Psicológicos
6.
Neuroscience ; 416: 88-99, 2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-31400485

RESUMO

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease affecting the corticospinal tract and leading to motor neuron death. According to a recent study, magnetic resonance imaging-visible changes suggestive of neurodegeneration seem absent in the motor cortex of G93A-SOD1 ALS mice. However, it has not yet been ascertained whether the cortical neural activity is intact, or alterations are present, perhaps even from an early stage. Here, cortical neurons from this model were isolated at post-natal day 1 and cultured on multielectrode arrays. Their activity was studied with a comprehensive pool of neurophysiological analyses probing excitability, criticality and network architecture, alongside immunocytochemistry and molecular investigations. Significant hyperexcitability was visible through increased network firing rate and bursting, whereas topological changes in the synchronization patterns were apparently absent. The number of dendritic spines was increased, accompanied by elevated transcriptional levels of the DLG4 gene, NMDA receptor 1 and the early pro-apoptotic APAF1 gene. The extracellular Na+, Ca2+, K+ and Cl- concentrations were elevated, pointing to perturbations in the culture micro-environment. Our findings highlight remarkable early changes in ALS cortical neuron activity and physiology. These changes suggest that the causative factors of hyperexcitability and associated toxicity could become established much earlier than the appearance of disease symptoms, with implications for the discovery of new hypothetical therapeutic targets.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Córtex Motor/patologia , Neurônios Motores/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Esclerose Lateral Amiotrófica/patologia , Animais , Morte Celular/fisiologia , Modelos Animais de Doenças , Camundongos Transgênicos , Doenças Neurodegenerativas/patologia , Superóxido Dismutase/metabolismo
7.
Brain Res ; 1706: 184-195, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30419223

RESUMO

Low frequency stimulation (LFS) has inhibitory effect on hyperexcitability during epileptic states. However, knowledge is lacking about LFS patterns that can exert an optimal antiepileptic effect. In this study, the effect of different numbers of pulses and current intensities of 1 Hz LFS applied at various time points of epileptiform activity was evaluated in high-K+ model of epileptiform activity (EA). LFS was applied to the Schaffer collaterals, and changes in the excitability of CA1 pyramidal neurons were measured using whole-cell patch-clamp recording. Six hundred and 900 pulses of LFS at two current intensities (equal to and 1.5 times greater than the current intensity sufficient to elicit a 5 mV EPSP) administered at the beginning of EA revealed a stronger LFS inhibitory effect on EA-induced neuronal hyperexcitability when applied at higher pulse number and current intensity. LFS900 (high intensity) significantly hyperpolarized the membrane potential after a high-K+ ACSF washout, reduced the frequency of spontaneous action potentials during EA, and attenuated neuronal firing frequency after high-K+ ACSF washout. Moreover, applying LFS900 (high intensity) before EA induction and 8-10 min after EA initiation could not significantly affect neuronal hyperexcitability, compared to its application at the beginning of EA. This study's findings also offered long-term depression (LTD) as a probable mechanism for LFS' inhibitory role on EA-induced neuronal hyperexcitability. Therefore, the application of LFS (1 Hz) at 900 pulses and greater current intensity at the beginning of EA can exert a strong inhibitory effect on EA-induced neuronal hyperexcitability.


Assuntos
Terapia por Estimulação Elétrica/métodos , Convulsões/terapia , Potenciais de Ação/fisiologia , Animais , Encéfalo/fisiologia , Região CA1 Hipocampal/fisiologia , Estimulação Elétrica/métodos , Epilepsia/terapia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Hipocampo/fisiologia , Masculino , Plasticidade Neuronal/fisiologia , Neurônios/efeitos dos fármacos , Técnicas de Patch-Clamp/métodos , Células Piramidais/fisiologia , Ratos , Ratos Wistar , Convulsões/fisiopatologia , Sinapses/fisiologia , Transmissão Sináptica/fisiologia , Lobo Temporal/fisiologia
8.
J Neurosci Rural Pract ; 9(3): 431-433, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30069108

RESUMO

Morvan's syndrome is an autoimmune disorder of peripheral and central nervous system mediated by VGKC antibody. Here we report a case of Morvans syndrome who presented 1 month after ayurvedic drug intake. She presented with symptoms of peripheral nerve hyperexcitablity and autoimmune testing revealed positive result for VGKC antibody. Heavy metals level was also significantly raised. She improved after a course of steroids. This case report tries to highlight the association of VGKC mediated Morvans syndrome with heavy metal poisoning and its incidental occurence after Ayurvedic drug intake.

9.
Can J Physiol Pharmacol ; 96(10): 991-1003, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30130426

RESUMO

Homocysteine, an amino acid containing a sulfhydryl group, is an intermediate product during metabolism of the amino acids methionine and cysteine. Hyperhomocysteinemia is used as a predictive risk factor for cardiovascular disorders, the stroke progression, screening for inborn errors of methionine metabolism, and as a supplementary test for vitamin B12 deficiency. Two organic systems in which homocysteine has the most harmful effects are the cardiovascular and nervous system. The adverse effects of homocysteine are achieved by the action of several different mechanisms, such as overactivation of N-methyl-d-aspartate receptors, activation of Toll-like receptor 4, disturbance in Ca2+ handling, increased activity of nicotinamide adenine dinucleotide phosphate-oxidase and subsequent increase of production of reactive oxygen species, increased activity of nitric oxide synthase and nitric oxide synthase uncoupling and consequent impairment in nitric oxide and reactive oxygen species synthesis. Increased production of reactive species during hyperhomocysteinemia is related with increased expression of several proinflammatory cytokines, including IL-1ß, IL-6, TNF-α, MCP-1, and intracellular adhesion molecule-1. All these mechanisms contribute to the emergence of diseases like atherosclerosis and related complications such as myocardial infarction, stroke, aortic aneurysm, as well as Alzheimer disease and epilepsy. This review provides evidence that supports the causal role for hyperhomocysteinemia in the development of cardiovascular disease and nervous system disorders.


Assuntos
Doenças Cardiovasculares/metabolismo , Homocisteína/metabolismo , Doenças do Sistema Nervoso/metabolismo , Animais , Doenças Cardiovasculares/fisiopatologia , Humanos , Doenças do Sistema Nervoso/fisiopatologia
10.
J Pain Palliat Care Pharmacother ; 32(1): 5-9, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29775120

RESUMO

Peripheral nerve hyperexcitability (PNH) syndromes are a rare set of neuromuscular disorders that include cramp-fasciculation syndrome (CFS) and Isaacs syndrome (IS). Successful treatment of these diseases has been achieved with antiepileptic medications; however, chronic pain symptoms can persist. We provide a case report of a 25-year-old female who has suffered from painful severe muscle spasms and fasciculations since childhood. With CFS as our working diagnosis, a treatment regimen using interventional pain techniques, including sympathetic chain blocks, ketamine infusions, and trigger point injections, resulted in a significant decrease in the patient's chronic pain symptoms. This case offers a novel application of interventional pain procedures and may help further our understanding of PNH syndromes.


Assuntos
Dor Crônica/tratamento farmacológico , Dor Crônica/terapia , Ketamina/administração & dosagem , Bloqueio Nervoso/métodos , Doenças Neuromusculares/tratamento farmacológico , Adulto , Analgésicos/administração & dosagem , Dor Crônica/etiologia , Feminino , Humanos , Doenças Neuromusculares/fisiopatologia , Resultado do Tratamento
11.
Neuroscience ; 369: 87-96, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29138107

RESUMO

Low-frequency electrical stimulation (LFS) is a potential therapeutic method for epilepsy treatment. However, the effect of different LFS characteristics including the number of pulses, intensity and the time of application on its antiepileptic action has not been completely determined. In the present study, epileptiform activity (EA) was induced in hippocampal slices by high-K+ solution which was washed out after 20 min. The changes in the electrophysiological properties of CA1 pyramidal neurons were measured during and 30 min after EA using whole-cell patch-clamp recording. EA occurrence resulted in neuronal hyperexcitability. Application of 1-Hz LFS to the Schaffer collaterals at 600 and 900 pulses and two intensities (equal and 1.5 times more than an intensity sufficient to elicits a 5-mV EPSP) at the beginning of EA showed that 900-pulse LFS at high intensity had stronger preventing effect on high-K+-induced neuronal hyperexcitability by increasing the rheobase current, utilization time, first-spike latency, delay to first-rebound action potential and decreasing the number of rebound action potential. In addition, application of high-intensity 900-pulse LFS had better inhibitory effect on the neuronal hyperexcitability when applied at the beginning of EA compared to its administration before or at 8-10 min after EA. Therefore, it may suggest the inhibitory action of LFS on the neuronal hyperexcitability is augmented by increasing its number of pulses and intensity. In addition, there is a time window for LFS application so that its application at the beginning of EA has better inhibitory effect.


Assuntos
Terapia por Estimulação Elétrica , Epilepsia/fisiopatologia , Epilepsia/terapia , Hipocampo/fisiologia , Potássio/metabolismo , Potenciais de Ação/fisiologia , Animais , Cátions Monovalentes/metabolismo , Estimulação Elétrica , Terapia por Estimulação Elétrica/métodos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Masculino , Células Piramidais/fisiologia , Ratos Wistar , Técnicas de Cultura de Tecidos
12.
Neurosci Lett ; 655: 82-89, 2017 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-28689926

RESUMO

The facet joint is a common source of neck pain, particularly after excessive stretch of its capsular ligament. Peptidergic afferents have been shown to have an important role in the development and maintenance of mechanical hyperalgesia, dysregulated nociceptive signaling, and spinal hyperexcitability that develop after mechanical injury to the facet joint. However, the role of non-peptidergic isolectin-B4 (IB4) cells in mediating joint pain is unknown. Isolectin-B4 saporin (IB4-SAP) was injected into the facet joint to ablate non-peptidergic cells, and the facet joint later underwent a ligament stretch known to induce pain. Behavioral sensitivity, thalamic glutamate transporter expression, and thalamic hyperexcitability were evaluated up to and at day 7. Administering IB4-SAP prior to a painful injury prevented the development of mechanical hyperalgesia that is typically present. Intra-articular IB4-SAP also prevented the upregulation of the glutamate transporters GLT-1 and EAAC1 in the ventral posterolateral nucleus of the thalamus and reduced thalamic neuronal hyperexcitability at day 7. These findings suggest that a painful facet injury induces changes extending to supraspinal structures and that IB4-positive afferents in the facet joint may be critical for the development and maintenance of sensitization in the thalamus after a painful facet joint injury.


Assuntos
Transportador 2 de Aminoácido Excitatório/metabolismo , Lectinas/metabolismo , Neurônios Aferentes/fisiologia , Dor/fisiopatologia , Proteínas Inativadoras de Ribossomos Tipo 1/metabolismo , Tálamo/fisiopatologia , Articulação Zigapofisária/lesões , Animais , Transportador 3 de Aminoácido Excitatório/metabolismo , Hiperalgesia/fisiopatologia , Lectinas/farmacologia , Masculino , Estimulação Física , Ratos , Proteínas Inativadoras de Ribossomos Tipo 1/farmacologia , Saporinas , Tálamo/metabolismo , Núcleos Ventrais do Tálamo/metabolismo , Articulação Zigapofisária/inervação
13.
Hear Res ; 350: 32-42, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28431308

RESUMO

Chronic tinnitus and hyperacusis often develop with age-related hearing loss presumably due to aberrant neural activity in the central auditory system (CAS) induced by cochlear pathologies. However, the full spectrum of physiological changes that occur in the CAS as a result age-related hearing loss are still poorly understood. To address this issue, neurophysiological measures were obtained from the cochlea and the inferior colliculus (IC) of 2, 6 and 12 month old C57BL/6J mice, a mouse model for early age-related hearing loss. Thresholds of the compound action potentials (CAP) in 6 and 12 month old mice were significantly higher than in 2 month old mice. The sound driven and spontaneous firing rates of IC neurons, recorded with 16 channel electrodes, revealed mean IC thresholds of 22.8 ± 6.5 dB (n = 167) at 2 months, 37.9 ± 6.2 dB (n = 132) at 6 months and 47.1 ± 15.3 dB (n = 151) at 12 months of age consistent with the rise in CAP thresholds. The characteristic frequencies (CF) of IC neurons ranged from 3 to 32 kHz in 2 month old mice; the upper CF ranged decreased to 26 kHz and 16 kHz in 6 and 12 month old mice respectively. The percentage of IC neurons with CFs between 8 and 12 kHz increased from 36.5% in 2 month old mice, to 48.8% and 76.2% in 6 and 12 month old mice, respectively, suggesting a downshift of IC CFs due to the high-frequency hearing loss. The average spontaneous firing rate (SFRs) of all recorded neurons in 2 month old mice was 3.2 ± 2.5 Hz (n = 167). For 6 and 12 month old mice, the SFRs of low CF neurons (<8 kHz) was maintained at 3-6 spikes/s; whereas SFRs of IC neurons with CFs > 8 kHz increased to 13.0 ± 15.4 (n = 68) Hz at 6 months of age and then declined to 4.8 ± 7.4 (n = 110) spikes/s at 12 months of age. In addition, sound-evoked activity at suprathreshold levels at 6 months of age was much higher than at 2 and 12 months of age. To evaluate the behavioral consequences of sound evoked hyperactivity in the IC, the amplitude of the acoustic startle reflex was measured at 4, 8 and 16 kHz using narrow band noise bursts. Acoustic startle reflex amplitudes in 6 and 12 month old mice (n = 4) were significantly larger than 2 month old mice (n = 4) at 4 and 8 kHz, but not 16 kHz. The enhanced reflex amplitudes suggest that high-intensity, low-frequency sounds are perceived as louder than normal in 6 and 12 month old mice compared to 2 month olds. The increased spontaneous activity, particularly at 6 months, may be related to tinnitus whereas the increase in sound-evoked activity and startle reflex amplitudes may be related to hyperacusis.


Assuntos
Cóclea/fisiopatologia , Colículos Inferiores/fisiopatologia , Presbiacusia/fisiopatologia , Reflexo de Sobressalto , Estimulação Acústica , Fatores Etários , Envelhecimento , Animais , Limiar Auditivo , Modelos Animais de Doenças , Potenciais Evocados Auditivos , Audição , Hiperacusia/fisiopatologia , Hiperacusia/psicologia , Percepção Sonora , Camundongos Endogâmicos C57BL , Presbiacusia/psicologia , Zumbido/fisiopatologia , Zumbido/psicologia
14.
Brain Res Bull ; 131: 7-17, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28274815

RESUMO

This study explored the effect of electroacupuncture stimulation (EA) on alterations in the Hoffman reflex (H-reflex) response and gait locomotion provoked by spinal cord injury (SCI) in the rat. A compression lesion of the spinal cord was evoked by insufflating a Fogarty balloon located in the epidural space at the T8-9 spinal level of adult Wistar male rats (200-250 gr; n=60). In different groups of SCI rats, EA (frequencies: 2, 50 and 100Hz) was applied simultaneously to Huantiao (GB30), Yinmen (BL37), Jizhong (GV6) and Zhiyang (GV9) acupoints from the third post-injury day until the experimental session. At 1, 2, 3 and 4 post-injury weeks, the BBB scores of the SCI group of rats treated with EA at 50Hz showed a gradual but greater enhancement of locomotor activity than the other groups of rats. Unrestrained gait kinematic analysis of SCI rats treated with EA-50Hz stimulation showed a significant improvement in stride duration, length and speed (p<0.05), whereas a discrete recovery of gait locomotion was observed in the other groups of animals. After four post-injury weeks, the H-reflex amplitude and H-reflex/M wave amplitude ratio obtained in SCI rats had a noticeable enhancement (217%) compared to sham rats (n=10). Meanwhile, SCI rats treated with EA at 50Hz manifested a decreased facilitation of the H-reflex amplitude and H/M amplitude ratio (154%) and a reduced frequency-dependent amplitude depression of the H-reflex (66%). In addition, 50 Hz-EA treatment induced a recovery of the presynaptic depression of the Gs-VRP evoked by PBSt conditioning stimulation in the SCI rat (63.2±8.1%; n=9). In concordance with the latter, it could be suggested that 50 Hz-EA stimulation reduced the hyper-excitability of motoneurons and provokes a partial improvement of the locomotive performance and H reflex responses by a possible recovery of presynaptic mechanisms in the spinal cord of experimentally injured rats.


Assuntos
Eletroacupuntura/métodos , Traumatismos da Medula Espinal/terapia , Pontos de Acupuntura , Animais , Eletroacupuntura/veterinária , Marcha/fisiologia , Reflexo H/fisiologia , Locomoção , Masculino , Neurônios Motores/fisiologia , Ratos , Ratos Wistar , Medula Espinal/fisiopatologia , Raízes Nervosas Espinhais/fisiopatologia
15.
Neuroscience ; 347: 48-56, 2017 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-28188855

RESUMO

Epilepsy is a neurological disease related to the occurrence of pathological oscillatory activity, but the basic physiological mechanisms of seizure remain to be understood. Our working hypothesis is that specific sensory processing circuits may present abnormally enhanced predisposition for coordinated firing in the dysfunctional brain. Such facilitated entrainment could share a similar mechanistic process as those expediting the propagation of epileptiform activity throughout the brain. To test this hypothesis, we employed the Wistar audiogenic rat (WAR) reflex animal model, which is characterized by having seizures triggered reliably by sound. Sound stimulation was modulated in amplitude to produce an auditory steady-state-evoked response (ASSR; -53.71Hz) that covers bottom-up and top-down processing in a time scale compatible with the dynamics of the epileptic condition. Data from inferior colliculus (IC) c-Fos immunohistochemistry and electrographic recordings were gathered for both the control Wistar group and WARs. Under 85-dB SLP auditory stimulation, compared to controls, the WARs presented higher number of Fos-positive cells (at IC and auditory temporal lobe) and a significant increase in ASSR-normalized energy. Similarly, the 110-dB SLP sound stimulation also statistically increased ASSR-normalized energy during ictal and post-ictal periods. However, at the transition from the physiological to pathological state (pre-ictal period), the WAR ASSR analysis demonstrated a decline in normalized energy and a significant increase in circular variance values compared to that of controls. These results indicate an enhanced coordinated firing state for WARs, except immediately before seizure onset (suggesting pre-ictal neuronal desynchronization with external sensory drive). These results suggest a competing myriad of interferences among different networks that after seizure onset converge to a massive oscillatory circuit.


Assuntos
Córtex Auditivo/fisiopatologia , Potenciais Evocados Auditivos , Colículos Inferiores/fisiopatologia , Convulsões/fisiopatologia , Estimulação Acústica , Animais , Córtex Auditivo/metabolismo , Sincronização Cortical , Modelos Animais de Doenças , Eletroencefalografia , Colículos Inferiores/metabolismo , Vias Neurais/fisiopatologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Wistar
16.
Neurol Sci ; 37(5): 703-9, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27032400

RESUMO

Given that the medial olivocochlear efferent system reduces the amplitude of otoacoustic emissions (OAE), the aim of this study was to establish whether such a pathway is affected in women with migraine and phonophobia by means of OAE suppression testing. In this prospective case-control study, 55 women (29 with migraine and phonophobia and 26 healthy women) were subjected to transient-evoked otoacoustic emission (TEOAE) testing at frequencies from 1 to 4 kHz. The amplitudes of the TEOAE response before and after exposure to contralateral noise and the magnitude of TEOAE suppression were assessed. The average TEOAE amplitudes in conditions with and without exposure to contralateral noise were not significantly different between the groups. However, the magnitude of TEOAE suppression was lower in the group with migraine; that difference was only statistically significant for frequencies 1 and 1.5 kHz (p = 0.042 and p = 0.004, respectively). In this study, women with migraine and phonophobia exhibited deficits in OAE suppression, which points to a disorder affecting the medial olivocochlear efferent system.


Assuntos
Hiperacusia/fisiopatologia , Transtornos de Enxaqueca/fisiopatologia , Emissões Otoacústicas Espontâneas/fisiologia , Estimulação Acústica , Adolescente , Adulto , Estudos de Casos e Controles , Feminino , Lateralidade Funcional , Humanos , Pessoa de Meia-Idade , Estudos Prospectivos , Psicoacústica , Adulto Jovem
17.
Cereb Cortex ; 26(4): 1512-28, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25596588

RESUMO

Amyotrophic lateral sclerosis (ALS) is a lethal disorder characterized by the gradual degeneration of motor neurons in the cerebrospinal axis. Whether upper motor neuron hyperexcitability, which is a feature of ALS, provokes dysfunction of glutamate metabolism and degeneration of lower motor neurons via an anterograde process is undetermined. To examine whether early changes in upper motor neuron activity occur in association with glutamatergic alterations, we performed whole-cell patch-clamp recordings to analyze excitatory properties of Layer V cortical motor neurons and excitatory postsynaptic currents (EPSCs) in presymptomatic G93A mice modeling familial ALS (fALS). We found that G93A Layer V pyramidal neurons exhibited altered EPSC frequency and rheobase values indicative of their hyperexcitability status. Biocytin loading of these hyperexcitable neurons revealed an expansion of their basal dendrite arborization. Moreover, we detected increased expression levels of the vesicular glutamate transporter 2 in cortical Layer V of G93A mice. Altogether our data show that functional and structural neuronal alterations associate with abnormal glutamatergic activity in motor cortex of presymptomatic G93A mice. These abnormalities, expected to enhance glutamate release and to favor its accumulation in the motor cortex, provide strong support for the view that upper motor neurons are involved early on in the pathogenesis of ALS.


Assuntos
Esclerose Lateral Amiotrófica/patologia , Esclerose Lateral Amiotrófica/fisiopatologia , Córtex Motor/patologia , Córtex Motor/fisiopatologia , Neurônios Motores/patologia , Neurônios Motores/fisiologia , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo , Potenciais de Ação , Esclerose Lateral Amiotrófica/metabolismo , Animais , Dendritos/patologia , Modelos Animais de Doenças , Potenciais Pós-Sinápticos Excitadores , Histona-Lisina N-Metiltransferase/genética , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Córtex Motor/metabolismo , Neurônios Motores/metabolismo , Superóxido Dismutase-1/genética , Sinapses/metabolismo
18.
Neuropharmacology ; 103: 27-43, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26707655

RESUMO

A growing body of evidence has revealed that resident cells of the central nervous system (CNS), and particularly the glial cells, comprise a neuroimmune system that serves a number of functions in the normal CNS and during adverse conditions. Cells of the neuroimmune system regulate CNS functions through the production of signaling factors, referred to as neuroimmune factors. Recent studies show that ethanol can activate cells of the neuroimmune system, resulting in the elevated production of neuroimmune factors, including the cytokine interleukin-6 (IL-6). Here we analyzed the consequences of this CNS action of ethanol using transgenic mice that express elevated levels of IL-6 through increased astrocyte expression (IL-6-tg) to model the increased IL-6 expression that occurs with ethanol use. Results show that increased IL-6 expression induces neuroadaptive changes that alter the effects of ethanol. In hippocampal slices from non-transgenic (non-tg) littermate control mice, synaptically evoked dendritic field excitatory postsynaptic potential (fEPSP) and somatic population spike (PS) at the Schaffer collateral to CA1 pyramidal neuron synapse were reduced by acute ethanol (20 or 60 mM). In contrast, acute ethanol enhanced the fEPSP and PS in hippocampal slices from IL-6 tg mice. Long-term synaptic plasticity of the fEPSP (i.e., LTP) showed the expected dose-dependent reduction by acute ethanol in non-tg hippocampal slices, whereas LTP in the IL-6 tg hippocampal slices was resistant to this depressive effect of acute ethanol. Consistent with altered effects of acute ethanol on synaptic function in the IL-6 tg mice, EEG recordings showed a higher level of CNS activity in the IL-6 tg mice than in the non-tg mice during the period of withdrawal from an acute high dose of ethanol. These results suggest a potential role for neuroadaptive effects of ethanol-induced astrocyte production of IL-6 as a mediator or modulator of the actions of ethanol on the CNS, including persistent changes in CNS function that contribute to cognitive dysfunction and the development of alcohol dependence.


Assuntos
Astrócitos/metabolismo , Etanol/administração & dosagem , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Interleucina-6/metabolismo , Células Piramidais/efeitos dos fármacos , Animais , Ondas Encefálicas/efeitos dos fármacos , Córtex Cerebral/efeitos dos fármacos , Estimulação Elétrica , Hipocampo/fisiologia , Camundongos , Camundongos Transgênicos , Neurorretroalimentação , Plasticidade Neuronal/efeitos dos fármacos , Células Piramidais/fisiologia , Transdução de Sinais/efeitos dos fármacos
19.
Brain Stimul ; 7(5): 636-42, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25216650

RESUMO

BACKGROUND: Transcutaneous spinal direct current stimulation (tsDCS) is a new non-invasive technique to modulate spinal cord activity. The pathophysiological concept of primary RLS proposes increased spinal excitability. OBJECTIVE: This pilot study used tsDCS to reduce pathologically enhanced spinal excitability in RLS patients and to thereby ameliorate clinical symptoms. METHODS: 20 patients with idiopathic RLS and 14 healthy subjects participated in this double-blinded, placebo-controlled study. All participants received one session of cathodal, anodal and sham stimulation of the thoracic spinal cord for 15 min (2.5 mA) each, in randomized order during their symptomatic phase in the evening. The soleus Hoffmann-reflex with Hmax/Mmax-ratio and seven different H2/H1-ratios (of two H-reflex responses to double stimuli) were measured. The RLS symptoms were assessed by a visual analogue scale (VAS). All parameters were measured before and twice after tsDCS. RESULTS: RLS patients showed increased H2/H1-ratios during their symptomatic phase in the evening. Application of anodal stimulation led to a decreased H2/H1-ratio for 0.2 and 0.3 s interstimulus intervals in patients. Furthermore, application of anodal and cathodal stimulation led to a reduction in restless legs symptoms on the VAS, whereas application of sham stimulation had no effects on either the VAS or on the H2/H1-ratio in patients. VAS changes did not correlate with changes of H2/H1-ratios. CONCLUSIONS: This is the first tsDCS study in idiopathic RLS, which resulted in short-lasting clinical improvement. Furthermore, our results support the pathophysiological concept of spinal cord hyperexcitability in primary RLS and provide the basis for a new non-pharmacological treatment tool.


Assuntos
Síndrome das Pernas Inquietas/fisiopatologia , Síndrome das Pernas Inquietas/terapia , Medula Espinal/fisiopatologia , Estimulação Elétrica Nervosa Transcutânea/métodos , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Síndrome das Pernas Inquietas/diagnóstico , Resultado do Tratamento , Adulto Jovem
20.
Neurobiol Learn Mem ; 105: 133-50, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23796633

RESUMO

Sensitization is a form of non-associative conditioning in which amplification of behavioral responses can occur following presentation of an aversive or noxious stimulus. Understanding the cellular and molecular underpinnings of sensitization has been an overarching theme spanning the field of learning and memory as well as that of pain research. In this review we examine how sensitization, both in the context of learning as well as pain processing, shares evolutionarily conserved behavioral, cellular/synaptic, and epigenetic mechanisms across phyla. First, we characterize the behavioral phenomenon of sensitization both in invertebrates and vertebrates. Particular emphasis is placed on long-term sensitization (LTS) of withdrawal reflexes in Aplysia following aversive stimulation or injury, although additional invertebrate models are also covered. In the context of vertebrates, sensitization of mammalian hyperarousal in a model of post-traumatic stress disorder (PTSD), as well as mammalian models of inflammatory and neuropathic pain is characterized. Second, we investigate the cellular and synaptic mechanisms underlying these behaviors. We focus our discussion on serotonin-mediated long-term facilitation (LTF) and axotomy-mediated long-term hyperexcitability (LTH) in reduced Aplysia systems, as well as mammalian spinal plasticity mechanisms of central sensitization. Third, we explore recent evidence implicating epigenetic mechanisms in learning- and pain-related sensitization. This review illustrates the fundamental and functional overlay of the learning and memory field with the pain field which argues for homologous persistent plasticity mechanisms in response to sensitizing stimuli or injury across phyla.


Assuntos
Sensibilização do Sistema Nervoso Central/genética , Condicionamento Psicológico/fisiologia , Epigênese Genética , Memória/fisiologia , Plasticidade Neuronal/genética , Dor/fisiopatologia , Animais , Aplysia , Humanos , Camundongos , Ratos , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA